
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 8, NO. 1, MARCH 2021 295

Randomized Constraints Consensus for
Distributed Robust Mixed-Integer Programming

Mohammadreza Chamanbaz , Member, IEEE, Giuseppe Notarstefano , Member, IEEE,
Francesco Sasso , and Roland Bouffanais , Member, IEEE

Abstract—In this article, we consider a network of pro-
cessors aiming at cooperatively solving mixed-integer con-
vex programs subject to uncertainty. Each node only knows
a common cost function and its local uncertain constraint
set. We propose a randomized, distributed algorithm work-
ing under asynchronous, unreliable, and directed commu-
nication. The algorithm is based on a local computation and
communication paradigm. At each communication round,
nodes perform two updates: 1) A verification in which they
check—in a randomized fashion—the robust feasibility of
a candidate optimal point, and 2) an optimization step in
which they exchange their candidate basis (the minimal
set of constraints defining a solution) with neighbors and
locally solve an optimization problem. As a main result, we
show that processors can stop the algorithm after a finite
number of communication rounds (either because verifica-
tion has been successful for a sufficient number of rounds
or because a given threshold has been reached) so that
candidate optimal solutions are consensual. The common
solution has proven to be—with high confidence—feasible
and, hence, optimal for the entire set of uncertainty except
a subset having an arbitrarily small probability measure.
We show the effectiveness of the proposed distributed al-
gorithm using two examples: a random, uncertain mixed-
integer linear program and a distributed localization in wire-
less sensor networks. The distributed algorithm is imple-
mented on a multicore platform in which the nodes com-
municate asynchronously.

Index Terms—Distributed optimization, mixed-integer
programming, randomized algorithms, robust optimization.
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I. INTRODUCTION

ROBUST optimization plays an important role in several ar-
eas, such as estimation and control, and has been widely in-

vestigated. Its rich literature dates back to the 1950s; see [2] and
the references therein. Very recently, there has been a renewed
interest in this topic in parallel and/or distributed frameworks.
A synchronous distributed random projection algorithm was
proposed in [3] and extended to gossip communication in [4],
for problems in which each node knows a local cost function
and an uncertain constraint. To prove almost sure convergence,
the algorithms in [3] and [4] require suitable assumptions on
the random set, network topology, and algorithmic weights. A
distributed approach based on barrier methods was proposed
in [5]. The algorithm needs to start from a strictly feasible point.
In [6], a parallel/distributed scheme is considered for solving
uncertain problems by means of the scenario approach [7], [8].
The scheme consists of extracting a number of samples from the
uncertain set and assigning a portion to each node in a network. A
variant of the constraints consensus algorithm introduced in [9]
is used to solve the deterministic optimization problem. Primal-
dual methods are proposed in [10] for a distributed framework
with similar parallel sampling based on the scenario approach.
In [11], a cutting plane consensus algorithm is introduced for
solving convex optimization problems with common cost, where
constraints are distributed through the network processors. For
uncertain constraints a worst-case approach based on a pes-
simizing oracle is used. A distributed proximal minimization
algorithm is introduced in [12] for robust convex problems in
which each node initially extracts random samples from its local
uncertain constraint set.

All aforementioned papers deal with usual (continuous) op-
timization problems. A centralized method—based on the sce-
nario approach—is presented in [13] for solving robust mixed-
integer convex optimization problems. Few recent works address
the parallel or distributed solution of deterministic mixed-integer
programs. A decentralized (parallel)—but not distributed—
approach, based on dual decomposition, is proposed in [14]
and [15] to approximately solve mixed-integer linear programs
(MILPs) with guaranteed suboptimality bounds. In [16], a dis-
tributed version of the algorithm in [15] is proposed. In [17],
a distributed algorithm based on primal decomposition is pro-
posed for the same MILP setup. A Lagrange relaxation approach
combined with proximal bundle has been used in [18] to solve a
demand response problem involving mixed-integer constraints.
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In [19], the problem of heterogeneous multivehicle routing is
formulated as a MILP and a decentralized algorithm, based on
a gossip protocol, is proposed to find a feasible suboptimal so-
lution almost surely. A cooperative distributed robust trajectory
optimization problem is addressed in [20] in which vehicles
sequentially solve a local MILP. Finally, a distributed algorithm
based on generation of cutting planes and exchange of active
constraints is proposed in [21] to solve deterministic MILPs.

The distributed methods above address deterministic (nonro-
bust) problems with a finite number of constraints. Extending
these methods to uncertain problems would require to combine
each proposed algorithm with a procedure to sample uncertain
constraints in an online fashion. Thus, the approach we propose
in this article can suggest a possible way to address uncertainty
in a distributed framework.

The main contribution of this article—which extends the
conference paper [1], where this article addresses a more general
optimization setup, including a more in-depth analysis and new
numerical computations—is the design of a fully distributed al-
gorithm to solve uncertain mixed-integer programs in a network
with directed, asynchronous, and possibly unreliable, communi-
cation. The problem under investigation is a mixed-integer pro-
gram in which a cost function depending on a common decision
variable has to be minimized subject to a constraint set which is
the intersection of local uncertain constraints, each one known
only by a single node. Starting from a deterministic constraint
exchange idea introduced in [9], the algorithm proposed in this
article introduces a randomized, sequential approach in which
each node locally: 1) performs a probabilistic verification step
(based on a “local” sampling of its uncertain constraint set), and
2) solves a deterministic optimization problem with a limited
number of constraints. The sequential approach is inspired by
the ones proposed in [22]–[25] for centralized (not distributed)
convex (not mixed-integer) optimization problems. If suitable
termination conditions are satisfied, we are able to prove that
the nodes reach consensus on a common solution, which is
probabilistically feasible and optimal with high confidence. We
also propose a stopping criterion ensuring that the distributed al-
gorithm can in fact be stopped after a finite number of communi-
cation rounds. Although tailored to mixed-integer programs, the
proposed algorithm can solve a more general class of problems
known as S-optimization problems [26] (which include continu-
ous, integer, and mixed-integer optimization problems). As com-
pared to the literature reviewed above, the proposed algorithm
has three main advantages. First, no assumptions are needed on
the probabilistic nature of the local constraint sets. Second, each
node can sample locally its own uncertain set. Thus, no central
unit is needed to extract samples and no common constraint
set needs to be known by the nodes. Third and final, nodes do
not need to perform the whole sampling at the beginning and
subsequently solve the (deterministic) optimization problem.
Online extracted samples are used only for verification, which
is computationally inexpensive. The optimization is always per-
formed on a number of constraints that remains constant for each
node and depends only on the dimension of the decision variable
and on the number of neighboring nodes. Since in the addressed
setup processors optimize over a common decision variable,

integrality constraints cannot be split in the network. As shown
later, this increases the number of constraints that nodes need to
exchange when the number of integer variables grows. Finally,
we remark that the distributed algorithm can be immediately
implemented using existing off-the-shelf optimization tools and
no ad hoc implementation of specific update rules is needed.

