
A Decentralized Mobile Computing Network for
Multi-Robot Systems Operations

Jabez Leong Kit1, David Mateo2, Roland Bouffanais3

Engineering Product Development

Singapore University of Technology and Design

Singapore, Singapore
1jabez leong@mymail.sutd.edu.sg,2david mateo@sutd.edu.sg,3bouffanais@sutd.edu.sg

Abstract—Collective animal behaviors are paradigmatic exam-
ples of fully decentralized operations involving complex collective
computations such as collective turns in flocks of birds or
collective harvesting by ants. These systems offer a unique source
of inspiration for the development of fault-tolerant and self-
healing multi-robot systems capable of operating in dynamic
environments. Specifically, swarm robotics emerged and is sig-
nificantly growing on these premises. However, to date, most
swarm robotics systems reported in the literature involve basic
computational tasks—averages and other algebraic operations. In
this paper, we introduce a novel Collective computing framework
based on the swarming paradigm, which exhibits the key innate
features of swarms: robustness, scalability and flexibility. Unlike
Edge computing, the proposed Collective computing framework
is truly decentralized and does not require user intervention
or additional servers to sustain its operations. This Collective
computing framework is applied to the complex task of collective
mapping, in which multiple robots aim at cooperatively map a
large area. Our results confirm the effectiveness of the coopera-
tive strategy, its robustness to the loss of multiple units, as well as
its scalability. Furthermore, the topology of the interconnecting
network is found to greatly influence the performance of the
collective action.

Index Terms—collective computation, decentralized computing
network, mobile computing network, swarm robotics

I. INTRODUCTION

Many biological systems are known to be capable of per-
forming highly complex computations in a fully decentralized
fashion: e.g. the brain, some insect colonies, aggregating
amoeboid cells, etc [3]. For instance, collective turns in flock
of birds is one such kind of collective decision making
achieved through a fully decentralized computational process.
Specifically, each bird in a flock detects the direction of
travel of some local neighboring conspecifics (according to
a given interaction distance). This flow of behavioral infor-
mation reaching each bird is then processed by the bird’s
central nervous system according to specific innate behavioral
rules that involve some forms of computation of the available
data. This complex process can be better understood when
considering basic models of flocking based on self-propelled
particles (SPPs). In Vicsek’s model for instance, the direction
of travel of all agents located within a given radius—a metric

This work was supported by a MOE-Tier 1 grant #T1MOE17001. JLK is
supported by a Presidential Graduate Fellowship from the Singapore MOE.

interaction distance—is simply averaged—the computational
task—by each agent [18]. It is important to appreciate the
fact that flocking birds (and SPPs) are essentially networked
units, and that the topology of the underlying network of
interaction plays a pivotal role in the effectiveness of the
collective behavior [11].

Over the past five years, we have been witnessing dramatic
advances in sensors, digital signal processing capabilities,
low-cost single-board computers, storage devices, low-power
communication devices. Simultaneously, the cost of hardware
has been following an ever-decreasing trend. Combined with
unabated developments in robotic software (the Robot Operat-
ing System, ROS, is celebrating its 10th anniversary this year),
all these rapid technological advances are revolutionizing our
ability to build massively distributed, rapidly deployable, self-
calibrating multi-robot systems. This paves the way for a
fundamental paradigm shift in robotics, in which large, costly,
and task-specific robots are replaced by swarms of small, low-
cost, and versatile units [17].

Swarm robotic systems allow unsophisticated, low-cost,
modular robotic platforms to be dynamically reconfigured
into a group capable of achieving a range of effective and
responsive cooperative actions well beyond the capabilities
of the individuals [4], [5]. This so-called “power of masses”
requires the constituting units to sense and interact with the
environment, while also sharing the sensed data with the
rest of the swarm, thereby enabling a very effective form
of collective computation. This paradigm of decentralized
operations, inspired from natural swarms, offers the possibility
of performing global collective computations under a wide
range of group sizes (scalability), despite the possible sudden
loss of multiple agents (robustness), and under unknown and
dynamic circumstances (flexibility) [4]. Scalability, flexibility,
and robustness are indubitably appealing features as they
open the door to the possibility of operating over very large
scales, in fully unstructured and dynamic environments, with
progressive and graceful degradation of the systems operations
in the presence of adverse conditions. However, it is critical
to acknowledge the fact that the achievement of complex
cooperative operations by swarm robotics systems hinges on
our ability to tap into the effectiveness of their collective
computation capabilities—well beyond the trivial averaging
process performed during collective motion.978-1-5386-7693-6/18/$31.00 ©2018 IEEE

