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Abstract

The two lectures are devoted to the spectral element method (SEM)
applied to the Navier–Stokes equations for viscous incompressible New-
tonian fluids. The first presentation describes the state-of-the-art algo-
rithms for direct numerical simulations. The space discretization relies
on the PN − PN−2 approximation while the time integrators use an im-
plicit/explicit approach. Solvers and preconditioners are based on the
conjugate gradient method. The pressure computation is handled by the
Uzawa algorithm which may be preconditioned in several ways. The case
of complex geometries leads to the use of domain decomposition methods
and various preconditioning techniques. The second lecture will focus on
recent developments, namely the arbitrary Lagrangian-Eulerian formula-
tion and the method of moving grid. Two examples are considered: free
surface flows and the interaction between a viscous fluid and a Hookean
elastic solid. As a final application, large-eddy simulation is analyzed and
new models are proposed. The lecture ends with practical remarks on the
numerical implmenetation and parallelization of spectral element codes.
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1 SEM State-of-the-Art

1.1 The continuous Navier–Stokes equations

The governing equations describing the flow of a viscous Newtonian incompressible
fluid of density ρ and dynamic viscosity µ are given by the Navier–Stokes equations

ρ
Dv

Dt
= −∇ p + µ ∆v + ρf (1)

with the incompressibility constraint coming from the mass conservation

divv = 0 (2)

In Eq. (1), the symbol D/Dt denotes the material time derivative

D

Dt
=

∂

∂t
+ v · ∇, (3)

1



where v is the velocity field in the Eulerian representation and p the pressure. The
body force is denoted by f .

1.1.1 Boundary Conditions

The continuum mechanics hypothesis implies that the viscous fluid sticks to the wall.
Therefore, one imposes the no-slip wall condition

v = vw, (4)

vw being the prescribed wall velocity.
An interesting class of fluid flow problems is concerned with free surface flows,

where a viscous fluid is directly in contact with an essentially inviscid fluid such as
air. Some industrial examples are coating flows, extrusion, and crystal growth. These
problems are highly nonlinear because the shape of the free surface, where special
conditions are to be applied, is also part of the solution itself. Let us introduce the
Cauchy principle where the density of contact forces represented by the stress vector
t depends on the unit normal n to the surface ∂Ω(t) at position x. More precisely,
there exists a tensor field such that

t(x, n) = σ(x)n, (5)

where σ denotes the symmetric stress tensor. Since the free surface is in mechanical
equilibrium, we have, from Eq. (5),

tfluid + tgas = 0. (6)

The projection of this relation onto the normal (n) with respect to the viscous fluid
and tangent (τ ) unit vectors of the surface produces the free surface conditions (ngas =
−n)

tfluid · n = tgas · n = −pgas, (7)

tfluid · τ = 0. (8)

Here we have discarded the surface tension effects.

1.1.2 Initial Conditions

The initial condition requires that the velocity field satisfies

v(x, t = 0) = v
0(x), (9)

with
div v

0 = 0, (10)

and the initial boundary conditions. The superscript indicates the time level.

1.2 Weak Formulation: the Galerkin Method

The weak formulation of the Navier–Stokes equations is given in the functional context
of Sobolev spaces and the spatial approximation is considered in the framework of the
Galerkin method. The weak formulation is built up using appropriate test functions.
Integration by parts with the help of a Green identity reduces the order of the partial
differential operators and enlarges the space of admissible solutions. In the framework
of spectral element methods (SEM) the computational domain is broken up into E el-
ements and the space approximation is performed with high-order Lagrange-Legendre
polynomials of degree N that are constructed as local tensor-product nodal bases for
multidimensional problems. The rate of convergence may be analyzed for smooth
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problems and leads to the so-called spectral (exponential) accuracy. Let us notice
that the tensor product property of the bases constitutes the basic ingredient for the
algorithmic complexity of O(N4) for the number of operations involved in a matrix
vector product in three-dimensional computations.

The weak formulation leads to integrals which are approximated by Gauss-type
quadrature rules. In SEM the quadrature rules use the same nodes as the approxi-
mation polynomials, therefore inducing a direct correspondence between interpolation
and integration. The spectral element discretization for the Navier–Stokes primitive
variables v and p is based on the PN − PN−2 element which is free of spurious pres-
sure modes. One can show that this element is optimal. The underlying quadrature
rules involve the Gauss–Lobatto–Legendre nodes for the velocity field and the Gauss–
Legendre grid for the pressure. Figure 1 displays staggered spectral element for the
polynomial degree N = 6 (left) and N = 7 (right).

Figure 1: 2D staggered spectral elements for N = 6 (left) and N = 7 (right).

With the notations borrowed from the monograph [7], the semi-discrete problem
reads

M
dv

dt
+ Kv − D

T p = −ReCv + F, (11)

−Dv = 0 (12)

where M is the diagonal mass matrix, K the stiffness matrix, DT the discrete gradient,
C the nonlinear convection operator and D the discrete divergence (transpose of
DT ). The symbol Re denotes the Reynolds number. The time integration algorithms
rest upon an implicit treatment of the transient Stokes operator in order to avoid
the stringent stability restriction by the viscous term. This is done by a backward
differentiation (Euler) scheme of order two (BDF2). The nonlinear term is treated
explicitly by extrapolation in time (EXT2). This method BDF2/EXT2 has no splitting
error(see [21]) and yields minimal numerical dissipation and dispersion when applied,
for example, to the severe test of the rotating cone problem. However the explicit
treatment of the advection term imposes a CFL condition on the time step ∆t:

umax∆t ≤ C/N2. (13)

The solvers for the elliptic symmetric operators are preconditioned conjugate gra-
dient methods by the diagonal matrix extracted from the system matrix. Other pre-
conditioners may be chosen among finite differences, finite elements, the overlapping
Schwarz method and more recently, the finite volume method.
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The velocity and pressure computations are decoupled as the 3D matrices are too
large to be handled by efficient methods. The velocity-pressure matrix is given by

„

H −DT

−D 0

« „

vn+1

pn+1

«

=

„

M fn+1

0

«

with H a block-diagonal matrix made of d (d is the space dimension) blocks H =
βk

∆t
M + K. Solving for the pressure pn+1 at the new time level, one gets the Uzawa

algorithm
Spn+1 = −DH−1Mfn+1

S = DH−1DT

. The pressure solvers may also be obtained through generalized block LU decompo-
sitions and several time splitting schemes are deduced.

As in finite elements, complex geometries are tackled through the use of isopara-
metric elements. Nonetheless, mortar elements and nodal triangles have become useful
tools to deal with complicated geometrical computational domains. In [13], an example
of the flow under a blade obstructing severely a plane channel is given demonstrating
the capabilities of mortar elements. There the mortars are geometrically conforming
but different polynomial degrees are used around the sharp corners of the blade. That
procedure allows the user to obtain a smooth pressure field where the geometry might
otherwise induce oscillations in the computation.

As an example of application let us consider the two-dimensional vortex dipole
colliding on a wall. This problem has been proposed recently as a benchmark problem
by Clercx and Bruneau [6]. Numerical results are obtained for Re = 100, Ex = Ey =
20, Nx = Ny = 10. The initial conditions are two vortices of same strength and
of opposite signs, located at the center of the computational domain with vorticity
ω = ω0(1 − (r/r0)

2) exp(−(r/r0)
2), ω0 = 300 and r0 = 0.1. The results yield very

good accuracy as the SEM is able to resolve the small scale structures when the two
vortices hit the boundary as can be seen in Fig. 2 at a given instant.

2 Moving-boundary problems and the ALE for-

mulation

2.1 Mathematical model

A moving boundary-fitted grid technique is chosen to simulate the unsteady part of
the boundary. In these lecture notes, we focus on cases where the unsteady part of
the boundary can be either the free surface in case of free-surface flows, or for fluid-
structure interaction problems, the interface between the fluid and the structure. This
choice of a surface-tracking technique is primarily based on accuracy requirements.
With this group of techniques, the grid is configured to conform to the shape of the
interface, and thus adapts continuously—at each time step—to it and therefore pro-
vides an accurate description of the moving boundary to express the related kinematic
and/or dynamic boundary conditions.

2.1.1 The ALE kinematic framework

This section will introduce the notations used in these lecture notes to define the
variables and frames of reference related to the ALE formulation. The notations
adopted hereafter are borrowed from [14, 15]. We denote by Ωt the fluid domain
subset of R

d with d = 2, 3 the space dimension, the subscript t referring to the time t
as the fluid domain is changing when its boundaries are moving. Let us denote by Ω0

a reference configuration—for instance the domain configuration at initial time t = t0.
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Figure 2: Dipoles of vortices: contours of the z-component of the vorticity field at a
given instant.

The system evolution is studied in the time interval I = [t0, T ]. The position of a
point in the current fluid domain Ωt is denoted by x—Eulerian coordinate—and in
the reference frame Ω0 by Y—ALE coordinate. Let At be a family of mappings, which
at each t ∈ I associates a point Y ∈ Ω0 to a point x ∈ Ωt:

At : Ω0 ⊂ R
d → Ωt ⊂ R

d, x(Y, t) = At(Y). (14)

At is assumed to be continuous and invertible on Ω0 and differentiable almost every-
where in I . The inverse of the mapping At is also continuous on Ω0.

The Jacobian matrix of the ALE mapping At is given by

JAt =
∂x

∂Y
, (15)

and its determinant JAt = detJAt is the Jacobian of the mapping characterizing the
metrics of Ωt generated from the one of Ω0. The Euler expansion formula gives the
relationship between the Jacobian of the mapping At and the divergence of the ALE
velocity w:

∂JAt

∂t

˛

˛

˛

˛

Y

= JAt∇x · w, ∀(Y, t) ∈ Ω0 × I, (16)

supplemented by the initial condition JAt = 1 for t = t0. In real computations, w will
be associated to the mesh velocity. The hyperbolic partial differential equation (16)
highlights the important role played by the divergence of the mesh velocity in the time
evolution of the mapping At. This particular point is emphasized in Section 2.3, where
one of the mesh-update techniques used in our simulations, enforces a divergence-free
condition for w resulting in a constant in time Jacobian JAt [16]. Furthermore Eq. (16)
constitutes the evolution law for JAt as in our formulation the ALE mesh velocity is
calculated based on the essential boundary conditions of our problem in Ωt, thereby
defining the location of the grid nodes and the value of At.
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Considering a time-dependent scalar field f defined on Ωt×I , the notation ∂f/∂t|Y
refers to the time derivative in the ALE frame, or in short the ALE time derivative
expressed in Eulerian coordinates as opposed to the regular time derivative in Eulerian
coordinates and denoted by ∂f/∂t|x. Finally, the ALE mesh velocity w is defined as

w(x, t) =
∂At

∂t

˛

˛

˛

˛

Y

. (17)

It is worth noting that a standard application of the chain rule to the time derivative
gives

∂f

∂t

˛

˛

˛

˛

Y

=
∂f

∂t

˛

˛

˛

˛

x

+ w · ∇xf. (18)

The symbol ∇x indicates the gradient operation applied to the scalar field f with
respect to the Eulerian coordinate x. If w = 0, the mesh is fixed, and we recover the
Eulerian description where ∂/∂t|Y is the classical time derivative ∂/∂t|x. If w = u
where u is the fluid velocity field, we obtain the Lagrangian description and ∂/∂t|Y is
the particle derivative. Eq. (18) allows to generalize the Reynolds transport theorem
for a time-dependent volume integral of a scalar field

d

dt

„

Z

Ωt

f dΩ

«

=

Z

Ωt

„

∂f

∂t

˛

˛

˛

˛

Y

+ f∇x · w

«

dΩ. (19)