The article is organized as follows. In Section II, we pro-
vide some preliminaries and formulate the distributed robust
mixed-integer convex program (RMICP). Section III presents
our distributed, randomized algorithm for finding a solution—
with probabilistic robustness—to robust distributed mixed-
integer problems. The probabilistic convergence properties
of the distributed algorithm are investigated in Section III-
B. Finally, extensive numerical simulations are performed in
Section IV to show the effectiveness of the proposed
methodology.

II. PRELIMINARIES AND PROBLEM SETUP

In this section, we introduce some preliminary notions of
combinatorial optimization that will serve us to set up the
RMICP addressed in the article and the methods used for the
proposed algorithm.

A. Preliminaries

Given a constraint set F = F1 ∩ · · · ∩ FN ⊂ Rd and a vec-
tor c ∈ Rd, we will denote with (F , c) the following optimiza-
tion problem over S ⊂ Rd:

min cTx

subject to x ∈ F ,

x ∈ S.

Moreover, let us denote J(F) as the optimal cost of the above
problem. For a large class of problems, often known as abstract
programs or LP-type problems, a solution to (F , c) can be iden-
tified by considering a subset of the constraints F1, . . . ,FN .
This concept is characterized by the notion of basis, which is,
informally, a “minimal” set of constraints that define a solution.
The concept of basis is supported by Helly-type theorems,
initially introduced by Eduard Helly in [27]; see also [28]. Before
formally defining a basis, we define the Helly number and its
variation S-Helly number [26], [29].

Definition 2.1 (Helly number): Given a nonempty family K
of sets, Helly number h = h(K) ∈ N of K is defined as the
smallest number satisfying the following:

∀i1, . . . , ih ∈ {1, . . . ,m} : Ki1 ∩ · · · ∩Kih �= ∅ ⇒
K1 ∩ · · · ∩Km �= ∅

for all m ∈ N and K1, . . . ,Km ∈ K. If no such h exists, then
h(K) = ∞.

For the classical Helly’s theorem,K is a finite family of convex
subsets of Rd. One of the important extensions of the Helly
number is the S-Helly number defined for S ⊂ Rd. �
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Definition 2.2 (S-Helly number): Given a set S ⊂ Rd, let
S ∩ K be the family of sets S ∩K such that K ⊂ Rd is convex.
The S-Helly number is defined as h(S) = h(S ∩ K). �

It is worth pointing out the main difference between the
definitions given above. The Helly number states that if the
intersection of every h sets is nonempty, then there is a point in
common between all the sets. Differently, the S-Helly number
states that if the intersection of any h convex sets contains a
point in S, then all the sets have a point in common in S.

Definition 2.3 (Basis): Given a constraint set F = F1 ∩
· · · ∩ FN , a basis B of (F , c) is a minimal collection of con-
straints from F1, . . . ,FN such that the optimal cost of the
problem (F , c) is identical to the one of (B, c), i.e., J(F) =
J(B). �

We point out that in this article, we are slightly abusing the
notation since we are denoting by B both the collection of
constraints (when referring to the basis) and their intersection
(when denoting the constraint set of the optimization problem).

The size of a largest basis of problem (F , c) is called its
combinatorial dimension. The following result connects the
combinatorial dimension with the S-Helly number. This re-
sult is presented in [13, Theor. 2], [26, Theor. 1.3], and [29,
Theor. 3.11].

Theorem 2.4: Let F = F1 ∩ · · · ∩ FN , then the combinato-
rial dimension of problem (F , c) is h(S)− 1. �

It is worth noticing that if in problem (F , c), the sets
F1, . . . ,FN are convex, well-known classes of problems that
arise depending onS. IfS = Rd, problem (F , c) is a continuous
convex optimization problem. If S = Zd, then (F , c) becomes
an integer optimization problem. Choosing S = ZdZ × RdR

with d = dZ + dR leads to a mixed-integer convex problem.
The S-Helly number for S = ZdZ × RdR is given below;
see [30].

Theorem 2.5 (Mixed-integer Helly theorem): The Helly
number h(ZdZ × RdR) is equal to (dR + 1)2dZ . �

This implies that the combinatorial dimension of (F , c) with
S = ZdZ × RdR is (dR + 1)2dZ − 1.

We remark that the combinatorial dimension is an upper
bound on the cardinality of the basis, and the basis can have much
smaller cardinality than the combinatorial dimension stated in
Theorem 2.5.

B. Problem Setup

We consider a network of n processors with limited computa-
tion and/or communication capabilities aiming at cooperatively
solving the following RMICP:

min
x∈S

cTx

subject to x ∈
n⋂

i=1

F i(q) ∀q ∈ Q (1)

where x ∈ S is the vector of decision variables, q ∈ Q is the
vector of uncertain parameters acting on the system, while
F i(q) = {x ∈ S : f i(x, q) ≤ 0} is the constraint set known
only by agent i, with f i(x, q) : Rd × Q → R its related con-
straint function, which is assumed to be convex for any fixed

value of q ∈ Q. The objective function is considered to be
linear. This assumption is without loss of generality. In fact,
a nonlinear convex objective function can be transformed into
the epigraph form by introducing an extra decision variable. We
point out that each processor i only knows part of the problem
(the local constraint F i(q), the cost vector c, and the domain
S) and we stress that there is no central node having access
to all constraints. The goal for the network processors is to
reach consensus on a solution of the entire problem via a fully
distributed algorithm consisting of purely local computation and
communication with neighbors.