309

From a network perspective, collective computing is a
paradigm sought after when the classical centralized com-
puting paradigm (with a master node and slaves, i.e. the
star network) of parallel computing breaks down [12]. That
explains that the research community is actively exploring
moving away from Cloud computing, and exploring Edge
computing capabilities for certain applications that include
mobile robotics. However, with dynamic networks of mobile
sensors, robots or vehicles, Edge computing demands to
leverage resources—computers, sensors, actuators—that may
not always be available or connected to the network. Edge
computing still requires a few servers throughout the net-
work to serve the sensor clusters, thereby offering only a
partial decentralization of the system. Therefore, Collective
computing is one step ahead of the highly sought after Edge
computing, bringing about complex computations all the way
to the end nodes of the network. This significantly reduces
communication resources required by Cloud computing to
perform most complex computational tasks. More importantly,
Collective computing yields an inherently robust, scalable
and flexible computing paradigm since these critical features
are natural by-products of the underpinning decentralized
swarming framework.

In this paper, we introduce the concept of collective com-
puting and present, in detail, one particular embodiment meant
to characterize and illustrate the potential of this approach in
terms of scalability and robustness. The considered application
is collective mapping by a swarm of networked robots, with
varying connectivity rules—i.e. varying the topology of the
interconnecting network, and with imposed failure of up to
75% of the nodes of the system.

II. COLLECTIVE COMPUTING AND OPERATION

Cooperative Control
Strategy

Local
Computation

Collective Operation

Fig. 1. Schematic of the Collective Operation and Computation frame-

work. Although the cooperative control strategy and the local computa-

tion are shown here, for clarity, as two separate boxes, they happen to

be deeply intertwined as a consequence of its distribution throughout

the interconnecting network.

Swarming is known to be a powerful paradigm to achieve a
scalable, robust, and flexible collective operation performed
at spatial (and possibly temporal) scales much larger than
the characteristic scales at which single agents operate. Both
natural and artificial swarming systems typically operate by
combining a decentralized cooperative control strategy with a
set of local computations that each agent performs using only
information from a certain local neighborhood.

For instance, flocks of birds are able to keep a consistent but
flexible formation during long journeys without the need for a
central controller. This behavior can be modeled by a collective

operation with a cooperative control strategy based on global
alignment of the birds’ direction of motion. To obtain this
global alignment, each agent only has to compute the average
direction of motion for its local neighborhood, say its k closest
neighbors, and the global, collective movement emerges. The
concept of combining local computation with cooperative
control strategy can be illustrated with an example of how
a swarm determine its direction of motion based on Vicsek’s

model [18]. For instance, in [11], the local computation of (1)
of the swarm shown computes the direction of motion of
agent i at time t +�t with shared inputs from its neighbors
(see Fig. 2, by finding the average of the difference of its
neighbors and its own direction of motion of time t. The
updated direction of motion will then be shared with its k

nearest neighbors through a network shown in Fig. 2 for the
on-going local computations. It is worth highlighting that the
topology of the network is embedded in the definition of the
local update rule (2) and is therefore an integral part of the
cooperative control strategy. The properties of this network
directly influence the local computational task involved but
not its fundamental nature—e.g. for SPPs the computational
task is an averaging but over more or less neighbors depending
on the local density of agents within the radius of interaction.
Moreover, The local computation outcome affects the dynam-
ics of the node which affects the k nearest neighbor network
and those of the swarming units connected to it through a
complex propagation process. Both the dynamics of the node
and the network defines the cooperative control strategy. It
appears clearly that a swarming system operates with local
computation and cooperative control strategy.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(2)

(3)(1)

(4)(5)

(6)

(7)

Fig. 2. Schematic of a subset of collectively moving agents within a

swarm. Arrows show the direction of travel and straight lines represent

the existence of an interaction link between any two agents. Agent

(1) receives behavioral information from neighboring agents (2)–(7).

If one assumes that agents (2) and (3) are picking up an external

signal—e.g., oncoming obstacle—and are responding to it thereby trig-

gering meaningful behavioral information in the form of changes to the

agents heading represented by blue arrows. This meaningful information

reaches agent (1) directly through network edges (b) and (e). This direct

signal is reinforced by means of positive feedback loops such as (d)-

(f), (a)-(k)-(j), (d)-(g)-(h) and many others. At the same time, agent (1)

receives behavioral information from the bulk of the swarm represented

by red-colored agents such as (4), (5), (6), and (7) for instance.