2.1.2 The strong ALE formulation for the Navier–Stokes equations

The governing equations of our moving-boundary problem in the ALE kinematic de-
scription, for an incompressible Newtonian fluid flow occupying a fluid domain Ωt

whose boundary ∂Ωt is evolving with time, are the Navier–Stokes equations which in
strong form and in the Eulerian kinematic description read

∂u

∂t

˛

˛

˛

˛

x

+ u · ∇xu = −∇xp + 2ν∇x · Dx(u) + f , ∀(x, t) ∈ Ωt × I, (20)

∇x · u = 0, ∀(x, t) ∈ Ωt × I, (21)

where u is the velocity field, p the pressure field (normalized by the constant fluid
density ρ and relative to zero ambient), ν the kinematic viscosity of the fluid, Dx(u) =
1
2
(∇xu + ∇xu

T ) the rate-of-deformation tensor and f the body force per unit mass,
with the superscript T indicating the transpose. Eq. (20) expresses the conservation
of momentum and the divergence-free condition (21) is the continuity equation in its
simplified form for an incompressible flow. Equations (20)–(21) are valid in the internal
fluid domain Ωt, and have to be supplied with boundary conditions on the boundary
∂Ωt and the problem being unsteady, an initial condition is also required. The initial
velocity field is chosen as

u(x, t = t0) = u0(x), ∀x ∈ Ωt, with Ωt = Ωt0 = Ω0, (22)

such that ∇x · u0 = 0. Let the boundary ∂Ωt be split into two non-overlapping parts
∂Ωt = ∂ΩD

t ∪∂Ωσ

t . In the sequel we will consider the two following types of boundary
conditions

u = g(t), on ∂ΩD
t and ∀t ∈ I, (23)

σ · n̂ = −pI · n̂ + 2νDx(u) · n̂ = h(t), on ∂Ωσ

t and ∀t ∈ I, (24)

where σ is the stress tensor, I the identity tensor and n̂ the local unit outward nor-
mal vector to ∂Ωt. Eq. (23) is an essential boundary condition on ∂ΩD

t of Dirichlet
type. In the cases of free-surface flows and fluid-structure interaction problems, ∂ΩD

t

corresponds to fixed or prescribed moving solid walls where a no-slip condition has
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to be satisfied. Eq. (24) is a natural boundary condition on ∂Ωσ

t . For free-surface
flows and fluid-structure interactions, ∂Ωσ

t represents prescribed inflow and/or out-
flow depending on the situations considered, but primarily the free surface itself or the
interface between the fluid and the structure, where a mechanical equilibrium has to
be enforced. Therefore Eq. (24) is a dynamic boundary condition (DBC) expressing
the continuity of the normal stress at the moving boundary. If free-surface flows are
envisaged and if the surface tension is neglected, h = −p0n̂ where p0 is the pressure
of the surrounding fluid, taken as zero in the sequel.

Using Eq. (18), we can recast the strong form of the conservation of the momentum
of the Navier–Stokes equations in the ALE frame

∂u

∂t

˛

˛

˛

˛

Y

+ (u −w) · ∇xu = −∇xp + 2ν∇x · Dx(u) + f , ∀(x, t) ∈ Ωt × I, (25)

the divergence-free condition (21), the initial and boundary conditions (22)–(24) re-
maining unchanged in the ALE kinematic description. Indeed, boundary conditions
are related to the problem and not to the kinematic description employed, be it Eu-
lerian, Lagrangian or arbitrary Lagrangian-Eulerian. Nevertheless the ALE mesh ve-
locity w is to a certain extent part of the unknown fields of the problem even though
some freedom in moving the mesh makes the ALE technique so attractive. The details
related to the treatment and the computation of the mesh velocity are presented in
Section 2.3.

2.1.3 The weak ALE formulation for the moving-boundary problem

governed by the Navier–Stokes equations

Based on the strong formulation of the moving-boundary problem described in Section
2.1.2, one can derive the more appropriate weak transient ALE formulation. In a
standard approach, first are introduced the spaces of test and trial functions used to
express the initial problem in its weak form based on the reference configuration Ω0.
We may note that the spaces of test and trial functions for the pressure are identical as
no essential Dirichlet condition is being imposed on this field. This space is the space
of functions that are square Lebesgue-integrable on the domain Ωt and is denoted by
L2(Ωt). In general the velocity does not necessarily vanish on the domain boundary;
in our particular case the existence of a non-homogeneous essential Dirichlet boundary
condition on ∂ΩD

t leads us to consider different spaces for the test and trial functions
for the velocity field. The solution for the velocity u, of the problem (20)–(24) will be
searched for directly in the Sobolev space of trial functions H1

D(Ωt)
d defined as follows

H1
D(Ωt)

d = {u ∈ L2(Ωt)
d, ∇xui ∈ L2(Ωt)

d with i = 1, . . . , d, u|
∂ΩD

t

= g}, (26)

and corresponding to the current configuration Ωt. The reference configuration Ω0

will be used to build the velocity test functions v̂, which will be taken in the space
H1

0,D(Ω0)
d with

H1
0,D(Ω0) = {v̂ ∈ L2(Ω0), ∇xv̂ ∈ L2(Ω0)

d, v̂|
∂ΩD

0

= 0}, (27)

to satisfy a homogenous Dirichlet condition on ∂ΩD
0 . Subsequently, the dynamics of

the test functions on the configuration Ωt is obtained by means of the existing inverse
of the mapping At. Therefore the velocity test functions on the configuration at time
t are the set of functions (v̂ ◦A−1

t ) with v̂ belonging to H1
0,D(Ω0)

d. In the sequel, the
notation (v̂ ◦ A−1

t ) is kept in order to emphasize two key points. First, the treatment
of the weak form of the time derivative ∂u/∂t|Y in Eq. (25) is based on the essential
property that v̂ is not time dependent and consequently ∂v̂/∂t|Y = 0. Second, such
formulation highlights the path to follow when practically implementing the weak ALE
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formulation. Indeed, the time dependency is fully incorporated in the inverse mapping
A−1

t and the functions v̂ remains the same as the ones used in fixed-grid problems.
Moreover, in a more general framework where At is still invertible but less regular, this
formulation still holds and one only needs to care for the regularity of the functions
v̂ and not of the functions (v̂ ◦ A−1

t ). With the notations and spaces introduced, the
weak transient ALE formulation reads:
Find (u(t), p(t)) ∈ H1

D(Ωt)
d × L2(Ωt) such that for almost every t ≥ t0

d

dt

Z

Ωt

(v̂ ◦ A−1
t ) · u dΩ +

Z

Ωt

(v̂ ◦ A−1
t ) · ∇x · [uu − uw] dΩ =

Z

Ωt

(p∇x · (v̂ ◦ A−1
t ) − 2νDx(u) : ∇x(v̂ ◦ A−1

t )) dΩ (28)

+

Z

Ωt

f · (v̂ ◦ A−1
t ) dΩ +

Z

∂Ωσ

t

h · (v̂ ◦ A−1
t ) d∂Ω, ∀v̂ ∈ H1

0,D(Ω0)
d,

and

−

Z

Ωt

q∇x · u dΩ = 0, ∀q ∈L2(Ωt). (29)

The above set of equations has to be intended in the sense of distribution in the
interval t > t0, therefore justifying the qualifier “for almost every t ≥ t0”, see [17] for
greater details. As expected the DBC (24) appears ‘naturally’ in the weak formulation
above, corresponding to the last term on the right-hand side of (28) and being the only
‘surface term’ as the spatial integration is limited to ∂Ωσ

t . In addition, the DBC (24)
defines the reference pressure level and therefore no additional condition on the mean
value of the pressure is required. Finally, it is well known (see [17] for instance) that
a non-homogeneous Dirichlet boundary condition engenders a compatibility condition
that the field u has to satisfy. The origin of this condition is that, in order to be
compatible with (21) the boundary condition (23) imposes

Z

∂Ωt

u · n̂ d∂Ω =

Z

∂ΩD
t

g(t) · n̂ d∂Ω +

Z

∂Ωσ

t

u(t) · n̂ d∂Ω = 0, ∀t ∈ I. (30)

Eq. (30) is a consequence of (29) with q = 1.
In order to ease the discretization of the continuous weak equations (28)–(29), we

introduce the following notations and bilinear forms, such as a scalar product defined
by

(u, v̂) :=

Z

Ωt

(v̂ ◦ A−1
t ) · u dΩ, ∀v̂ ∈ H1

0,D(Ω0)
d, (31)

a so-called ‘energy bilinear form’

A(u, v̂) := 2ν

Z

Ωt

Dx(u) : ∇x(v̂ ◦ A−1
t ) dΩ, ∀v̂ ∈ H1

0,D(Ω0)
d, (32)

a bilinear form related to the weak incompressibility constraint

B(v̂, p) := −

Z

Ωt

p∇x · (v̂ ◦ A−1
t ) dΩ, ∀v̂ ∈ H1

0,D(Ω0)
d, (33)

a trilinear form corresponding to the nonlinear convective term

C(v̂;u,w) :=

Z

Ωt

(v̂ ◦ A−1
t ) · ∇x · [uu − uw] dΩ, ∀v̂ ∈ H1

0,D(Ω0)
d, (34)
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and finally two linear forms, the first one being related to the source term f

F(v̂) :=

Z

Ωt

f · (v̂ ◦ A−1
t ) dΩ, ∀v̂ ∈ H1

0,D(Ω0)
d, (35)

and the second one to the non-homogeneous natural boundary condition (24) on ∂Ωσ

t

Hσ(v̂) :=

Z

∂Ωσ

t

h · (v̂ ◦ A−1
t ) d∂Ω, ∀v̂ ∈ H1

0,D(Ω0)
d. (36)

With these notations, the continuous weak ALE form of our moving-boundary Navier–
Stokes problem can be recast as
Find (u(t), p(t)) ∈ H1

D(Ωt)
d × L2(Ωt) such that for almost every t ≥ t0

d

dt
(u, v̂) + A(u, v̂) + B(v̂, p) + C(v̂;u,w) = F(v̂) + Hσ (v̂), ∀v̂ ∈ H1

0,D(Ω0)
d, (37)

B(u, q) = 0, ∀q ∈ L2(Ωt). (38)

2.2 Numerical technique and discretization

Moving-boundary problems, either free-surface or fluid-structure interaction, repre-
sent a real challenge not only for the mathematician but also for the numericists. As
presented in Section 2.1, the weak formulation of the problem (37)–(38) is an evidence
of its complexity. In this section, particular emphasis will be put on the numeri-
cal space discretization of this arduous continuous problem. The general case with
non-homogeneous natural and essential Dirichlet boundary conditions is dealt with,
justifying the present choice of a very detailed presentation. The particular case of
steady problems with non-homogeneous Neumann conditions and homogeneous Dirich-
let boundary conditions was first formulated by Ho and Patera in [18] in their study
of free-surface flows dominated by inhomogeneous surface-tension effects. Further-
more, Rønquist extended the previous work of Ho and Patera to the more general case
of steady free-surface flow problems with non-homogeneous Neumann and Dirichlet
boundary conditions [19]. The specificities related to the treatment of transient prob-
lems is highlighted in the present lecture notes, which to our knowledge is not available
in the current literature.