Problems with this structure arise in a large number of prac-
tical applications as, e.g., distributed localization in wireless
sensor networks (see Section IV-B).

We make the following assumption on the solution of any
deterministic subproblem of (1) in which only a finite number
of constraints F i(q) (for given sampled q) are considered.

Assumption 2.6 (Nondegeneracy): The minimum point of
any subproblem of (1) with at least h(S)− 1 constraints is
unique and a unique basis exists for the minimum point. �

Assumption 2.6 is not restrictive. In fact, to ensure uniqueness
of the optimal point, we could use a strictly convex objective
function, a lexicographic ordering, or any universal tie-breaking
rule; see [28, Observation 8.1] for further details.

We let the nodes communicate according to a time-dependent,
directed communication graph G(t) = {V, E(t)}, where t ∈ N
is a universal time which does not need to be known by nodes,
V = {1, . . . , n} is the set of agent identifiers, and (i, j) ∈ E(t)
indicates that i sends information to j at time t. The time-varying
set of incoming (respectively outgoing) neighbors of node i at
time t, Nin(i, t) (Nout(i, t)), is defined as the set of nodes from
(respectively to) which agent i receives (respectively transmits)
information at time t. A directed static graph is said to be strongly
connected if there exists a directed path (of consecutive edges)
between any pair of nodes in the graph. For time-varying graphs,
we use the notion of uniform joint strong connectivity formally
defined next.

Assumption 2.7 (Uniform joint strong connectivity): There

exists an integer L ≥ 1 such that the graph

(
V,⋃t+L−1

τ=t E(τ)
)

is strongly connected for all t ≥ 0. �
There is no assumption on how uncertainty q enters problem

(1), thus making its solution particularly challenging. In fact,
if the uncertainty set Q is an uncountable set, problem (1) is a
semi-infinite optimization problem involving an infinite number
of constraints. In general, there are two main paradigms to
solve an uncertain optimization problem of the form (1). The
first approach is a deterministic worst-case paradigm in which
the constraints are enforced to hold for all possible uncertain
parameters in the set Q. This approach is computationally
intractable for cases where uncertainty does not appear in a
“simple” form, e.g., affine, multiaffine, or convex. Moreover,
since some uncertainty scenarios are very unlikely to happen, the
deterministic paradigm may be overly conservative. The second
approach—the one pursued in this article—is a probabilistic ap-
proach where uncertain parameters are considered to be random
variables and the constraints are enforced to hold for the entire
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set of uncertainty except a subset that has an arbitrarily small
probability measure.

III. RANDOMIZED CONSTRAINTS CONSENSUS

In this section, we present a distributed, randomized algorithm
for solving problem (1) in a probabilistic sense. Note that since
the uncertain constraint sets in (1) are uncountable, it is in general
very difficult to verify if a candidate solution is feasible for the
entire set of uncertainty or not. We instead use a randomized ap-
proach based on Monte Carlo simulations to check probabilistic
feasibility.

A. Algorithm Description

The distributed algorithm we propose has a probabilistic
nature and consists of two main steps: 1) verification and
2) optimization. The main idea is the following. A node has
a candidate basis and candidate solution point. First, it verifies
if the candidate solution point belongs to its local uncertain set
with high probability. Then, it collects bases from neighbors
and solves a convex mixed-integer problem with its basis and
its neighbors’ bases as a constraint set. If the verification step is
not successful, the first violating constraint is also considered in
the optimization.

Formally, we assume that q is a random variable, and a
probability measure P over the Borel σ−algebra of Q is given.
We denote by ki a local counter keeping track of the number of
times the verification step is performed by agent i.

In the verification step, each agent i generates a multisample
qi
ki

with cardinality M i
ki

from the set of uncertainty

qi
ki

.
= {q(1)ki,i

, . . . , q
(Mi

ki
)

ki,i
} ∈ QMi

ki

according to the measure P , where QMi
ki

.
= Q × Q × · · · ×

Q (M i
ki

times). Node i checks the feasibility of the candidate
solution xi(t) only at the extracted samples (by simply checking
the sign of f i(xi(t), q

(�)
ki,i

) for each extracted sample q
(�)
ki,i

, � ∈
{1, . . . ,M i

ki
}). If a violation happens, the first violating sample

is used as a violation certificate.1

In the optimization step, agent i transmits its current basis
to all outgoing neighbors and receives bases from incoming
ones. Then, it solves a convex mixed-integer problem whose
constraint set is composed of: 1) a constraint generated at
the violation certificate (if it exists); 2) its current basis; and
3) the collection of bases from all incoming neighbors. We
define a primitive [x∗,B] = SolveMIP(F , c) which solves the
deterministic mixed-integer convex problem defined by the pair
(F , c) and returns the optimal point x∗ and the corresponding
basis B. Node i repeats these two steps until a termination
condition is satisfied, namely, if the candidate basis has not
changed for 2nL+ 1 times, with L defined in Assumption 2.7.
The distributed algorithm is formally presented in Algorithm 1.

At this point, it is worth highlighting some key interesting fea-
tures of the proposed algorithm. First, the verification step, even
if it may run possibly a large number of times, consists of simple,
inexpensive inequality checks which are not computationally

1In fact, more than one violated sample—if it exists—can be returned by the
verification step. See Remark 3.3 for more details.

Algorithm 1: Randomized Constraints Consensus.