310

✓i(t+�t) = ✓i(t) +
�t

k
[(✓j(t)� ✓i(t))

+ · · ·+ (✓j+k+1(t)� ✓i(t))]

+⌘⇠i(t)

(1)

where ⌘⇠i(t) is a Gaussian white noise of magnitude ⌘ since
⇠i(t) 2 [�⇡,⇡].

This framework provides a useful guide to review existing
robotic functions as collective operations and consider not only
the local operations but how different models of cooperative
control affect the efficiency of the collective operation. Fig-
ure 1 shows the modularity of the framework, yet hides the
actual entanglement of both processes due to its distributed
nature throughout the interconnecting network underpinning
the process.

The effectiveness of the cooperative control strategy de-
pends on (i) the dynamics of the agents, and (ii) the interaction
between them. In network-theoretic terms, this means that the
collective operation will be determined by both the dynamics
on the network and the dynamics of the network itself.

In the next section, we present an application of the in-
troduced Collective computing framework for applications of
collective mapping by a swarm of networked mobile robots
with particular attention paid to scalability and robustness.

A. Collective Mapping

Simultaneous Localisation and Mapping (SLAM) is a com-
plex problem that has received sizable attention from the re-
search community. This attention has produced some elaborate
and efficient solutions for the problem in the case of single-
robot SLAM. Recently, these results have been expanded to
the multi-robot case in a framework that is referred to as multi-
robot SLAM [16].

There are essentially two approaches in the multi-robot
SLAM research. One is to propose new SLAM methods to
handle multiple noisy sensors and improve the data associ-
ation [8]—i.e., filtering [10], scan matching [6], and map-
merging [2] techniques. The other is to focus on new multi-
robot architectures with efficient data structures [1] and dis-
tributed computing robotic clusters [8], [12]. In order to apply
these potential solutions to a wide range of environments,
attention must be paid to assure that they guarantee not only
the robustness but also the scalability of the approach.

Current multi-robot SLAM solutions require a sizable
amount of sensor data processing from a central server, that
sometimes is performed a posteriori, i.e. after the robots have
completed their explorations. This requires reliable communi-
cation with a central controller, thereby severely limiting the
scalability and applicability of the method. To overcome this
serious limitation, one needs a decentralized approach.

In this section, we present the application of the Collective
computing framework introduced in the previous section to
the task of collective mapping, with simulations of swarming
robots allowing us to analyze and assess its effectiveness.
We intend to continue the testing of collective mapping with

our swarm of ground vehicles [5], which has been designed
with the ability impose any kind of network topology [14].
Therefore, the concepts presented here have been considered
with real-life robotic implementations and applications in
mind.

B. Simulation

We assume perfect sensory data and localization from the
simulated robots. The local map of each individual robot is
classically built with an occupancy grid approach [7] based on
their simulated infra-red (IR) sensors. Each grid cell contains
the probability of finding an obstacle. The collective map,
defined as the union of all the robots’ local maps, is assembled
and built to study the efficiency of the approach. However, it
is important to stress that it is not needed and that it plays
no role in determining the robots’ behavior. The simulated
“sensor range” is a tile of 6⇥ 7 grid cells around it.

To perform the collective mapping operation, each robot
computes its own local map based on the environmental data
gathered from its own sensors and its neighbors’ sensors, with
the concept of “neighbor” understood in its network sense, i.e.
the units directly connected to a robot through the underlying
network of interaction (see Fig. 2). With this updated map,
each robot decides independently its next target location by
means of a frontier exploration algorithm [19]. While this
process does not explicitly take into account the position of the
neighboring robots, the information gathered from them does
affect the map and thus the target location. Lastly, the robot
runs an A⇤ path planning algorithm [9] in order to reach the
target location. The full process is summarized in Algorithm 1.