2.2.1 Spectral element discretization

The first step in the spectral element method (SEM) discretization consists in subdi-
viding the fluid domain Ωt = Ωt ∪ ∂Ωt into E non-overlapping elements {Ωe

t}
E
e=1. In

the sequel we will assume that this elemental subdivision is maintained for all values
of t in the interval I , therefore meaning that no re-meshing procedure is applied and
leading to

Ωe
t = At(Ω

e
0), for e = 1, · · · , E, ∀t ∈ I. (39)

A re-meshing procedure for problem using SEM is presented in [16] and can be used
if needed. Each element Ωe

t involves a mesh constructed as a tensor product of one-
dimensional grids. Although each space direction may be discretized independently
of the others, without loss of generality we will consider only meshes obtained with
the same number of nodes in each direction, denoted by N + 1, corresponding to
the dimension of the space of Nth-order polynomials. To describe the discretization
process accurately, we adopt the same procedure as in [7] and define the following
spaces

X := H1
0,D(Ω0)

d, Y := H1
D(Ωt)

d, Z := L2(Ωt). (40)
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2.2.2 Galerkin approximation

We apply the Galerkin approximation to our Navier–Stokes problem in the ALE for-
mulation in its weak form (37)–(38), and therefore select finite dimensional polynomial
subspaces XN , YN and ZN to represent X, Y and Z respectively. A staggered-grid
approach with element based on PN − PN−2 spaces for the velocity and pressure field
respectively, allows to eliminate completely the spurious pressure modes [20]. In this
context, the finite dimensional functional spaces are defined as

XN := X ∩ P
d
N,E , YN := Y ∩ P

d
N,E , ZN := Z ∩ PN−2,E , (41)

with

PM,E = {φ|φ ∈ L2(Ωt); φ|Ωe
t

is a polynomial of degree ≤ M,∀e = 1, · · · , E}, (42)

where the superscript d in (41) reflects the fact that test and trial velocity functions are
d-dimensional. With these notations the Galerkin approximation of (37)–(38) reads
Find (uN (t), pN(t)) ∈ YN × ZN such that for almost every t ≥ t0

d

dt
(uN , v̂N ) + A(uN , v̂N ) + B(v̂N , pN )+

C(v̂N ;uN ,wN ) = FN (v̂N) + Hσ

N (v̂N), ∀v̂N ∈ XN , (43)

B(uN , qN ) = 0, ∀qN ∈ ZN , (44)

with

(uN , v̂N ) =
E

X

e=1

Z

Ωe
t

uN · (v̂N ◦ A−1
t ) dΩ, ∀v̂N ∈ XN (45)

FN(v̂N ) =

E
X

e=1

Z

Ωe
t

fN · (v̂N ◦ A−1
t ) dΩ, ∀v̂N ∈ XN (46)

Hσ

N(v̂N ) =
E

X

e=1

Z

∂Ω
e,σ
t

hN · (v̂N ◦ A−1
t ) d∂Ω, ∀v̂N ∈ XN (47)

fN and wN being the projection of the fields f and w onto the finite dimensional space
P

d
N,E .

The integrals within each of the spectral elements {Ωe
t}

E
e=1 and on the boundaries

{∂Ωe,σ
t }E

e=1 are performed in a discrete manner using Gaussian quadrature rules. More
specifically, all the terms in (43)–(44) are integrated using a Gauss-Lobatto-Legendre
(GLL) quadrature rule except for the two terms involving the bilinear form B where
functions discretized in PN−2,E appear. For these two terms, namely the pressure term
and the divergence-free condition, a Gauss-Legendre (GL) quadrature rule is chosen.
Therefore, the PN −PN−2 Navier–Stokes problem in the ALE form is finally stated as
Find (uN (t), pN(t)) ∈ YN × ZN such that for almost every t ≥ t0

d

dt
(uN , v̂N)N,GLL + AN,GLL(uN , v̂N) + BN,GL(v̂N , pN)+

CN,GLL(v̂N ;uN ,wN ) = FN,GLL(v̂N ) + Hσ

N,GLL(v̂N), ∀v̂N ∈ XN , (48)

BN,GL(uN , qN ) = 0, ∀qN ∈ ZN . (49)

To simplify the notations in the sequel, we will drop the subscript GLL and unless
being explicitly specified, whenever an integration rule is required, the GLL one is
implicitly being used.
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2.2.3 Semi-discrete Navier–Stokes moving-boundary problem in the

ALE form

In order to formulate the semi-discrete version of our moving-boundary problem gov-
erned by the Navier–Stokes equations in the ALE form, we introduce the two tensor-
product bases on the reference element Ω̂ := [−1, 1]d and for the sake of simplicity we
will choose the same discretization order in each space direction N :

• the Gauss-Lobatto-Legendre Lagrangian interpolation basis of degree N

{πi,j,k(ξ)}N
i,j,k=0 := {πi(ξi)}

N
i=0 ⊗ {πj(ξj)}

N
j=0 ⊗ {πk(ξk)}N

k=0, ∀ξ ∈ Ω̂,

(50)

to expand the velocity field discretized on the Nth-order GLL grid;

• the Gauss-Legendre Lagrangian interpolation basis of degree N − 2

{̟i,j,k(ζ)}N−1
i,j,k=1 := {̟i(ζi)}

N−1
i=1 ⊗ {̟j(ζj)}

N−1
j=1 ⊗ {̟k(ζk)}N−1

k=1 , ∀ζ ∈ Ω̂,

(51)

to expand the pressure field discretized on the GL grid of order N − 2.

The expressions of the one-dimensional GLL and GL Lagrangian interpolant poly-
nomials π(ξ) and ̟(ζ) appearing in (50)–(51) can be found in [7]. The polynomials
{πi,j,k(ξ)}N

i,j,k=0 and {̟i,j,k(ζ)}N−1
i,j,k=1 will serve as bases for the functions in the spaces

XN , YN and ZN

uN (x(ξ), t) =

N
X

i,j,k=0

uijk(t) πi,j,k(ξ), ∀(ξ, t) ∈ Ω̂ × I, (52)

pN(x(ζ), t) =
N−1
X

i,j,k=1

pijk(t) ̟i,j,k(ζ), ∀(ζ, t) ∈ Ω̂ × I, (53)

where x = xe is the location of the point considered in the spectral element Ωe
t ,

{uijk(t)}N
i,j,k=0 the set of nodal values of the velocity field on the GLL grid of Ωe

t

and {pijk(t)}N−1
i,j,k=1 the set of nodal values of the pressure field on the GL grid of Ωe

t .
It is important to note that the time-dependency of the discretized velocity uN and
pressure pN is not solely accounted by the time-dependent nodal values of these two
fields. Indeed, due to the motion of the grid, the mapping between the position in
the reference element Ω̂ and the spectral element Ωe

t at time t is also time-dependent
via the ALE mapping At. If we note Me

t (resp. Me
0) the mapping from the reference

element Ω̂ onto Ωe
t (resp. Ωe

0), we can write

xe = Me
t (ξ), ∀(ξ, t) ∈ Ω̂ × I, (54)

Ye = Me
0(ξ), ∀(ξ, t) ∈ Ω̂ × I, (55)

xe = At(Y
e), ∀(Ye, t) ∈ Ωe

0 × I, (56)

leading to following relationship between the different mappings

Me
t = At ◦M

e
0, ∀t ∈ I. (57)

Eq. (57) shows that the second origin of the time-dependency of (52) and (53), after
the one due to the set of GLL and GL nodal values, is the moving-grid technique via
the time-dependency of the ALE mapping At.

Before embarking on the final process of semi-descritizing the equations for the
moving-boundary problem, a last issue needs to be addressed: the treatment of the
non-homogeneous Dirichlet boundary condition (23) on ∂ΩD

t . First of all and as men-
tioned earlier, the non-homogeneity of (23) leads to different spaces for the trial and
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test functions for the velocity field, XN and YN respectively. Therefore the basis (52)
developed for XN is not suitable for the solution uN(t) of the problem (43)–(44) sought
in YN . As presented earlier, the non-homogeneous Dirichlet boundary condition im-
poses to satisfy the compatibility condition (30) whose discrete version reads

E
X

e=1

Z

∂Ωe
t

uN(t) · n̂ d∂Ω = 0, ∀t ∈ I. (58)

Let ub,N be a (piecewise) polynomial defined on the discrete boundary ∂Ωe
t (e =

1, . . . , E) and such that its nodal boundary values are equal to the boundary data
g(t). In practice, the GLL Lagrangian interpolation bases defined on the element
boundaries are used to expand ub,N ; however, in the rest of the inner domain these
functions are zero. By construction, ub,N satisfies (58). Setting uN = u0,N + ub,N ,
the problem reduces to finding u0,N in the space Y0,N := H1

0,D(Ωt)
d∩P

d
N,E . Therefore

the problem (43)–(44) can be reformulated as follows
satisfying (58), and set u0,N = uN − ub,N , then the problem (43)–(44) can be refor-
mulated as follows
Find (u0,N (t), pN(t)) ∈ Y0,N × ZN such that for almost every t ≥ t0

d

dt
(u0,N , v̂N)N + AN (u0,N , v̂N ) + BN,GL(v̂N , pN)+

CN(v̂N ;u0,N ,wN ) = FN (v̂N) + Hσ

N (v̂N) + D1,N (v̂N , t), ∀v̂N ∈ XN , (59)

BN,GL(u0,N , qN ) = D2,N,GL(qN , t), ∀qN ∈ ZN , (60)

with

D1,N (v̂N , t) = −
d

dt
(ub,N (t), v̂N )N

−AN (ub,N (t), v̂N) − CN(v̂N ;ub,N (t),wN ), ∀v̂N ∈ XN , (61)

and

D2,N,GL(qN , t) = −BN,GL(ub,N (t), qN ), ∀qN ∈ ZN . (62)

The two time-dependent terms D1,N et D2,N,GL appearing in (59) and (60) are due to
the non-homogeneity of the Dirichlet boundary condition. These values are related to
the values of the discrete field ub,N (t), which as mentioned earlier, are obtained from
the values of the field g(t) from (23).

We can now expand the trial velocity u0,N and the trial pressure pN onto the GLL–
GL bases like in (52) and (53) respectively. In the sequel we will drop the subscript
0 in u0,N , no confusion being possible as the non-homogeneous Dirichlet boundary
conditions is already accounted for in (59)–(60). The semi-discrete equations derived
from (59)–(60) are

d

dt
(M(t)u(t)) = −K(t)u(t) − C(u(t),w(t), t)u(t) + DT (t)p(t) + F1(t), (63)

−D(t)u(t) = F 2(t). (64)

The matrices appearing in (63)–(64) are all time-dependent: M is the mass matrix, K
the stiffness matrix, C the discrete convective operator involving the velocity field u
and the ALE mesh velocity w, DT the discrete gradient operator and D the discrete
divergence. F1 and F 2 are two vectors accounting for the presence of the body force
f and the time-dependent essential Dirichlet and natural non-homogeneous boundary
conditions.
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2.2.4 Time discretization

The set of semi-discrete equations (63)–(64) is discretized in time using finite-difference
schemes in a decoupled approach. The computation of the linear Helmholtz problem—
corresponding to the energy bilinear form A and the stiffness matrix K—is integrated
based on an implicit backward differentiation formula of order 2, the nonlinear convec-
tive term—corresponding to the trilinear form C and the matrix C—is integrated based
on a relatively simple extrapolation method of order 2, introduced by Karniadakis et
al. [21].

The moving-grid treatment requires the semi-discrete equations (63)–(64) to be
supplemented with an equation computing the mesh nodes update

dx

dt
= w, (65)

with x being a vector containing the d-dimensional mesh nodes position at time t. The
integration of Eq. (65) necessitates the knowledge of the values of the mesh velocity
provided by the moving-grid technique employed. Two particular techniques are pre-
sented in detail in Section 2.3. The time-integration of Eq. (65) is based on an explicit
and conditionally stable Adams–Bashforth of order 3.