Input: F i(q), c, εi, δi
Output: xi

sol
Initialization:
Set ki = 1, [xi(1),Bi(1)] = SolveMIP(F i(qi0), c) for
some qi0∈ Q

Evolution:
Verification:
1) If xi(t) = xi(t− 1), set qviolt,i = ∅ and goto
Optimization

2) Extract

M i
ki

=
⌈2.3 + 1.1 ln ki + ln 1

δi

ln 1
1−εi

⌉
(2)

i.i.d samples qi
ki

= {q(1)ki,i
, . . . , q

(Mi
ki

)

ki,i
}

3) If xi(t) ∈ F i(q
(�)
ki,i

) for all � = 1, . . . ,M i
ki

, set
qviolt,i = ∅; else, set qviolt,i as the first sample for which
xi(t) /∈ F i(qviolt,i )

4) Set ki = ki + 1
Optimization:
1) Transmit Bi(t) to j ∈ Nout(i, t), acquire bases from
incoming neighbors, and set Yi(t)

.
= ∩j∈Nin(i,t)Bj(t)

2) [xi(t+ 1),Bi(t+ 1)] =
SolveMIP(F i(qviolt,i ) ∩ Bi(t) ∩ Yi(t), c)

3) If xi(t+ 1) unchanged for 2nL+ 1 times, return
xi

sol = xi(t+ 1)

demanding. Moreover, we remark that if at some t the candi-
date solution has not changed, that is, xi(t) = xi(t− 1), then
xi(t) has successfully satisfied a verification step and, thus, the
algorithm does not perform it again. Second, each node solves
a local problem in which the number of constraints depends
on the number of neighbors rather than on the total number of
agents—which in network applications can be very large. Also,
the number of constraints involved in the local problem at each
node is fixed. Hence, the complexity of the problem does not
change with time. Third, the amount of data a processor needs
to transmit does not depend on the number of agents but only
on the dimension of the space. Indeed, processor i transmits
onlyh(S)− 1 constraints at each iteration and for mixed-integer
convex programs, this number only depends on the dimension of
the space (see Theorem 2.5). Fourth and final, the proposed dis-
tributed randomized algorithm is completely asynchronous and
works under unreliable communication. Indeed, t is a universal
time that does not need to be known by the processors and the
graph can be time-varying. Thus, if nodes run the computation at
different speeds, this can be modeled by having no incoming and
outgoing edges in that time interval. Similarly, if transmission
fails at a given iteration, this is equivalent to assuming that the
associated edge is not present in the graph at that iteration.

Remark 3.1 (Implicit constraint S): The constraintS models
the fact that optimization problem (1) can be continuous, integer,
and/or mixed-integer. For instance, if S = Rd, then all decision
variables are continuous and if S = ZdZ × RdR , the problem
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is of a mixed-integer nature with dZ integer and dR continuous
decision variables. Since the decision vector x is common in all
the nodes, the implicit constraint x ∈ S needs to be enforced by
all nodes but does not need to be communicated among nodes
of the network. �

Remark 3.2 (Local optimization and initial constraint): In
the deterministic constraints consensus algorithm [9], at each
iteration, each node needs to include in the local optimization
problem its original constraint set. Here, we can drop this
requirement because of the uncertain nature of the problem
handled in the verification step. �

Remark 3.3 (Multiple violation certificates): In the verifi-
cation step of Algorithm 1, we set qviolt,i as the first sample for
which xi(t) /∈ F i(qviolt,i ). However, if more violated samples
are found, then in step O2, we may include r > 1 violated
constraints in the SolveMIP primitive, thus solving a larger
optimization problem. By doing this, one expects a faster con-
vergence and hence less communications. In fact, as shown in
the numerical computations, the number of violated samples r
constitutes a tradeoff between the communication burden and
the complexity of the local optimization problem. �

Remark 3.4 (Basis computation): In (continuous) convex
optimization, a basis, i.e., a minimal set of active constraints, can
be efficiently computed. For mixed-integer problems, this can
be computationally expensive. A brute-force method is to check
all constraints one by one to see whether or not they belong
to a basis. Although inefficient, we point out that this routine
is applied on a limited number of constraints—the constraint
formed at the violation certificate, constraints in the node basis,
and constraints in the neighboring bases. Moreover, if a more
efficient basis computation procedure were available, it could
be immediately used in our distributed algorithm. We note that
in view of Theorem 2.5, the combinatorial dimension of the
local problems grows exponentially with the number of integer
decision variables (dZ). This clearly affects the cardinality of
the basis and, thus, the complexity of its computation and
communication. �

B. Algorithm Convergence and Solution Probabilistic
Guarantees

Here, we analyze the convergence properties of the distributed
algorithm and investigate the probabilistic properties of the
solution computed by the algorithm.

We start by defining the set of all possible successive inde-
pendent random extractions of all the sequences {qi

ki
}ki=1,...,∞,

i = 1, . . . , n as follows:

S := {q : q = [q1, . . . ,qn] ,

qi = {qi
ki
}ki=1,...,∞, i = 1, . . . , n

}
.

Moreover, we define the set

Ssol := {q ∈ S : Algorithm 1 terminates}
which is the domain of the random variablesxi

sol. The probability
measure on xi

sol is therefore defined on this space, and it is
denoted by P∞. Now, we are ready to present the first main
result of the article.

Theorem 3.5: Let Assumptions 2.6 and 2.7 hold. Given
the probabilistic levels εi > 0 and δi > 0, i = 1, . . . , n, let
ε =

∑n
i=1εi and δ =

∑n
i=1δi. Then, the following statements

hold.
1) Along the evolution of Algorithm 1, the cost J(Bi(t))

at each node i ∈ {1, . . . , n} is monotonically non-
decreasing, i.e., J(Bi(t+ 1)) ≥ J(Bi(t)), and con-
verges to a common value asymptotically. That is,
limt→∞ J(Bi(t)) = J̄ for all i ∈ {1, . . . , n}.

2) If the candidate solution of node i, xi(t) has not changed
for 2Ln+ 1 communication rounds, all nodes have a
common candidate solution, i.e., xi

sol = xsol for all i =
1, . . . , n.

3) The following inequality holds for xsol:

P∞

{
q ∈ Ssol : P

{
q ∈ Q : xsol /∈

n⋂
i=1

F i(q)

}
≤ ε

}

≥ 1− δ.

4) Let Bsol be the basis corresponding to xsol. The following
inequality holds for Bsol:

P∞

{
q ∈ Ssol : P

{
q ∈ Q :J (Bsol ∩ F(q)) > J(Bsol)

}

≤ ε

}
≥ 1−δ

where F(q)
.
=
⋂n

i=1 F i(q). �
The proof is given in Appendix A.