Algorithm 1 Collective Mapping algorithm
1: procedure COLLECTIVEMAPPING(r,R, k, s,map)
2: map UpdateOccupancyGrid(map, s)
3: neighbors KNearestNeighbors(r,R, k)
4: for n in neighbors do
5: map UpdateOccupancyGrid(map, sn)

6: target FrontierExploration(map, r)
7: path PathP lanning(r, target)
8: return map, path

The interaction network that determines which robot trans-
mits data to which, is defined using a k-nearest neighbor
scheme, meaning that at any particular time-step a robot uses
the sensing information from its closest k robots. This means
that the network is directed (agent i may be using information
from j without j using that of i), and dynamic (the network
depends on the position of the robots, and is thus affected
by their movement). Moreover, it is worth adding that with
the particular choice of the k-nearest neighbors as interacting
units, the network has a spatial embedding [3].

This scheme has been proven in [14] to be key in repro-
ducing the collective behavior of natural swarming systems,
and to provide surprisingly robust and responsive behaviors
with a minimal amount of connections. For low values of
k, the instantaneous networks generated by this scheme are

311

typically disconnected (see Fig. 6), but the dynamic stitching
of the neighbors allows for the system to be connected over
time as the system dynamically evolve over the large area to
map.

The robots only share their current sensed data, meaning
that when a robot connects to another it does not receive
the history of measurements nor the current local map of the
neighbor: this process is Markovian. Formally, the local map
of robot i at time t is obtained by computing the posterior
probability p(m|Si

t) for a collection of sensory data such that

S
i
t =

t[

t0=1

{sj(t0); j|aij(t0) = 1} (2)

with aii(t) = 18t.
As this work focuses on the swarming aspect of collective

mapping, we have intentionally simplified the (local) mapping
technique with a set of assumptions. Local map-merging can
be considered when the robots do not know the relative
positions of other robots. As the individual robot has limited
processing power, we can distribute the heavy computational
work, and thus propose a new strategy that requires less
resources.

C. Results

In the various simulation runs, a swarm of robots is de-
ployed within a Basilica, whose floor layout is shown in Fig. 3,
and is tasked to map the interior of the building in a collective
manner. As the robots explore the environment, each unit
builds its own partial map, see Fig. 4. The termination criterion
for the simulation is that the union of these maps covers a
100 % of the environment. Note that this termination criterion
does require the full assembled map but in practice the swarm
of robots shall continue mapping to detect possible dynamic
changes in the layout. Hence, the termination criterion is only
used here to assess the effectiveness of our proposed collective
mapping approach.

Fig. 3. An interior map of a Basilica used for the Collective Mapping

operation. The blue dots represent the initial positions of the simulated

robots.

1) Scalability: To test scalability, we run simulations with
k = 1 nearest neighbor network topology and change the
number of robots from 5, 10, 15, to 20. The termination
criterion is that the collective map is 100% completed. The
results are shown in Table I. As the number of robots increases,
the collective mapping duration reduces. From 15 robots to 20

Fig. 4. Examples of the different local maps computed by each robot on

a given run when interacting with their k = 2 closest neighbors.

robots, the decrease in number of iterations is not as significant
due to the limiting factor of the environment space.

2) Robustness: To test robustness, we run simulations with
k = 2 nearest neighbor network topology. Figure 5 shows the
evolution of map coverage with time for three cases: a swarm
of 20 units, a swarm of 5 units, and a swarm that starts with
20 and where 5 robots are regularly removed from it every
50 iterations. The 20-15-10-5 robots graph shows that our
collective mapping approach is robust, even when robots are
dropping out of the network during the operation, the system
is able to complete 100% of the mapping. Interestingly, we
can see that the 20 robots graph and 20-15-10-5 robots graph
separated right after 5 robots are removed at iteration 50. The
new 15 robots system started to slow down in its operation,
and even more after subsequent removals. Initially, the 20-15-
10-5 system operates well above the 5 robots system, after all
the removals, both the system converges and completed the
collective mapping 50 iterations apart.

3) Network Effect: In Table II one can see the average
number of iterations taken to fulfill this criterion for different
number of nearest neighbors. The simulations are based on 15
robots connected via the different network topology. Chain is
a static network where each robot is connected to two other
particular robots. 0NN means there is no interaction between
robots at all with “NN” standing for “nearest neighbors”.
From 1NN to 6NN, these are the k > 0 nearest neighbor
dynamic networks. The results in Table II shows the drastic
improvement from a 0NN to (k > 0)NN, from a totally
independent system to a swarming system. From the results,
it is observed that the dynamic network are more efficient
than a static network in performing collective mapping, and it
becomes more efficient as k is increased. Based on this initial
study, 5NN seems to be the optimal network for this operation.
However, extensive study can be carried out to find the optimal

312

network as in [14].