Lastly the treatment of the pressure relies on a generalized block LU decomposition
with pressure correction [22,23].

The temporal order of the overall splitting scheme has proved to be equal to two
for fixed-grid problems. The grid motion induces a limited reduction of the global
temporal order, which is found to fall between 1.5 and 2 for the simulations presented
in [3]. The reasons for this reduction in the global order of the method is still not
clearly understood.

2.2.5 Specificities pertaining to free-surface flows and fluid-structure

interaction

Up to this point, the treatment of our moving-boundary problem was kept to a level
general enough to encompass both the free-surface flow and fluid-structure interaction
problems. At this stage, it appears natural to provide the specificities pertaining to
each of these two sub-problems.

These specificities lie primarily in the natural and essential Dirichlet boundary con-
ditions imposed to the system. For free-surface flows with no surface-tension effects—
either of normal or tangential type—and with no inflow nor outflow—closed system,
both the natural and essential Dirichlet boundary conditions become homogeneous—
g = 0 on ∂ΩD

t and h = 0 on ∂Ωσ

t , leading to a drastic simplification of the problem.
More precisely, both vectors F1 and F 2 vanish in the semi-discrete formulation (63)–
(64) of the problem. For fluid-structure interaction problems, the natural boundary
condition on the interface between the flow and the structure is provided by the dynam-
ics of the structure, that can be evaluated by the SEM and the Newmark method [24].
In the sequel, we will focus our attention on the flow problem for both of these two
cases of interest.

2.3 Moving-grid techniques

When considering moving-boundary problems tackled in an interface-tracking and
ALE frame, the moving boundary ∂Ωσ

t is treated in a Lagrangian way whereas the
boundary ∂ΩD

t which is fixed or subject to a prescribed motion g(t), is studied in
an Eulerian frame. Accordingly, such method allows large-amplitude motions of the
moving boundary, by generating a shape-conformed grid. Hence, an accurate and
simple application of the boundary conditions on ∂Ωt is easily accessible.
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As a consequence of the ALE kinematics, the boundary conditions imposed on the
mesh velocity w read

w · n̂ = u · n̂, on ∂Ωσ

t and ∀t ∈ I, (66)

w = g(t), on ∂ΩD
t and ∀t ∈ I. (67)

Eq. (66) is a kinematic boundary condition (KBC) on the moving boundary traducing
that ∂Ωσ

t is a material surface with no transfer of fluid across it in the Lagrangian
perspective. Eq. (67) expresses a kinematic boundary condition of no-slip type on the
boundary of the domain which is not free to move. Given (66)–(67), it appears that
the freedom left for the choice of w lies in the values of this field in the internal fluid
domain Ωt and also on the tangential values of w on the moving boundary ∂Ωσ

t .
The computation of the mesh velocity w in the internal fluid domain Ωt is the

corner-stone of the moving-grid technique developed in the framework of the ALE
formulation. The values of the mesh velocity being prescribed on the boundary ∂Ωt

as expressed by equations (66)–(67), the evaluation of w in Ωt can be obtained as the
solution of an elliptic equation:

Exw = 0, ∀(x, t) ∈ Ωt × I, (68)

where Ex represents any elliptic operator based on the Eulerian coordinates x. Such
elliptic equation constitutes a classical choice for calculating the mesh velocity [25].
Two types of elliptic equations are envisaged. The first elliptic operator used is a
Laplacian operator ∆x, and will be used extensively in the fluid-structure interaction
simulations presented in [3]. More details about the use of this specific operator for
the computation of the mesh velocity can be found in [24]. The second strategy relies
on the assumption that the motion of the mesh nodes is equivalent to a steady Stokes
flow, corresponding physically to an incompressible and elastic motion of the mesh.
Therefore the problem for the mesh velocity becomes a boundary-value steady Stokes
problem with the mesh velocity w satisfying a divergence-free condition

∇x · w = 0 ∀(x, t) ∈ Ωt × I. (69)

The justifications of this additional constraint imposed to the mesh velocity problem
is presented in detail in [16]. The free-surface flow simulations of a sloshing in a three-
dimensional tank due to the gravity presented in [3], were carried out using this second
strategy for w.

2.4 Applications to free-surface cylindrical swirling flow

Unsteady incompressible viscous flows of a fluid partly enclosed in a cylindrical con-
tainer, of height H , with an open top surface have been computed using the present
moving-grid framework. These moving free-surface flows are generated by the steady
rotation of the solid bottom end-wall. Such types of flows belong to a group of re-
circulating lid-driven cavity flows with geometrical axisymmetry. The top surface of
the cylindrical cavity is left open so that the free surface can be freely deformed. The
Reynolds regime corresponds to unsteady transitional flows with some incursions in
the fully laminar regime. The approach taken here revealed new nonaxisymmetric
flow states that are investigated based on a fully three-dimensional solution of the
Navier–Stokes equations for the free-surface cylindrical swirling flow, without resort-
ing to any symmetry property unlike all other results available in the literature. The
results are compared with those of Bouffanais & Lo Jacono [26] corresponding to the
exact same parameters but with a flat-and-fixed top free surface obtained using SEM.
The complete set of results are reported in [27].

Figure 3 (left) displays the relative surface elevation η/H in any half meridional
plane for both steady cases (a): Re = 900, and (b): Re = 1 500. Three-dimensional
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views of these two cases are available in Fig. 4. One clearly distinguishes two regions
corresponding to surface elevations of opposite signs. In the inner-core region of the
flow, say r/R ≤ 0.4, the algebraic surface elevation is the largest in absolute value and
a large trough forms. This internal trough is surrounded by an outer region of strictly
positive surface elevation all the way to the circular contact line along the tubular
side-wall. The radial position of this ring crest is located around r/R = 0.9 and its
amplitude is much smaller than the one of the trough measured on the cylinder axis.
The outer ring of positive η is generated by the impingement of the tubular wall-jet,
consequence of the pumping effect of the Ekman layer above the rotating disk. The
inner trough is itself another consequence of this Ekman layer, but through its sucking
effect which completes the large meridional circulation generated by the motion of
the disk. It also corresponds to the region of the flow in a state of quasi-solid-body
rotation. The sharp drop to η/H = 0 observed when approaching the tubular side wall
is justified by the absence of dynamics of the contact line between the three phases:
fluid, gas and solid. Indeed, surface tension is neglected and a no-slip condition is
imposed to the fluid on the tubular side wall, while the top surface is free to move.
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Figure 3: Relative free-surface elevation η/H measured from the position z = H
at rest, in a meridional plane. Left: solid line: Re = 900; Dotted line: Re = 1 500.
Center: Re = 6 000 (instantaneous flow sample); Solid line: meridional plane y/R = 0;
Dashed line: meridional plane x/R = 0. Right: Re = 6 000 interpolated average.

When increasing the Reynolds number up to Re = 6 000, the numerical simula-
tion yields a non-axisymmetric free-surface shape as can be seen in two orthogonal
meridional planes in Fig. 3 (center) and in a three-dimensional view in Fig. 4. The
interpolated average of the relative free-surface elevation is shown in Fig. 3 (right).
The comments associated to the comparison of cases (a) and (b) remain valid for this
higher-Reynolds-number case. One may however note in Fig. 3 the more complex
radial variations of η in the larger transition region between the inner trough an the
outer crest ring. In the flat-free-surface case in Bouffanais & Lo Jacono [26], the un-
stable modes were found to be active in this region comprising the interfacial zone.
The 3D view in the bottom row of Fig. 4 reveals a free-surface shape of “bathtub
sink-vortex” type. Compared to the laminar cases (a), (b), the free-surface elevation
for the unsteady transitional case at Re = 6 000 displays extremely rapid variations
in space and hence a less “soft” aspect. In practice, the free surface is never perfectly
clean of surfactants, which would inevitably act onto these abrupt spatial variations
and lead to a “softer” free surface shape.

2.5 Fluid-structure interaction

N. Bodard [1] elaborates a SEM approach for a viscous fluid flowing over an obstacle
modeled as an elastic solid. The dynamics equations for the solid are the Navier
equations written in weak form. The displacement vector which is the basic variable
is approximated in the IPN space while the time integrator is the Newmark method.
Fig. 5 shows the sketch of the geometry when a plane Poiseuille flow hits a slab-type
obstacle that moves around its center point with a constant angular rotation speed
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Figure 4: Three-dimensional views of the free-surface shape η/H measured from the
position z = H at rest. Left: Re = 900; Center: Re = 1 500; Right: Re = 6 000
(instantaneous flow sample). The spectral element grid appears in solid white line to
enhance the 3D visualization.

Figure 5: Fluid-structure interaction

ω = 1 in counterclockwise direction. The height of the channel is 1 and the length of
the computational domain is 6. The Reynolds number is Re = 100.

The computation was carried out with E = 112 elements of degree N = 12.
Fig. 6 show six successive positions at t = 0.25, 0.5, 1.0, 1.25, 1.5, 1.75. We observe
recirculation zones downstream the valve after t = 1.0. Even though the mesh is quite
deformed at the end of the simulation, this does not affect the quality of the results.

3 Large-eddy simulations using SEM

3.1 Introduction

Large-eddy simulation (LES) represents a way of reducing the number of degrees of
freedom of the simulation with respect to the requirements of the direct numerical
simulation (DNS). This is done by calculating only low-frequency modes in space
and modeling high-frequency ones, the scale separation being performed by filtering
in space the Navier–Stokes equations. Large-scale structures are obtained by the
computed flow dynamics while the behavior of subgrid scales and their interaction
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with large eddies are modeled by the additional term in the LES governing equations
resulting from filtering the Navier–Stokes equations. The expression of the additional
term as a function of the resolved field is referred to as subgrid modeling.

Large-eddy simulations of the turbulent flow in a lid-driven cubical cavity have
been carried out at a Reynolds number of 12 000 using the Legendre spectral element
method. Distinct subgrid-scales models have been considered: a dynamic Smagorinsky
model (DSM), a dynamic mixed model (DMM), and also approximate deconvolution
models (ADM) based on the van Cittert method. Approximate deconvolution models
(ADM) constitute a particular family of subgrid models. They rely on the attempt to
recover, at least partially, the original unfiltered fields, up to the grid level, by inverting
the filtering operator applied to the Navier–Stokes equations. The focus here is on the
approximate iterative method introduced by Stolz & Adams [28] which is based on
the van Cittert procedure.

These subgrid models have been implemented and used to perform long-lasting
simulations required by the relevant time scales of the flow. All filtering levels make
use of explicit filters applied in the physical space (on an element-by-element approach)
and spectral (modal) spaces. The subgrid-scales models have been validated and
compared to available experimental and numerical reference results, showing very good
agreement. Specific features of lid-driven cavity flows in the turbulent regime, such as
inhomogeneity of turbulence, turbulence production near the downstream corner eddy,
small-scale localization and helical properties have been investigated and discussed in
the large-eddy simulation framework. Time histories of quantities such as the total
energy, total turbulent kinetic energy or helicity exhibit different evolutions but only
after a relatively long transient period. However, the average values remain extremely
close.

The implementation of the ADM-based model is a novel variant of existing ap-
proximate deconvolution models blended with a mixed scale model using a dynamic
evaluation of the subgrid-viscosity constant is proposed.

Subgrid modeling in the case of a flow with coexisting laminar, transitional and
turbulent zones such as the lid-driven cubical cavity flow represents a challenging
problem. Moreover, the coupling with the spectral element method having very low
numerical dissipation and dispersion builds a well suited framework to analyze the
efficiency of a subgrid model. First- and second-order statistics obtained using this
new model are showing very good agreement with the direct numerical simulation.