We briefly discuss the results of this theorem. Statement 1
shows that agents are increasing their local cost and asymptoti-
cally achieve the same cost. This result gives insights on the fol-
lowing statement. Statement 2 provides a condition under which
processors can stop the distributed algorithm with the guarantee
of having a common solution, whose probabilistic properties are
shown in the next statements. In the next section, we provide a
variation of the algorithm that ensures to stop the algorithm in
finite time. We point out, though, that numerical computations
show that the algorithm in the original version always satisfies
the condition of Statement 2. It is also worth mentioning that for
a fixed communication graph, the bound 2nL+ 1 in Statement 2
to stop the algorithm can be replaced by 2D + 1, where D is the
graph diameter. Statement 3 says that the probability of violating
the (common) solution xsol with a new sample (constraint) is
smaller than ε and this statement holds with probability at least
1− δ. Similarly, based on Statement 4, the probability that the
costJ(Bsol) associated withxsol increases, i.e., the probability of
xsol not being optimal, if a new sample (constraint) is extracted,
is smaller than ε and this statement holds with probability of at
least 1− δ.

Finally, note that if problem (1) is infeasible, and, thus,
Assumption 2.6 is not satisfied, there are two possibilities. First,
at some iteration, an agent samples a collection of constraints
that do not intersect and detects infeasibility. This can then be
propagated in the network through a flag. Second, the algorithm
terminates successfully. If this second scenario occurs, with
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confidence of at least 1− δ, the set of infeasible constraints
has probability measure at most ε.

Remark 3.6 (S-Optimization): The class of problems that
Algorithm 1 can solve is not limited to mixed-integer problems.
The algorithm immediately applies to any problem having a
finite S-Helly number. This class of problems have recently
been introduced—under the name of S-optimization problems—
in [26]. It is worth mentioning that some classes of nonconvex
problems have finite S-Helly number—see [29] and references
therein—and hence can be solved using Algorithm 1. �

C. Modified Algorithm With Finite-Time Convergence
Guarantee

In this section, we derive a stopping criterion for Algorithm 1
so that it is guaranteed to be halted in finite time. Indeed, there is
no guarantee for the condition in Statement 2 of Theorem 3.5 to
be satisfied (and thus for Algorithm 1 to be halted in finite time),
even though we found this to be the case for all simulations we
run (see Section IV for more details).

The stopping criterion is derived by borrowing tools from
the scenario approach presented in [7] and [8]. In the scenario
approach, the idea is to extract a finite number of samples from
the constraint set of the semi-infinite optimization problem (1)
and solve the obtained (deterministic) optimization problem.
The developed theory provides bounds on the number of samples
to guarantee a desired probabilistic robustness. The main idea
of the stopping criterion is the following. Once each M i

ki
(the

cardinality of the multisample used in the verification step of
Algorithm 1) exceeds a (common) threshold associated with
a proper scenario bound, agents stop generating new samples
in the verification step and Algorithm 1 proceeds with the
multisample extracted at the last iteration. Thereby, Algorithm 1
solves (in a distributed way) a scenario problem and, in finite
time, finds a solution feasible for the extracted samples across all
the nodes. Each node has a flag which is communicated locally
among all neighbors. The flag is initialized to 0 and is set to 1
once M i

ki
is greater than or equal to the scenario bound.

In [12], scenario bounds are proposed for a distributed robust
convex optimization framework in which agents use a different
set of uncertainty scenarios in their local optimization programs.
In the next lemma, we provide analogous bounds for our problem
setup. To this aim, let us consider the following optimization
problem:

min cTx

subject to x ∈
n⋂

i=1

M scen
i⋂

�=1

F i(q(�)),

x ∈ S (3)

where M scen
i is the smallest integer satisfying

δi ≥
h(S)−2∑
�=0

(
M scen

i

�

)
ε�i(1− εi)

M scen
i −�. (4)

Lemma 3.7: Given the probabilistic levels εi, δi >
0, i = 1, . . . , n, let ε =

∑n
i=1 εi, δ =

∑n
i=1 δi, and M scen =

∑n
i=1 M

scen
i , where M scen

i is the smallest integer satisfying (4).
If agents formulate the sampled optimization problem (3) and
all of them agree on an optimal solution x∗

PM scen

{
q ∈ QM scen

: P

{
q ∈ Q : x∗ /∈

n⋂
i=1

F i(q)

}
≤ ε

}

≥ 1− δ

where QM scen
= Q × Q × · · · × Q (M scen times) and PM scen

is
the product probability measure on QM scen

. �
The proof follows arguments similar to those in [12, Propo-

sition 1]. Specifically, by using the result in [13, Theor. 3], one
can show that the same arguments in [12, Proposition 1] can be
followed by properly changing the cardinality of the support con-
straint set. In particular, in the proof of [12, Proposition 1], the
(Helly) number d+ 1 of the (continuous) convex program, with
d being the dimension of the decision variable, can be replaced
by the S-Helly number (dR + 1)2dZ (as from Theorem 2.5) of
problem (1).

The following proposition summarizes the convergence prop-
erties and the solution guarantees of the modified algorithm
(Algorithm 1 with the stopping criterion). We report only the
feasibility result corresponding to Statement 3 of Theorem 3.5,
but also the equivalent of Statement 4 can be proven.

Proposition 3.8: Given the probabilistic levels εi > 0 and
δi > 0, i = 1, . . . , n, let ε =

∑n
i=1 εi and δ =

∑n
i=1 δi. If nodes

stop performing steps V2 and V4 of Algorithm 1 when M i
ki

≥
M scen

i for all i = 1, . . . , n, then the following statements hold:
1) nodes agree on a solution xsol in finite time;
2) the solution xsol satisfies

PM

{
q ∈ QM : P

{
q ∈ Q : xsol /∈

n⋂
i=1

F i(q)

}
≤ ε

}

≥ 1− δ (5)

where M =
∑

i M
i
ki

.
Proof: First, note that if the Algorithm does not stop due to

Condition 2 of Theorem 3.5, then all nodes stop generating new
samples in finite time. When all nodes have stopped generating
samples, they start solving the following deterministic optimiza-
tion problem:

min cTx

subject to x ∈
n⋂

i=1

Mi
ki⋂

�=1

F i(q(�)),

x ∈ S (6)

where M i
ki

≥ M scen
i is the cardinality of the verification multi-

sample at the stopping point. To prove that nodes agree in finite
time on an optimal solution of (6), we resort to the following
two arguments: first, as from Statement 1 of Theorem 3.5,
the cost is monotonically nondecreasing; second, the number
of constraints in the network is fixed, and, thus, the number
of possible bases is finite. The proof of the first statement,
thus, follows from arguments analogous as those in [9]. Indeed,
when nodes stop generating samples, the randomized constraints
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TABLE I
AVERAGE—OVER ALL NODES—NUMBER OF TIMES A BASIS IS TRANSMITTED TO THE NEIGHBORS, AVERAGE NUMBER OF TIMES VERIFICATION IS