No. of robots 5 10 15 20
No. of Iterations 1273 982 583 562

TABLE I
SCALABILITY TEST OF COLLECTIVE MAPPING: NUMBER OF ITERATIONS

NEEDED FOR THE COLLECTIVE TO MAP 100% OF THE FLOOR.

Network Chain 0NN 1NN 2NN 3NN 4NN 5NN 6NN
No. of
Itera-
tions

585 1092 583 469 344 322 303 310

TABLE II
EFFECT OF NETWORK ON COLLECTIVE MAPPING

2
0

 r
o

b
o

ts

1
5

 r
o

b
o

ts 1
0

 r
o

b
o

ts 5
 r

o
b
o
ts

Fig. 5. Robustness test result showing the completion of Collective

Mapping despite a disrupted network(20-15-10-5 robots graph)—i.e.

removing 5 agents every 50 iterations.

Fig. 6. Two snapshots of the dynamic network obtained during the

simulations. While at any given iterations the system is likely split in

disconnected clusters, this instantaneous clusters do communicate with

each other thanks to the switching network. In this example, Robot 14

(red) changes its neighborhood from Robot 15 (yellow) and Robot 19

(orange) to Robot 11 (magenta) and Robot 13 (green).

III. DISCUSSION

Applying swarming concepts to robotic mapping operations
opens interesting possibilities for the collective mapping of
very large areas with a large number of robotic units. The
intrinsic properties of swarming systems suits the intended
principles of multi-robot SLAM. This motivated us to adapt
the robotic mapping from the swarm robotics perspective. We
applied a collective operation and computation framework to
the mapping operation to define the collective mapping based
on a decentralized process requiring only local computations
combined with a cooperative control strategy, also defined
locally for each unit. This collective mapping concept is
thoroughly assessed and tested with simulations. The results
show that this approach provides a decentralized, robust,
and scalable mapping framework, beyond what is currently
possible with Edge computing. As a next step, we will consider
investigating the flexibility of the swarming system during
this collective mapping process, and study its capacity to map
changing environments.

In designing multi-robot systems, a great deal of attention
is paid to the dynamics of the agents with relatively less
attention focused on the effects of dynamic networks. In most
cases, the infrastructure is so as to guarantee a static network
that provides a constant and reliable information flow to a
central station. However, it is known that different kinds of
connectivities and degrees distributions can affect drastically
the performance of the system. In particular, it has been shown
that limiting the number of interacting agents increases the

313

system’s responsiveness [13], [14].
Distributed heavy computations on swarming system is of

particular interest in the area of environmental sensing. To
this aim, we are currently developing a fault-tolerant robust
collective computing framework suited for multi-robot systems
and with fully decentralized operations in dynamic environ-
ments. As the system is meant to operate in the physical world,
and is equipped with advanced sensors for environmental data
collection, it can perform reconstruction or prediction of a
quantity of interest depending on the collective task at hand.
Such high-level applications tend to be complex, and thus
require significant computational resources, which can be a
deterring factor for many existing multi-robot system. Yet,
this novel capability would have significant implications for
the collective operation and system adaptability to changing
circumstances and dynamics environments. It is worth adding
that the proposed robust collective computing framework un-
der development, given its distributed nature, should preserve
robustness and flexibility. Scalability will be dependent on
the effectiveness of the distributed network of communication.
We reckon that this is the next advancement for multi-agent
systems, also paving the way for AI-based operations, e.g.
using collective reinforcement learning [15].

From the hardware perspective, all computations are per-
formed by single-board computers placed in each agent, and
in the absence of any central computer or any other support-
ing infrastructure. The system is expected to be capable of
continuing and completing its robust collective computation
with the removal or addition of any number of nodes. As a
proof of concept, we successfully implemented and tested this
robust collective computing framework on a swarm of buoys,
developed by our group [20], connected by means of a low-
bandwidth dynamic mesh network. The presented work on
Collective computing is therefore the cornerstone to this robust
collective computing framework. Both are designed to be
platform- and environment-agnostic, i.e. they are completely
independent of (i) the robotic platform’s hardware, (ii) the
environmental equation that the system aims to solve, and (iii)
the numerical method considered for the solution of the partial
differential equations governing the environmental model.