The complete set of results are reported in three journal articles [4,5,31].
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Figure 6: Horizontal velocity component and streamlines (black)

3.2 Governing equations and numerical method

3.2.1 Governing equations

In the case of isothermal flows of Newtonian incompressible fluids, the LES governing
equations for the filtered quantities denoted by an overbar, obtained by applying a
convolution filter G⋆ to the Navier–Stokes equations, read

∂ui

∂t
+

∂

∂xj
(uiuj) = −

∂p

∂xi
+ ν

∂

∂xj

„

∂ui

∂xj
+

∂uj

∂xi

«

−
∂τij

∂xj
, (70)

∂uj

∂xj
= 0, (71)

the filtered velocity field u = G⋆u satisfying the divergence-free condition (71) through
the filtered reduced pressure field p. The components of the subgrid tensor τ are given
by

τij = uiuj − uiuj , (72)

and ν is the kinematic viscosity. The closure of the filtered momentum equation (70)
requires τ to be expressed in terms of the filtered field which reflects the subgrid scales
modeling and the interaction among all space scales of the solution.
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3.2.2 Space discretization

The numerical method and the space discretization are the same as the ones intro-
duced in Section 1.2. For the sake of clarity, the central lines and ideas are briefly
recalled here. The numerical method treats Eqs. (70)–(71) within the weak Galerkin
formulation framework. The SEM consists of dividing the computational domain into
a given number of spectral elements. In each spectral element, the velocity and pres-
sure fields are approximated using Lagrange–Legendre polynomial interpolants. The
velocity and pressure are expressed in the PN − PN−2 functional spaces where PN is
the set of polynomials of degree lower than N in each space direction. This spectral
element method avoids the presence of spurious pressure modes as it was proved by
Maday & Patera [20]. The quadrature rules are based on a Gauss–Lobatto–Legendre
(GLL) grid for the velocity nodes and a Gauss–Legendre grid (GL) for the pressure
nodes.

Borrowing the notation from [7], the semi-discrete filtered Navier–Stokes equations
resulting from space discretization are

M
du

dt
+ Cu + νAu − DT p + Dτ τ = 0, (73)

−Du = 0. (74)

The diagonal mass matrix M is composed of three blocks, namely the mass matrices
M . The global vector u contains all the nodal velocity components while p is made

of all nodal pressures. The matrices A, DT , D, Dτ are the discrete Laplacian, gradi-
ent, divergence and tensor divergence operators, respectively. The matrix operator C
represents the action of the nonlinear term written in convective form u · ∇, on the
velocity field and depends on u itself. The semi-discrete equations constitute a set
of nonlinear ordinary differential equations (73) subject to the weak incompressibility
condition (74).

3.2.3 Time integration

Standard time integrators in the SEM framework handle the viscous linear term and
the pressure implicitly by a backward differentiation formula of order 2 (BDF2) to
avoid stability restrictions such that ν∆t ≤ C/N4, while all nonlinearities, including
the discretized subgrid term −Dτ , are computed explicitly, e.g. by a second order
extrapolation method (EXT2), under the CFL restriction. The implicit part is solved
by a generalized block LU decomposition with a pressure correction algorithm [7,22].
The overall order-in-time of the afore-presented numerical method is two.

3.3 A posteriori validations

In this section, results of the LES are compared with the available reference results
by analyzing first- and second-order statistics. The measurements reported by Leriche
and Gavrilakis [29] were taken in the mid-plane of the square cavity z/h = 0, which
is the statistical symmetry plane of the flow domain. For the sets of DNS data, the
total velocity field is considered whereas in the case of LES, only its resolved part is
presented. In consequence, the statistical moments computed from the resolved field
cannot be equal to those computed from the DNS. One solution to overcome this issue
would have been to apply the same filtering as is used for the scale separation to the
reference solution. The statistics for all LES and under-resolved DNS (UDNS) are
based on a sampling approximately 10 times smaller than the one of the original DNS,
but about twice longer than the one of the LES of Zang et al. [30]; more precisely 400
samples are collected over 80 dimensionless time units. The original reference DNS
statistics were performed using 4’000 samples extracted over an integration range of
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1’000 time units. Therefore, the LES statistics are not expected to be identical to the
reference ones, especially the second-order ones.

The comparisons with the DNS results are performed by plotting identical series
of contour levels of the average velocity. Figures 7 displays the average values of the
velocity field for the dynamic mixed scale (DMS) model without ADM, and with ADM
(ADM-DMS), and the DNS in the mid-plane of the cavity. A rapid overview of these
figures indicates that ADM-DMS provides results very close to the DNS references,
which has to be compared with the UDNS results [31]. In addition, it appears that
ADM-DMS results are more satisfactory than those from DMS. Secondary corner
eddies located above the bottom wall and below the lid next to the upstream wall
are correctly resolved in the mean flow. The flow below the lid and near the corner
with the downstream wall presents wiggles in the LES contours for 〈uy〉. More limited
effects are noticeable for the equivalent x-component field. We assume that these very
limited defects find their origin in a local too important under-resolution due to the
very high shear rate near the downstream corner right below the lid [5]. The previous
comparisons of ADM-DMS with the DNS and DMS for first-order moments require to
be complemented by plotting identical series of contours of three components of the
resolved Reynolds stress tensor. Figure 8 showcases the improvement achieved in terms
of subgrid modeling by coupling ADM with DMS. Indeed, the variations of the root-
mean-square (rms) quantities 〈u◦

x
2〉1/2, 〈u◦

y
2〉1/2 and 〈u◦

xu◦
y〉 for ADM-DMS reproduce

quite accurately the intense-fluctuations zones in the mid-plane z/h = 0, and more
specifically in the vicinity of the downstream corner eddy. DMS appears clearly not
as effective as ADM-DMS. The lower intensity of the Reynolds stress components for
ADM-DMS as compared to the DNS are induced by the lower sampling of all LES. A
longer dynamic range would produce more intense results as reported in [5].
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Figure 7: In the mid-plane z/h = 0, DMS (left column), ADM-DMS (central column)
and DNS (right column). Top row: contours of 〈ux〉 from −0.2 to 1 by increments of
0.01. Bottom row: contours of 〈uy〉 from −0.7 to 0.1 by increments of 0.01. Color
scale from blue to red. Dashed contours correspond to negative levels. Levels in U0

units.
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Figure 8: In the mid-plane z/h = 0, DMS (left column), ADM-DMS (central column)
and DNS (right column). Top row: contours of 〈u◦

x
2〉1/2 from 0 to 0.07 by increments

of 0.005. Central row: contours of 〈u◦
y
2〉1/2 from 0 to 0.15 by increments of 0.005.

Bottom row: contours of 〈u◦
xu◦

y〉 from −0.0007 to 0.0065 by increments of 0.0002.
Color scale from blue to red. Dashed contours correspond to negative levels. Levels
in U0 units for 〈u◦

x
2〉1/2 and 〈u◦

y
2〉1/2 and in U2

0 units for 〈u◦
xu◦

y〉.

3.4 Flows of viscoelastic fluids

3.4.1 Introduction

Non-Newtonian fluids present many effects that can not be predicted by classical vis-
cous fluid mechanics. Among them, viscoelastic fluids are characterized by specific
features like the shear-rate dependence of the shear viscosity, the presence of normal
stresses in viscometric flows, the high resistance to elongational deformations and the
memory effects related to their elastic properties.

The mathematical model of viscoelastic flows consists of the set of three coupled equa-
tions which are to be solved simultaneously, namely the continuity and momentum
equations (which are related to the conservation of mass and momentum) in addition
to the constitutive equation (in which viscous and elastic characteristics of the fluid
appear). The last equation has a tremendous impact on the results of numerical sim-
ulations and on the stability of the method.
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It is possible for the time integration scheme to use well-proven splitting techniques
that have been applied to the transient Navier-Stokes equations. Some specific devel-
opments are introduced to handle the additional terms and equations brought by the
non-Newtonian model.

3.4.2 Governing equations

The continuity equation for incompressible fluids enforces a divergence-free velocity
field as in the Newtonian case :

∇ · v = 0 (75)

The momentum equation is modified with respect to the Newtonian case in order to
account for the additional viscoelastic contribution due to the extra-stress tensor.

∂v

∂t
= −Re(v · ∇)v −∇p + Rµ∇

2v + ∇ · τ (76)

with:

τ = σ + p I− 2RµD (77)

The symbols σ, I and D are respectively the Cauchy stress, identity and rate-of-
deformation tensors. The latter is defined by:

D =
1

2
(∇v + (∇v)T ) (78)

The pressure scalar field enforces the continuity constraint imposed by Eq. (75).
The extra-stress tensor is split into two parts, namely a Newtonian one 2RµD and a
viscoelastic one τ . The parameters Rµ and Re are the ratio of (Newtonian) solvent
to total viscosities (µN

µt
) and the Reynolds number ( ρV Lr

µt
). In Eq. (78), (∇v)T is the

transpose of ∇v, the velocity gradient.

Let us consider here particular models of the FENE-dumbbell type. It is then cus-
tomary to introduce a non-dimensional configuration tensor A, which is related to the
viscoelastic contribution τ of the extra-stress tensor. As opposed to other models,
the constitutive equation is separated into two parts: an evolution equation for the
dumbbells and an expression for the polymer stress in order to produce a clear repre-
sentation of the polymer microstructure and of its dynamic influence. The FENE-CR
model has been introduced to obtain an equation as simple as possible while including
the constant shear viscosity characteristics of a Boger fluid and allowing only finite
extensibility of the dumbbells. The FENE-P model is a close version, which enables
to take into account shear-thinning effects present in many viscoelastic fluids.

For both FENE models, the relation between the viscoelastic stress and configuration
tensors is given by:

τ =
1 − Rµ

We

1

1 − tr(A)

L2
e

(A − f(tr(A)) I) (79)

The configuration tensor A satisfies the following differential equation:

(1 −
tr(A)

L2
e

)(E
∂A

∂t
+ We((v · ∇)A − A · (∇v)T −∇v · A)) + A = f(tr(A)) I (80)

with:
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f(tr(A)) =
1 − tr(A)

L2
e

K
(81)

for the FENE-P model or

f(tr(A)) = 1 (82)

for the FENE-CR model.

In Eq. (79), 1−Rµ is the non-dimensional viscosity (1−Rµ = µP

µt
with µP = µt −µN)

of the polymeric component of the fluid. The symbol tr denotes the trace.

In Eq. (81), K is usually taken as: K = 1 − 3
L2

e
. The parameter Le measures the

extensibility of the dumbbells. In some papers, K is equal to 1. When Le → ∞, the
FENE-P and FENE-CR models are equivalent to the Oldroyd-B model. The upper-
convected Maxwell (UCM) model corresponds to an Oldroyd-B model where Rµ = 0.

The parameters We = λ V
Lr

and E = We
Re

= λµt

ρL2
r

are respectively the Weissenberg

and elastic number based on the relaxation time λ, density ρ, total dynamic viscosity
µt, reference velocity V and length Lr. They are indicators of elastic effects in the flow.

It must be emphasized that the presence of E in Eq. (80) is due to the particular

scaling used for time (
ρL2

r

µt
) related to viscous effects as indicated in the introductory

part of this section. As Re is decreased and goes to 0, the factor in front of the partial

derivative with respect to time becomes infinite. In order for the whole term E ∂A
∂t

to
remain finite, the partial derivative must vanish, which means that the configuration
and viscoelastic stresses remain constant with respect to time so that no memory-
induced effects (typical of viscoelastic fluids) are present and the fluid tends to behave
as Newtonian. If the inertial time Lr

V
would have been used for non-dimensionalization,

E should be replaced by We in the factor of the time partial derivative. Both types
of scaling have been used in the literature depending on the kind of flows (inertia or
viscosity-dominated) to be investigated.