PERFORMED (ki AT THE CONVERGENCE), AND EMPIRICAL VIOLATION OF THE COMPUTED SOLUTION (xSOL) OVER 10 000 RANDOM SAMPLES
FOR DIFFERENT NUMBER OF NODES AND NEIGHBORS IN EACH NODE. THE SIMULATION IS PERFORMED 100 TIMES FOR EACH

ROW AND AVERAGE RESULTS ARE REPORTED

consensus algorithm becomes deterministic and turns out to be
a variant of the constraints consensus algorithm proposed in [9].
Due to Assumption 2.6, nodes agree on axsol, which is the unique
optimal solution of problem (6). Thus, the second statement
follows by noting that, from Lemma 3.7, xsol satisfies (5) since
the number of random constraints at each node M i

ki
is greater

than or equal to the scenario bound M scen
i . �

IV. NUMERICAL SIMULATIONS

We test the effectiveness of the distributed algorithm pre-
sented in Section III through extensive numerical simulations.
To this end, we consider two different problems: 1) randomly
generated MILP with uncertain parameters and 2) distributed
convex position estimation in wireless sensor networks. These
two numerical simulations are discussed in the next sections.

Numerical computations are run on a Linux-based high per-
formance computing cluster2 with 256 CPUs. Each node uses
only one CPU of the cluster and executes Algorithm 1 in an
independent MATLAB environment. The communication is
modeled by sharing files between different Matlab environments
over a fixed digraph.

A. Uncertain Mixed-Integer Linear Programming

We randomly generate robust MILPs with the following struc-
ture:

min cTx

subject to (A0
i +Aq

i )
Tx ≤ bi, i = 1, . . . , n

x ∈ Z2 × R3

where A0
i is a fixed (nominal) matrix and Aq

i is an interval
matrix—a matrix whose entries are bounded in given intervals—
defining the uncertainty in the optimization problem. We follow
the methodology presented in [31] in order to generate the pair
A0

i , bi and the objective direction c so that the generated linear
program remains feasible. To ensure feasibility of the MILP, we
increase the volume of the feasible region using the parameter
γ > 1. In the set of simulations reported here, we set γ = 20.
The communication graph G is a (connected) random k-nearest
neighbor graph (with k being the fixed degree or number of
neighbors) [32]. Over this fixed graph, agents implement the

2http://idc.sutd.edu.sg/titan/

distributed algorithm according to the asynchronous and unre-
liable communication protocol (based on MATLAB environ-
ments) described above. In particular, only one node at a time
is able to read/write from/to each node file containing its basis.
Hence, if more than one node is willing to read/write from/to
a file, only one would be allowed to do so. This gives rise to
an asynchronous and unreliable communication protocol. We
use the intlinprog function of Mosek [33] to solve opti-
mization problems appearing at each iteration of the distributed
algorithm.

For the computations reported in Table I, we varied the number
of nodes and neighbors per node, while using only those graphs
having a diameter equal to 4. The number of constraints per
node is set to 100. We also consider all elements of Aq to be
bounded in [−0.2, 0.2]. The underlying probability distribution
of uncertainty appearing in Aq is selected to be uniform (see,
e.g., [34]). The probabilistic accuracy and confidence levels of
each agent are εi = 0.1/n and δi = 10−9/n, respectively, with
n being the number of nodes (first column of Table I). It is
assumed that each node keeps the latest information received
from neighbors and, hence, if the basis is not updated, there is
no need to retransmit it to the neighbors. This also accounts
for the asynchronicity of the distributed algorithm. The results
presented in Table I shows that with a relatively small number
of “design” samples used in step O2 of Algorithm 1, nodes
compute a solution with a high degree of robustness. In order
to examine the robustness of the obtained solution, we run an
a posteriori analysis based on Monte Carlo simulations. To
this end, we check the feasibility of the obtained solution for
10 000 random samples extracted from the uncertain sets of
the nodes. The empirical violation is measured by dividing the
number of samples that violate the solution by 10 000. Since
Algorithm 1 has a stochastic nature, for each row of Table I, we
generate randomly 100 problems, solve them using Algorithm
1, run an a posteriori analysis, and then report the average
values.

In Fig. 1, we report the distance of objective value J(Bi(t))
and candidate solutions xi(t)∀i ∈ {1, . . . , n} from J(Bsol) and
xsol, respectively, along the distributed algorithm execution for
a problem instance corresponding to the last row of Table I.

In the following computations, we test the effect of using
more violation certificates in the optimization step (see
Remark 3.3). Specifically, we use in the optimization step up
to 10 violating certificates obtained from the verification step.
As expected, this decreases the number of communications
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TABLE II
AVERAGE—OVER ALL NODES—NUMBER OF TIMES A BASIS IS TRANSMITTED TO THE NEIGHBORS, AVERAGE NUMBER OF TIMES VERIFICATION IS
PERFORMED (ki AT THE CONVERGENCE), AND EMPIRICAL VIOLATION OF THE COMPUTED SOLUTION (xSOL) OVER 10 000 RANDOM SAMPLES FOR

DIFFERENT NUMBER OF NODES AND NEIGHBORS IN EACH NODE. WE ALLOW TEN VIOLATION SAMPLES TO BE RETURNED BY THE VERIFICATION STEP. THE
SIMULATION IS PERFORMED 100 TIMES FOR EACH ROW AND AVERAGE RESULTS ARE REPORTED

Fig. 1. Top: Distance to J(Bsol) which is the objective value algorithm
converges to. Bottom: Distance to xsol which is the solution algorithm
converges to. The two plots are generated for a problem instance corre-
sponding to the last row of Table I.

required for convergence at the expense of the local optimization
complexity. This result is reported in Table II.