IV. CONCLUSION

We have presented a collective computing framework ap-
plied to the complex task of collective, distributed mapping.
In contrast with current approaches, this framework allows
for a completely decentralized and distributed mapping, thus
affording scalability to autonomous systems operating in large
environments. Simulations of this framework show the effec-
tiveness, scalability, and robustness of the cooperative strategy
where agents interact through a dynamic, switching network
topology with fixed degree.

REFERENCES

[1] Pratik Agarwal, Gian Diego Tipaldi, Luciano Spinello, Cyrill Stach-
niss, and Wolfram Burgard. Robust map optimization using dynamic
covariance scaling. In Robotics and Automation (ICRA), 2013 IEEE

International Conference on, pages 62–69. Ieee, 2013.

[2] Andreas Birk and Stefano Carpin. Merging occupancy grid maps from
multiple robots. Proceedings of the IEEE, 94(7):1384–1397, 2006.

[3] R. Bouffanais. Design and Control of Swarm Dynamics. Springer,
Heidelberg, 2016.

[4] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics:
a review from the swarm engineering perspective. Swarm Intelligence,
7(1):1–41, 2013.

[5] M. Chamanbaz, D. Mateo, B. M. Zoss, G. Tokić, E. Wilhelm, R. Bouf-
fanais, and D. K. P. Yue. Swarm-enabling technology for multi-robot
systems. Front. Robot. AI, 4:Art. 12, 2017.

[6] Albert Diosi and Lindsay Kleeman. Laser scan matching in polar
coordinates with application to slam. In Intelligent Robots and Systems,

2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pages
3317–3322. IEEE, 2005.

[7] Alberto Elfes. Occupancy grids: A stochastic spatial representation for
active robot perception. In Proceedings of the Sixth Conference on

Uncertainty in AI, volume 2929, page 6, 1990.
[8] Bruno Duarte Gouveia, David Portugal, Daniel C Silva, and Lino Mar-

ques. Computation sharing in distributed robotic systems: A case study
on slam. IEEE Transactions on Automation Science and Engineering,
12(2):410–422, 2015.

[9] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions

on Systems Science and Cybernetics, 4(2):100–107, 1968.
[10] Andrew Howard. Multi-robot simultaneous localization and mapping

using particle filters. The International Journal of Robotics Research,
25(12):1243–1256, 2006.

[11] M. Komareji and R. Bouffanais. Resilience and controllability of
dynamic collective behaviors. PLoS one, 8:e82578, 2013.

[12] Ali Marjovi, Sarvenaz Choobdar, and Lino Marques. Robotic clusters:
Multi-robot systems as computer clusters: A topological map merging
demonstration. Robotics and Autonomous Systems, 60(9):1191–1204,
2012.

[13] D. Mateo, Y. K. Kuan, and R. Bouffanais. Effect of correlations in
swarms on collective response. Sci. Rep., 7:10388, 2017.

[14] David Mateo, Nikolaj Horsevad, Vahid Hassani, Mohammadreza
Chamanbaz, and Roland Bouffanais. Optimal network topology for
effective collective response. arXiv preprint arXiv:1807.04631, 2018.

[15] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state
of the art. Autonomous agents and multi-agent systems, 11(3):387–434,
2005.

[16] Sajad Saeedi, Liam Paull, Michael Trentini, and Howard Li. Multiple
robot simultaneous localization and mapping. In Intelligent Robots and

Systems (IROS), 2011 IEEE/RSJ International Conference on, pages
853–858. IEEE, 2011.

[17] Alan C Schultz and Lynne E Parker. Multi-robot Systems: From Swarms

to Intelligent Automata: Proceedings from the 2002 NRL Workshop on

Multi-robot Systems. Springer Science & Business Media, 2013.
[18] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer

Shochet. Novel type of phase transition in a system of self-driven
particles. Phys. Rev. Lett., 75(6):1226, 1995.

[19] Brian Yamauchi. A frontier-based approach for autonomous explo-
ration. In Computational Intelligence in Robotics and Automation, 1997.

CIRA’97., Proceedings., 1997 IEEE International Symposium on, pages
146–151. IEEE, 1997.

[20] B. M. Zoss, D. Mateo, Y. K. Kuan, G. Tokić, M. Chamanbaz, L. Goh,
F. Vallegra, R. Bouffanais, and D. K. P. Yue. Distributed system of
autonomous buoys for scalable deployment and monitoring of large
waterbodies. Auton. Robot., 2018. In Press.

314