3.4.3 Spectral element formulation

In this section, the spectral element method based on the Galerkin formulation is pre-
sented. Since a high-order method which is not numerically dissipative and dispersive
is needed in order to avoid erroneous simulation of the physics involved in the stress
boundary layers, a spectral element method using Legendre polynomials is considered
as a good candidate for discretizing the non-linear set of partial differential equations
that model the flow.

Basic formulation

The problem consisting of solving the continuity, momentum and constitutive equa-
tions (75)-(80) on a flow domain Ω ⊂Rd, where d is the problem dimension, in order
to determine the three variables (pressure, velocity and viscoelastic stress) can be ex-
pressed with a general weak (Galerkin) formulation, which is also used in the finite
element context.

To this end, it is necessary to define first a set of functional spaces Xp, Xv and Xτ to
which the functions representing respectively the pressure p, velocity v and viscoelas-
tic stress τ will belong. These spaces are respectively subspaces of L2(Ω), H1(Ω)d

and L2(Ω)d×d, where L2(Ω) and H1(Ω) represent the space of measurable functions
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that are square-integrable on Ω and the space of derivable functions of which first
order partial derivatives are measurable and square-integrable on Ω. Their definitions
include the specification of boundary conditions.

Second, multilinear forms A, B and C involving the three variables can be defined
based on integral inner products with test functions belonging to the functional spaces.
The initial problem is then expressed in the weak formulation as:

Find (p,v,τ )∈ Xp × Xv × Xτ such that:

A(v, Ψp) =

Z

Ω

(∇ · v)Ψp dΩ = 0, ∀Ψp ∈ Xp ⊂ L2(Ω) (83)

B(p,v, τ ,Ψv) =
R

Ω
∂v

∂t
· Ψv dΩ +

R

Ω
−p(I : ∇Ψv) dΩ

+Rµ

R

Ω
(∇v) : ∇Ψv dΩ + Re

R

Ω
[(v · ∇)v] · Ψv dΩ

+
R

Ω
τ · ∇Ψv dΩ −

R

∂Ω
(σ · n) · Ψv dΓ

= 0, ∀Ψv ∈ Xv ⊂ H1(Ω)d (84)

where the tensor product : is defined for two arbitrary tensors P and Q by:

P : Q = PijQji, 1 ≤ i, j ≤ d (85)

using the usual convention of summation over repeated indices. The FENE-P or
FENE-CR constitutive equation in weak form reads:

C(v,A,ΨA) = We
Re

R

Ω
(1 − tr(A)

L2
e

) ∂A
∂t

: ΨA dΩ + We
R

Ω
A : ΨA dΩ

+We
R

Ω
(1 − tr(A)

L2
e

)((v · ∇)A) : ΨA dΩ

−We
R

Ω
(1 − tr(A)

L2
e

)(∇v · A) : ΨA dΩ

−We
R

Ω
(1 − tr(A)

L2
e

)(A · (∇v)T ) : ΨA dΩ (86)

−
R

Ω
f(tr(A)I : ΨA dΩ

= 0, ∀ΨA ∈ XA ⊂ L2(Ω)d×d

In the previous equations, we have adopted the notation (∇v)ij = ∂vi

∂xj
. The viscoelas-

tic stress and configuration tensors are related by Eq. (79).

Instead of solving the previous continuous problem, an approximate projected so-
lution is sought in a finite dimensional subspace X

Np
p ×XNv

v ×XNA
A of Xp ×Xv ×XA,

where X
Np
p , XNv

v and XNA
A are respectively included into the space of polynomials of

order less than or equal to Np, Nv and NA. In practice, some restrictions occur as
far as the selection of the polynomial degrees is concerned. In particular, the inf-sup
condition imposes restrictions on the pressure subspace once the velocity subspace is
prescribed, to prevent locking and spurious oscillation phenomena. In the spectral el-
ement context, the inf-sup condition is satisfied if Np = Nv −2. No such condition has
been clearly defined for the viscoelastic or configuration stress subspace although some
relevant investigations [32], [36] suggest that the same subspace should be selected for
both configuration and viscoelastic stress tensors (XA = Xτ , NA = Nτ ).

The discretization process leads to a set of equations, which can be cast in matrix
form. Adopting the notations of Deville et al. [7], we obtain:
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−DkV k = 0, k = 1, .., d (87)

M
d V i

dt
= −ReC(V )V i + DT

i P − Rµ Kij V j

−V Ej T ij + (Mb)ij Sbj
(88)

The symbols P , V i and T ij correspond to the vectors relative to the degrees of freedom
for the pressure, velocity and viscoelastic stress components (1 ≤ i ≤ d, 1 ≤ j ≤ d).
The matrices M and Kij are respectively diagonal mass and stiffness matrices. The
discrete divergence operator is given by Di and its transpose DT

i yields the discrete
gradient operator. The convection term is given by C(V )V i where the nonlinear op-
erator C(V ) depends on the velocity field.

The last two matrix operators are derived from the following integrals:

R

Ω
τ · ∇Ψv dΩ =⇒ V Ej T ij ,

R

∂Ω
(σ · n) · Ψv dΓ =⇒ (Mb)ij Sbj

The constitutive equation in semi-discrete form reads:

We

Re
Tr(Amn)

dAij

dt
+ M Aij = NLij(Amn, V l) (89)

where:

NLij(Amn, V l) = −We[CAij(V l) − GAij(V l, Amn) − (GA)T
ij(V l, Amn)]

Again, these operators written in matrix form are derived from the following integrals:

R

Ω
(1 − tr(A)

L2
e

) ∂A
∂t

: ΨA dΩ =⇒ Tr(Amn)
d Aij

dt
,

R

Ω
A : ΨA dΩ =⇒ M Aij

R

Ω
(1 − tr(A)

L2
e

)[(v · ∇)A] : ΨA dΩ =⇒ CAij(V l)

R

Ω
(1 − tr(A)

L2
e

)[∇v · A] : ΨA dΩ =⇒ GAij(V l, Amn) (90)
R

Ω
f(tr(A))I : ΨA dΩ =⇒ DTij(V l, Amn)

The function f(tr(A)) is given by either Eq. (81) or (82).
The symbol Aij correspond to the vectors relative to the degrees of freedom for the
configuration tensor components (1 ≤ i ≤ d, 1 ≤ j ≤ d). Following Eq. (79), the
configuration and viscoelastic stress vectors are related by a simple transformation:

T ij =
1 − Rµ

We

1

1 −
Akk

L2
e

`

Aij − f(Akk) δij

´

(91)

where δij is the usual Kronecker symbol.

The main problem with this formulation when applied to viscoelastic flows is that
it may produce numerical instabilities when the Weissenberg number is increased.
Therefore, stabilization techniques have to be introduced to remove these instabilities.
In the spectral element context, it is usual to resort to techniques like filtering [35], [34],
the SUPG or the discontinuous Galerkin method applied to the constitutive equation
and the so-called Discontinuous Elastic Viscous Stress Splitting (DEVSS) method [33]
applied to the momentum equation.

Time discretization
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The semi-discrete set of nonlinear ordinary equations (87), (88) and (89) must still
be approximated in time in order to generate the time marching scheme. However, a
careful inspection of this set of equations shows that the coupled solution, especially
for a three-dimensional problem, seems to be out of reach, even on the most powerful
supercomputers. Therefore, it is advisable to resort to splitting techniques to decouple
velocity-pressure and stress computations.

Iterative solvers are used to obtain numerical solutions of the linearized systems ap-
pearing once the problem is discretized in space and time with reduced computer
memory requirements when the problem size is not small.

Decoupled technique

The present decoupled technique builds upon classical time-dependent Navier-Stokes
solvers. The extension to non-Newtonian fluids is based on the explicit time integra-
tion of the constitutive relation. Once the viscoelastic stress tensor is known at the
new time level, it is incorporated in the Navier-Stokes equations as a source term.

More precisely, a fully decoupled approach consists in solving separately the mass-
momentum and constitutive equations. The constitutive equation is integrated at time
step n+1 for the configuration tensor while using velocity gradient terms obtained at
previous time steps. The viscoelastic stress tensor computed by its expression in terms
of the configuration tensor is then inserted as a source term into the momentum equa-
tion. The mass-momentum system of equations is then solved for the velocity and
pressure at the new time step n+1 using a classical technique for the Navier-Stokes
problem. Such stress-velocity decoupled iterative techniques are cheap in terms of
CPU time. Various schemes can be used for the temporal discretization of Eqs. (87)-
(89) like in particular a backward differentiation formula (BDF) for implicit terms
and the extrapolation scheme (EXT) for explicit terms, which leads to the following
system of equations. In order to simplify the notation with respect to Eqs. (87)-(89),
a shorthand notation is introduced where V , P , A and T represent the full vectors of
all velocity pressure, configuration and viscoelastic stress nodal unknowns. The block
diagonal matrices M and K are respectively composed with d block matrices M and
K. The matrix D corresponds to the full divergence operator and DT to the full
gradient operator. The symbol Tr is relative to the trace term in Eq. (89).

−DV n+1 = 0 (92)

“

βsi

∆t

”

MV n+1 − DT Pn+1 + Rµ KV n+1 = (93)

1
∆t

Psi

q=1 βsi−qMV n+1−q −
Pse−1

r=0 αrReC(V n−r) (94)

−VETn+1 + Mb Sb
n+1 (95)

T n+1 = TAAn+1 (96)

(
We

Re∆t
βsiTr+M)An+1 =

We

Re ∆t

si
X

q=1

βsi−qTrAn+1−q+

se−1
X

r=0

αrNL(An−r, V n−r) (97)

where an extrapolation method of order se has been used to determine the value of the
nonlinear term at time step n+1. The associated BDF scheme is of order si. The co-
efficients αi and βj are dependent of the orders of each method, e.g. for a BDF2/EX2
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scheme: α0 = 2, α1 = −1, β0 = 1
2
, β1 = −2, β2 = 3

2
. Eq. (96) is a short-hand notation

for representing Eq. (91).

Since the nonsymmetric (nonlinear) terms in Eqs. (92)-(97) are located in the right-
hand sides, cheap preconditioned conjugate gradient solvers can be used to solve the
resulting system for the unknowns at the grid points. Eq. (97) is readily solved since
there are no implicit terms with non-trivial matrix operators.