In all 700 simulations reported in Tables I and II, Algorithm 1
converges to a solution with desired probabilistic robustness in
finite time. We further remark that in none of the simulations we
ran, the stopping criterion derived in Section III-C was met. In
fact, a closer investigation of the stopping condition presented
in Lemma 3.8—namely M i

ki
≥ M scen

i for all i ∈ {1, . . . , n}—
reveals that this condition happens only for extremely large val-
ues of the verification counter ki. In [23, Theor. 4], an analytical
suboptimal solution for the sample size M scen

i in the inequality
(4) is provided

M scen
i ≥ 1.582

ε

(
ln

1

δi
+ h(s)− 2

)
. (7)

Solving the inequality M i
ki

≥ M scen
i for ki and noting that

ln( 1
1−εi

) � εi for small εi, we obtain

ki ≥ exp

(
0.58 ln 1

δi
+ 1.58(h(S)− 2)− 2.3

1.1

)
.

The Helly number associated with the MILP envisaged here is
16. Considering, for example, εi = 0.01 and δi = 10−10, the
verification counter ensuring that M i

ki
≥ M scen

i becomes ki ≥
1.2× 1013. By looking at the sixth column of Tables I and II,
which indicates the value of verification counter at convergence,
one can see that the distributed algorithm converges to a solution
with desired probabilistic properties in a much smaller number
of verification steps.

B. Distributed Localization in Wireless Sensor Networks

The second numerical example is a problem of distributed
position estimation in wireless sensor networks. A centralized
version of this problem—with no uncertainty—is formulated
in [35]. Consider a two-dimensional3 space containing a number
of heterogeneous wireless sensors which are randomly placed
over a given environment. The sensors are of two classes. The
first class is wireless sensors with known positions (SwKP)
which are capable of positioning themselves up to a given
accuracy, i.e., with some uncertainty in their position. They play
the role of computational nodes in the distributed optimization
framework. These sensors can communicate with each other
based on a metric distance. The second class is a wireless
sensor with unknown position (SwUP) which has no positioning
capabilities. This sensor is only equipped with a short-range
transmitter having an isotropic communication range. We further
consider a heterogeneous setup in which half of the SwKPs are
equipped with a laser transceiver providing an estimate of the
relative angle with respect to the SwUP, which is within the
range of the laser transceiver. This “angular constraint” can
be represented by the intersection of three half-spaces F i

A
.
=

{x ∈ R2 : akx− bk ≤ 0, k = 1, 2, 3}, where x ∈ R2 is the po-
sition of SwUP and parameters ak ∈ R1×2 and bk ∈ R define
the three half-spaces as presented in Fig. 2. SwKPs, which are not
equipped with laser transceiver, can place a “radial constraint”
for the SwUP if it is within the communication range. This
constraint can be formulated as ‖x− pi‖2 ≤ r, where pj ∈ R2

is the position of ith SwKP. Using the Schur-complement [36],
the feasible set of radial constraint can be represented as

F i
R

.
=

{
x ∈ R2 :

[
rI2 (x− pi)

(x− pi)
T r

]
� 0

}

where I2 is the 2× 2 identity matrix and � denotes positive
semidefiniteness of the matrix.

The objective of the networked system is to find the smallest
box {x ∈ R2 : [xl

x,x
l
y] ≤ x ≤ [xu

x,x
u
y ]} that is guaranteed to

contain the SwUP, i.e., the red dotted box in Fig. 2. The bounding
box can be computed by solving four optimization problems
with linear objectives. For instance, xl

x can be obtained by
solving the following optimization problem:

xl
x = argmin

[
1

0

]T

x

3Extension to a three-dimensional space is straightforward.
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Fig. 2. Sensors with known position (SwKP: blue dots) are compu-
tational nodes in the distributed optimization setup. Their objective is
to estimate the position of the sensor with unknown position (SwUP:
white dot). The orange (shaded) region represents the feasible set for
the unknown position.

subject to x ∈
n⋂

i=1

(
F i

A ∩ F i
R

)

where n is the number of SwKPs capable of constraining the
position of the SwUP. We point out that for SwKPs that are not
equipped with a laser transceiver, F i

A = R2 holds.
There is an uncertainty associated with the position vector

reported by SwKPs. This uncertainty can be modeled as a norm-
bounded vector

‖pi − p̄i‖2 ≤ ρ (8)

where p̄i is the nominal position reported by sensor i, pi
is its actual position, and ρ is the radius of the uncertain
set.

For simulation purposes, we consider a 10× 10 square en-
vironment containing n SwKPs (computational nodes) whose
purpose is to estimate the position of the SwUP. The communi-
cation range of all sensors is considered to be 7 units. Finally,
the uncertainty radius ρ in (8) is 0.1 and the distribution of the
uncertainty is selected to be uniform. The probabilistic accu-
racy and confidence parameters are selected to be εi = 0.1/n
and δi = 10−9/n for all i = 1, . . . , n, leading to ε = 0.1 and
δ = 10−9. The distributed robust localization problem is solved
for different values of the number of SwKPs n. The result is
reported in Table III .

To conclude, we would like to point out an interesting
feature of Algorithm 1. In the results presented in Tables I–
III, one can observe that when the number of computational
nodes increases while keeping the graph diameter constant,
the number of transmissions required for convergence does not
change significantly. This suggests that the number of trans-
missions required for convergence is independent from the
number of computational nodes but rather depends on the graph
diameter.

TABLE III
AVERAGE—OVER ALL NODES—NUMBER OF TIMES A BASIS IS TRANSMITTED

TO THE NEIGHBORS, AVERAGE NUMBER OF TIMES VERIFICATION IS
PERFORMED (ki AT THE CONVERGENCE), AND EMPIRICAL VIOLATION OF
THE COMPUTED SOLUTION (xSOL) OVER 10 000 RANDOM SAMPLES FOR

DIFFERENT NUMBER OF KNOWN SENSORS

V. CONCLUSION

In this article, we proposed a randomized distributed algo-
rithm for solving RMICPs in which constraints are scattered
across a network of processors communicating by means of a
directed time-varying graph. The distributed algorithm has a
sequential nature consisting of two main steps: 1) verification;
2) optimization. Each processor iteratively verifies a candidate
solution through a Monte Carlo simulation and solves a local
MICP whose constraint set includes its current basis, the col-
lection of bases from neighbors, and, possibly, a constraint—
provided by the Monte Carlo algorithm—violating the candidate
solution. The two steps, i.e., verification and optimization, are
repeated until a local stopping criterion is met and all nodes
converge to a common solution. We analyzed the convergence
properties of the proposed algorithm.