The efficiency of this decoupled method depends critically on the availability of an
efficient and robust solver for the underlying Stokes problem at each time step. Our
approach consists of solving the mass-momentum set of Eqs. (92)-(95) with an effi-
cient solver for Newtonian flows, which can be easily extended to viscoelastic flows by
simply adding the divergence term corresponding to the viscoelastic stress tensor as
a source term in the momentum equation. The set of mass-momentum equations is
treated via a generalized block LU decomposition with pressure correction, which can
be summarized by the following steps:

Step 1: Compute the tentative velocity vector V ∗ by solving the equation:

HV ∗ = F + DT P n (98)

which is a short notation for Eq. (95) where the pressure term has been shifted to
the right-hand side. The Helmholtz operator matrix H comprehends both mass and
Laplacian contributions while all other terms including the convective one are in the
right-hand side vector F :

H =

„

βsi

∆t

«

M + Rµ K (99)

F = 1
∆t

Psi
q=1 βsi−qMV n+1−q −

Pse−1
r=0 αrReC(V n−r) (100)

−VET n+1 + Mb Tb
n+1 (101)

Step 2: Solve for the pressure:
−DQDT ∆Pn+1 =

βsi

∆t
DV ∗ (102)

P n+1 = P n + ∆P n+1 − Rµ DV ∗ (103)

The last term in Eq. (103) has been introduced to obtain an overall consistent scheme.
Step 3: Compute the final velocity at step n+1 after a pressure correction:

V n+1 = V ∗ +
∆t

βsi

QDT ∆P n+1

The choice of the matrix Q is critical. If one sets :

Q = H−1 (104)

one gets back the Uzawa technique or if one writes an approximation of H−1 e.g. for
a BDF2/EX2 scheme:

Q = ∆t
β2

M−1 − Rµ

“

∆t
β2

”2

(M−1K)M−1 (105)

+ (Rµ)2
“

∆t
β2

”3

(M−1K)2 M−1 (106)

one obtains a fourth-order approximation in time. If accuracy in time is limited to
second order, only the first term in the previous expansion needs to be retained.
Efficient preconditioners for the iterative solver of the pressure step Eq. (102), which
is by far the most expensive one in terms of CPU time, can be prescribed. Simple
diagonal preconditioners are used for the two velocity steps.
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3.4.4 Examples of simulations

In this section, a few examples of simulations performed with the spectral element
method and algorithm presented before are briefly introduced. All the results pre-
sented in the following sections have been obtained with Re = 1.0 and a viscosity
ratio (Rmu = 1

9
) while adjusting the flow rate so that the ratio of characteristic down-

stream channel velocity to height Ud

Dd
would be equal to 1.0.

Generation and decay Poiseuille flow :

Time-dependent Poiseuille flows can been simulated in order to check the validity of
the method. A constant non-zero pressure gradient is imposed abruptly to an ini-
tially static fluid so that the generation of a steady flow is obtained at sufficiently
large times then the gradient is removed when starting from steady-state conditions
(at large times, the velocity and viscoelastic stress decay to zero values). Computed
values can be compared to analytical ones in the case of an Oldroyd-B fluid. The
corresponding time evolution of axial velocity vx, normal viscoelastic stress τxx in the
flow direction and viscoelastic shear stress τxy can be seen in Fig. 9 .
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Figure 9: Generation and decay of planar Poiseuille flow of an Oldroyd-B fluid
for We=0.5

The viscoelastic character of the flow appears in the oscillations of these various quan-
tities during the unsteady phases of the simulation prior to and after reaching the
steady state.

Flow through a 4:1 2D contraction:

A first less trivial example is the simulation of the flow of a viscoelastic fluid of the
FENE family in a 2D contraction as shown in Fig. 10. The vortex enhancement mech-
anism corresponds to the growth of the Newtonian-like recirculation zone located in
the salient corner as shown in Fig. 10. Plots (d), (c) and (a) correspond to a FENE-
P fluid with L2

e = 6.0 for respective values of the Weissenberg number equal to 0.0
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(Newtonian), 2.0 and 8.0. Interestingly, as the vortex grows under the action of elastic
forces, the concavity of its boundary changes. The rotating center moves slightly to-
wards the re-entrant corner as We increases. The reattachment lengths of the vortices
visible in Fig. 10 are in agreement with those obtained with other simulation methods.
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Figure 10: Typical features of the streamlines in a 4:1 contraction at various
Weissenberg numbers. (a): FENE-P, We = 8; (b): FENE-CR, We = 8; (c):
FENE-P, We = 2; (d): We = 0 (Newtonian).

Flow through 3D contractions:

The same type of simulation can also be carried out in 3D for various contraction
geometries as shown in Fig. 11. The channel lengths have been taken long enough for
accounting for the wrong boundary conditions at entrance (typically Lu

Du
≈ 10 − 20).

About the same values of the downstream ratio Ld

Dd
have also been selected to allow for

the obtention of fully developed conditions. We discuss here general features obtained
with a given geometry i.e. for a fixed shape of the 45 slanted edge near the re-entrant
corner ( es

Du
= 0.07). Uniform polynomial orders equal to 7 were used in all directions.

The Reynolds and Weissenberg numbers are defined as in the two-dimensional case.
The flow rate is adjusted so that Ud

Dd
= 1.0. The contraction plane corresponds to

x = 5.0.

The typical shape of the streamlines for a 4:4:1 square/square contraction is shown in
Fig. 12 for a FENE-P fluid. The value of the Weissenberg number is 4.0. Streamlines
are represented partly in a half-plane z = Du

2
and in a plane corresponding to a half-

diagonal of the contraction channels. The shape of the vortex is visible in that plane.

Three-dimensional effects are also visible in the planar contraction geometry as indi-
cated in Fig. 13. The corresponding value of the Weissenberg number is 1.0. Stream-
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Figure 11: Geometries of the square/square (a) and planar (b) contractions.

lines starting in three planes z = 0.1 Du, z = 0.5 Du and z = 0.9 Du are represented.
Distortion in the z-direction can be observed near the side walls located in the planes
z = 0 and z = Du whereas the contraction is in the y-direction.

Two-dimensional flow through an open cavity

In contrast to what happens in the flow through a contraction depicted in the previ-
ous section, the fluid through an open cavity first goes through an expansion before
undergoing the effects of the contraction. Depending on the cavity length L, rather
different phenomena can be observed as shown in Fig. 14. As opposed to their New-
tonian counterparts (see plot (a)), a non-symmetric vortex is present for viscoelastic
fluid flows through short cavities (see plots (b)-(d)) in agreement with experimental
data. If the ratio between the cavity length and height L

H
exceeds some values, the

vortex is split into two parts located near the bottom and top corners of the cavity in
agreement with what has been observed for the contraction and contraction/expansion
geometries.

Two-dimensional flow through a planar T-geometry

Another interesting physical effect with viscoelastic flows is the appearance of vortices
when two converging flows with opposite directions are meeting and flowing afterwards
together in a third channel as e.g. in a planar T-configuration like the one shown in
Fig. 15. Elastic forces induce the onset of recirculation zones of different sizes if the
flow rates of the two converging fluids are different, the larger vortex appearing in the
channel with the lower flow rate. No such effect is present for a Newtonian fluid (see
plot (b)). The vortices are removed if the sharp corners are cut-off and replaced by
slanted edges as shown in plot (c). Their presence is closely related to the geometry
near corners as noticed for the abrupt contraction.
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Figure 12: Typical features of the streamlines in a 4:1 square/square contraction
for a FENE-P fluid (We = 4).

Two-dimensional combined mixing-and-separating flow

Two plates being separated by a gap of width d are located along the axis of a pipe
as shown in Fig. 16. This allows flows in opposite directions in the lower left and
upper right channels to be injected. Numerically, Dirichlet conditions are imposed
at the corresponding locations. Natural boundary conditions are imposed at the two
remaining sections where the fluid leaves the computational domain. A sufficiently
long pipe has been selected to allow for fully developed conditions at entry and exit.
The same fluid is used in the upper and lower part of the pipe.

Typical differences in the streamline pattern between a Newtonian and a viscoelastic
liquid are visible in Fig. 16 for We = 4.0. The streamlines are perfectly symmetric
with respect to the pipe axis in the Newtonian case whereas some asymmetry occurs
for a non-Newtonian fluid. The streamline pattern appears to be somewhat twisted
under the action of elastic forces. This phenomenon is in agreement with experimental
work and computational results. In addition, small recirculation zones are present at
the plate rounded tips whereas none are observed for Newtonian fluids. As indicated
in plot (a), part of the upper (resp. lower) Newtonian fluid flowing in the vicinity of
the right (resp. left) plate is mixed with the lower (resp. upper) fluid flowing in the
opposite direction. Therefore, some flow reversal neatly occurs. This mixing process
is all the more significant when the gap width d is large. It can be seen in plot (b) that
mixing if any is strongly reduced due to elastic effects for the FENE-P fluid used in
the simulations. This is in agreement with experimental observations, which indicate
that highly elastic fluids tend to prefer unidirectional flow and resist to flow reversal.

Plots (c) and (d) show isocontours of the first two components of the viscoelastic
stress tensor τxx and τxy. They indicate in particular the location of the stress max-
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Figure 13: Typical features of the streamlines in a 4:1 planar contraction for a
FENE-P fluid (We = 4).

ima near the inner plates near the gap where strong shearing between the two fluids
flowing in opposite directions occur.

Flow around an array of cylinders in a channel

Another effect appearing in the flow of viscoelastic fluids around an array of cylinders
in a channel can be seen in Fig. 17 where streamlines are shown. The difference of
the streamline patterns for viscoelastic (plot (b)) and and Newtonian fluids (plot (c))
at the vicinity of one bottom cylinder can be observed. As opposed to the Newtonian
case where a perfectly symmetric pattern is obtained near the stagnation points, the
position of these points is shifted in the viscoelastic case and the corresponding sym-
metry disappears.

4 The spectral element code SPECULOOS

4.1 Overview

SPECULOOS is a spectral and mortar element analysis software for the numerical
solution of partial differential equations, in particular incompressible unsteady fluid
flow problems described by the Navier-Stokes equations. It aims at providing the user
with a flexible tool for research in spectral element methods [1]. SPECULOOS’ main
features are:

• One-, two- and three-dimensional curved geometries

• Quadrilateral and hexahedral spectral elements

• Equations models: Helmholtz, heat equation, Stokes and Navier-Stokes
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Figure 14: Typical features of the streamlines in open cavities of variouy length.
(a): L/H = 0.5, Newtonian; (b): L/H = 0.5, We = 5.0; (c): L/H = 0.25,
We = 5.0; (d): L/H = 1.0, We = 5.0. The inflow and outflow pipe heights are
equal to one fourth the cavity height.
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Figure 15: Typical features of the flow characteristics in a T-shape channel.
The flow rate of the fluid flowing from the right is half that of the fluid flowing
from the left. Streamlines in a FENE-P fluid (We = 12.0) (a), in a Newtonian
fluid with sharp corner (b) ; Viscoelastic stresses in a T-shape channel (FENE-P
fluid, We = 12.0); (c): τxx; (d): τxy;
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Figure 16: Typical features of the computed flow characteristics in a combined-
mixing-and-separating device. (a): streamlines in a Newtonian fluid; (b):
streamlines in a viscoelastic (FENE-P, We = 4.0) fluid; (c) and (d): τxx and
τxy components of the viscoelastic stress.
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Figure 17: Streamlines in the flow of a fluid around an array of cylinders in a
channel. global view (a) ; zoom in a window around one cylinder streamlines
related to a viscoelastic (FENE-P) fluid (b) and to a Newtonian fluid (c).
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• Time integration by finite-difference models

• Solvers: direct, preconditioned conjugate gradient, preconditioned Uzawa, pres-
sure correction, splitting

• Mortar elements

• Parallelism

4.2 Object-oriented programming

It is evident that mixing spectral elements and mortars in the framework of the Navier-
Stokes equations in complex three-dimensional geometries is a programming challenge.
A design requirement for this computer implementation is that it should behave as a
user-friendly tool for programmers, not just as a computational black box suited for a
limited set of predefined problem types. In particular the program should be insofar as
possible easily transferable from one programmer to another. This led the authors to
choose a high-level programming approach, namely object-oriented programming. It
is hoped that consistent use of the powerful concepts of data abstraction (mainly, data
encapsulation, class inheritance and polymorphism) will help to fulfill the expectations
as regards flexibility. The C++ language was chosen as implementation language,
on behalf of several key advantages: beside the basic fact that it encompasses data
abstraction, it is a non-proprietary, popular and intrinsically efficient language.

4.3 Collaborative programming and open-source license

The purpose of SPECULOOS is to serve the community of scientists and engineers
working with spectral elements. It is therefore developed collaboratively by various
researchers, and it is available for download to a general audience, under the code
name OpenSPECULOOS. The download page is at the address www.sourceforge.

net/openspeculoos. It may be used under the terms of a GPLv3 open source license.
This license warrants the freedom of downloading, using, copying, modifying and re-
distributing the code. Modified and redistributed versions of the code must however
always be available under a GPLv3 or any compatible license, which means that it
is not allowed to leave the context of open source code development. Furthermore,
we ask you as a matter of acknowledgment for the titanic work which was invested in
the development of SPECULOOS to cite the following papers in journal publications
containing numerical results simulated with SPECULOOS: ref. [7], ref. [8], and ref. [9].

5 High performance computing with spectral el-

ements

5.1 Algorithmic complexity of spectral element codes

A first step towards analyzing the features of a CFD code is made by understanding
its algorithmic complexity. A complexity analysis is the asymptotic evaluation of the
time needed for the program to solve the problem. Although such an analysis does
not tell exactly how fast the program will run, as this obviously depends on many
software and hardware parameters, it gives an estimate of how the computation time
evolves when either the space resolution or the polynomial degree of the interpolants
in the solver are increased.

Let’s call E the typical number of elements along one of the space directions, and
N the characteristic degree of the polynomials representing the velocity fields. Thus,
unless the space resolution or the polynomial degree vary substantially from one space
direction to another, the total number of elements amounts roughly to E3, and the
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Figure 18: Execution flow in a parallel spectral element code

number of collocation points inside an element is equal to (N + 1)3. Using these
variables, we will now estimate the computational effort required to advance one time
step in the solver.

In the approach to spectral elements taught in this course, the algorithm is dom-
inated by an iterative solution of a linear equation (e.g. for the Helmholtz or for the
pressure problem) by a conjugate gradient method. We know from experiment that
the number of iterations of the conjugate gradient solver increases linearly with the
space resolution E, and linearly as well with the polynomial degree N . Actually, these
performance figures are observed with preconditioned problems, even with such sim-
ple preconditioners as the diagonal one, whereas they can be substantially worse on a
non-preconditioned problems.

At each iteration of the conjugate gradient solver, the same operation is performed
on each of the E3 elements. Therefore, an additional factor E3 is included in the
complexity estimate to account for the act of iterating over each element.

The actual computations consist mostly of applying discrete linear operators to
the unknowns, such as, the derivative operator. In a 3D simulation, these operators
are represented by a matrix of size (N + 1)3-by-(N + 1)3. Applying such an operator
in a naive way is therefore an operation of complexity N6. Exploiting the fact that
these operators are tensor products of 1D operators, they can however be applied with
a complexity N4.

In summary, stepping from time n to time n + 1 takes a time T which is asymp-
totically proportional to

T ∼ E4 · N5. (107)

5.2 Parallelizing spectral element codes

A convenient way of parallelizing spectral element codes is to attribute each element
to a processor and to execute all operations on the element by this processor. After
each conjugate gradient iteration, values on the collocation points on the surface of the
elements need to be communicated from one processor to another. Consider a situation
of aggressive parallelism in which each processor acts on exactly one element. In this
case, the number of operations executed by the processor during the conjugate gradient
iteration has a leading complexity of order N4, while the amount of data communicated
by the processor with its neighbors is equal to the number of collocation points on the
surface of the element, and thus proportional to N2. This guarantees an excellent ratio
of N4/N2 = N2 between computation and communication. Parallel spectral element
codes exhibit therefore an excellent scalability. Furthermore, these characteristics
improve with increasing polynomial degree. As a disadvantage of this approach, one
should point out that the granularity of the parallelization is limited by the size of an
element. Unless an alternative parallelization technique is used, it is impossible to use
a number of processors which is larger than the number of elements. Moreover, the
number of elements needs to exceed the number of processors significantly in order to
allow for the possibility to balance the work load between processors in simulations
with inhomogeneous domains.

Figure 18 illustrates the global execution flow in a generic CFD program. In a
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first step a mesh for the computational domain is either generated or read from a
file, previously produced by an external mesh generator. From the mesh information,
the data structure is constructed, including for example memory allocation for the
collocation points of the elements local to the processor. As a second step follows the
execution of the actual program, consisting of the iterative application of operators to
each element. In a cyclic way, information is furthermore exchanged between element
surfaces. In order to do this, an element must identify its neighbors and instantiate
inter-processor communication for neighboring elements located on remote processors.
Finally, the last step in the execution flow consists of evaluating the simulated data,
or writing the data to a file for future post-processing.

An overwhelming majority of the execution time is usually spent in the second
step, the iterative execution of the spectral element algorithm. Luckily enough, this
part is also simplest to parallelize, because the conceptual domain decomposition into
spectral elements is directly re-interpreted as a domain decomposition into parallel
execution units. Parallelizing a spectral element code means therefore, before all,
parallelizing this central iterative part of the algorithm. One should nevertheless
remain aware of the possible impact of the initial and final stage on the overall program
performance. While these stages usually are negligible in a sequential program, their
relative importance increases when the main part of the algorithm is parallelized.
This can go so far that the total execution time is dominated by the setup of the
mesh, and by reading and writing data. It is therefore important to either parallelize
the initialization and post-processing as well, or to implement them with algorithms
which are sufficiently fast for the considered problem. The latter approach was chosen
in SPECULOOS, in which structural operations for generating and setting up the
mesh are not parallelized, but sufficiently efficient in most cases thanks to a careful
choice of algorithms.

Mesh generation can be an especially challenging task. For a non-structured mesh,
a general algorithm for mesh generation implemented in a straightforward way has
exponential complexity. This means that the time required to generate the E3 elements
evolves like exp(E3) with an increasing number of elements. This prohibitive time
can and must be substantially reduced by the use of various heuristic approaches.
Moreover, the complexity of mesh generation is dramatically improved by exploiting
symmetries, regularities or other type of information on the nature of the domain
and the mesh. The simplest case occurs for example when the end-user of the CFD
software has a detailed knowledge of the desired mesh and is able to place explicitly
the coordinates of each element. In this case, the mesh can be generated with an
optimal, linear complexity E3.

5.3 Extreme-scale parallelism

Extreme-scale parallelism is a term used for program execution on parallel platforms
which are at the high-end of current hardware capacities. The typical number of
computational cores on such machines ranges from 103 to 105. The availability of
such massive parallel platforms impacts on the type of algorithms and arguments used
for the development of parallel programs. Indeed, it is common for programs which
are designed for modest parallel platforms (with for example 100 − 102 nodes) to be
split into parallel and sequential parts. Sequential parts are not parallelized because
they are considered to take a negligible part in the overall program execution time.
Such a sequential program component appears for example when the communication
between nodes of the parallel machine is managed through a centralized approach:
one processor (or sometimes even all processors) possesses a global view over the
distribution of elements over the processors and determines communication patterns
between them. Although this operation is not parallelized (one processor needs to
iterate over all elements) it is often negligibly small. After all, it involves only a few
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logical operations, and no numerical calculations.
On the other hand, such supposedly negligible program components can become

dominant in face of extreme-scale parallelism. A sequential component which uses as
little as 0.1% of the total execution time on one processor uses more than 50% of the
execution time on 103 processors. This type of arguments leads to the “no-sequential
rule” for extreme-scale parallelism: taking into account the likelihood that the number
of processors increases by orders of magnitude in the future, the only way to guarantee
the scalability of a parallel code is to fully eliminate all sequential program parts.

In the following, we characterize the performance of parallel programs, depending
on scalability features of both the program and the interconnection network of the
parallel machine. The total time of the program is split into three terms as follows:

T =
Tmain

p
+ Tnon−parallel + Tcomm, (108)

where p stands for the number of processors, Tmain corresponds to the sequential
execution time of fully parallelizable program components, Tnon−parallel describes the
execution time of entirely sequential components whose execution time is independent
on the number of processors. The parameter Tcomm finally stands for the time during
which processors wait to receive messages from other processors through the network.
We now assume that the program has been developed in the spirit of extreme-scale
parallelism, in which case Tnon−parallel = 0. This is true in SPECULOOS, except for
a non-parallelized component in grid generation and in post-processing.

The communication time depends on hardware characteristics of the network. In a
network with ideal scalability the communication time depends on the amount of data
transferred between pairs of processors, but not on the total number of processors or
the total amount of data communicated in the network. Thus, the communication
time is

Tcomm ∼
E3N2

p
. (109)

At the other extreme one may find a network which is entirely unable to scale, and
which takes a time proportional to the number of processors to communicate data:

Tcomm ∼ E3N2. (110)

In practice, the communication time is contained between these two extremes, depend-
ing on the features of the network.

We now consider the execution time of a problem of a given constant size, which
is executed on a varying number of processors. On a single processor, the execution
time is

T (p = 1) = Tmain (111)

On a parallel machine, the execution time is

T (p) =
Tmain

p
+ Tcomm (112)

The speed up of a program restricted by communication time is

S(p) =
T (p = 1)

T (p)
=

Tmain

Tmain

p
+ Tcomm

, (113)

and the efficiency of parallelization is defined as the ratio between the speedup and an
ideal speedup:

Eff(p) =
S(p)

p
=

Tmain

Tmain + pTcomm
. (114)
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On a non-scalable network, as characterized by Eq. 109, the obtained efficiency is
therefore

Eff(p) =
Tmain

Tmain + pκ
, (115)

where κ is a constant for the total communication load associated to the constant
computational domain. In an ideally scalable network, characterized by Eq. 110, the
efficiency is

Eff(p) =
Tmain

Tmain + κ
, (116)

and thus independent of the number of processors p. In conclusion, the performance
figure can be quite pessimistic, as predicted by Equation 115, or optimistic as in
Equation 116, depending on the performance of the interconnecting network. In the
next section, a benchmark problem coded in SPECULOOS is tested on a modern
parallel computer with excellent interconnecting network, and the results are discussed
in view of these predictions.

5.4 A parallel benchmark case with SPECULOOS

In this section, the parallel performance characteristics of a spectral element code
using SPECULOOS is presented on a IBM Blue Gene/L parallel computer. The
benchmark problem consists of the resolution of the time-dependent, incompressible
Navier-Stokes equations in a lid-driven three-dimensional cavity. The computational
domain has a cubic L × L × L shape which is subdivided into E × E × E elements.
The underlying quadrature rules involve the Gauss-Lobatto-Legendre nodes for the
velocity field and the Gauss-Legendre grid for the pressure. The velocity field is
represented by polynomials of degree N = 12 in each direction, while the pressure
field uses polynomials of degree N − 2 = 10. The time integration algorithm uses a
backward differentiation formula (Euler) scheme of order two (BDF2). The velocity
and the pressure equations are decoupled by using the pressure correction approach
described in Section 1.2

Figure 19 displays the speed up curve of executing SPECULOOS on a number
of cores varying between 1024 and 8192. The total size of the problem is kept constant
at a value of E3 = 8192 elements, such that every core holds exactly one element
when the full Blue Gene is used. It is seen that the program scales well up to the
full size of the Blue Gene. Measurements show that the scalability is only limited
by MPI communication between nodes which, in the regime with 8192 cores, makes
up for less than 20% of the full execution time. It should be emphasized that the
benchmark is extremely ambitious, because it is executed in the so-called strong limit
in which the observed performance is often poor. Observing the strong limit means
to keep the size of the problem constant as the number of cores is increased, instead
of scaling the problem size with the size of the parallel machine. In this limit, the
amount of per-core data decreases as the number of nodes is increased, which results
in a bad balance between the time used for computations and communications. The
efficiency observed on Fig. 19 in a strong limit and on thousands of cores reflects both
the excellent scalability of the code and the good interconnecting network of the Blue
Gene/L.
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