APPENDIX

PROOF OF THEOREM 3.5

Proof of Statement 1: The proof of the first statement follows
arguments very similar to those in [11] and is thus omitted.

Proof of Statement 2: Since the graph is uniformly jointly
strongly connected, for any pair of nodes u and v and for
any t0 > 0, there exists a time-dependent path from u to v
[37]—a sequence of nodes �1, . . . , �k and a sequence of time
instances t1, . . . , tk+1 with t0 ≤ t1 < · · · < tk+1 such that the
directed edges {(u, �1), (�1, �2), . . . , (�k, v)} belong to the di-
rected graph at time instances {t1, . . . , tk+1}, respectively. We
now prove that the path from u to v is of length at most nL.
We recall that n is the number of nodes and L is defined in As-
sumption 2.7. To this end, following [37], define a time-varying
set St and initialize it with the node u itself, i.e., St0 = u. Next,
given St, construct St+1 by adding all nodes �t+1 such that
�t+1 ∈ Nout(�t, t+ 1) with �t being all the nodes in the set St.
Now, note that if St does not contain all nodes, i.e., St �= V , then
after L time instants, at least one new node must be added to the
setSt, otherwise taking the union graph over theL time instants,
the set St and that node would not be connected by any path,
thus violating Assumption 2.7. Therefore, in at most nL time
instants, St will contain all nodes including v. It means that the
length of time-varying path connecting u and v is at most nL.
Consider nodes i and p. If �1 ∈ Nout(i, t0), then J(Bi(t0)) ≤
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J(B�1(t0 + 1)) as the constraint set of node �1 at time t0 + 1
is a superset of the constraint set of node i at time t0. Iterating
this argument, we obtain J(Bi(t0)) ≤ J(Bp(t0 + nL)). Again
since the graph is uniformly jointly strongly connected, there
will be a time-varying path of length at most nL from node p to
node i. Therefore

J(Bi(t0)) ≤ J(Bp(t0 + nL)) ≤ J(Bi(t0 + 2nL)).

If J(Bi(t0)) = J(Bi(t0 + 2nL)) and considering the point that
node p can be any node of the graph, then all nodes have the
same cost. That is, J(B1(t)) = · · · = J(Bn(t)). This combined
with Assumption 2.6 proves Statement 2.

Proof of Statement 3: We start by defining the following
violation sets:

Violi :=

{
q ∈ Q : xsol /∈ F i(q)

}
, i = 1, . . . , n,

Viol :=

{
q ∈ Q : xsol /∈

n⋂
i=1

F i(q)

}
.

We observe that

xsol /∈
n⋂

i=1

F i(q) ⇐⇒ ∃i = 1, . . . , n : xsol /∈ F i(q).

Hence

Viol =
n⋃

i=1

Violi.

Therefore

P {Viol} = P

{ n⋃
i=1

Violi

}
≤

n∑
i=1

P {Violi} .

At this point, we note that, applying simple properties coming
from the probability theory, we have

P∞

{
q ∈ Ssol : P

{
q ∈ Q : xsol /∈

n⋂
i=1

F i(q)

}
≤ ε

}

= P∞

{
q ∈ Ssol : P {Viol} ≤ ε

}

≥ P∞

{
q ∈ Ssol :

n∑
i=1

P {Violi} ≤ ε

}

= P∞

{
q ∈ Ssol :

n∑
i=1

P {Violi} ≤
n∑

i=1

εi

}

≥ P∞

{ n⋂
i=1

{
q ∈ Ssol : P {Violi} ≤ εi

}}

≥ 1−
n∑

i=1

P∞

{
q ∈ Ssol : P {Violi} > εi

}
.

As a consequence, if we prove that

P∞ {q ∈ Ssol : P {Violi} > εi} ≤ δi, i = 1, . . . , n (9)

then the thesis will follow.

Now, let i = 1, . . . , n and ki ∈ N. We define the events:

ExitBadi := {q ∈ Ssol : P {Violi} > εi} ,

Feasiki
:=

{
q ∈ Ssol : xsol ∈ F i(q

(�)
ki,i

) ∀� = 1, . . . ,M i
ki

}
.

We immediately note that (9) is equivalent to

P∞ {ExitBadi} ≤ δi, i = 1, . . . , n. (10)

Thus, we will prove (10) instead of (9).
First, we observe that if q ∈ ExitBadi, then there exists

ki such that q ∈ Feasiki
. Consequently, the following relation

holds:

ExitBadi ⊂
∞⋃

ki=1

(
Feasiki

∩ ExitBadi

)
.

Therefore, we have

P∞ {ExitBadi} ≤
∞∑

ki=1

P∞
{

Feasiki
∩ ExitBadi

}
(11)

and we can bound the terms of the last series as follows:

P∞
{

Feasiki
∩ ExitBadi

}
= P∞

{
Feasiki

∣∣ExitBadi

}
P∞ {ExitBadi} (12)

≤ P∞
{

Feasiki

∣∣ExitBadi

}
(13)

= P∞

{
q ∈ Ssol : xsol ∈ F i(q

(�)
ki,i

) ∀� = 1, . . . ,M i
ki∣∣∣∣ P

{
q ∈ Q : xsol /∈ F i(q)

}
> εi

}
(14)

= P∞

{
q ∈ Ssol : xsol ∈ F i(q

(�)
ki,i

) ∀� = 1, . . . ,M i
ki∣∣∣∣ P

{
q ∈ Q : xsol ∈ F i(q)

} ≤ 1− εi

}
(15)

≤ (1− εi)
Mi

k . (16)

A few comments are given in order to explain the above set
of equalities and inequalities: (12) follows from the chain rule;
inequality (13) is due to the fact that P∞ ≤ 1; in (14), we have
written explicitly the events Feasiki

and ExitBadi; (15) exploits
the property P{Q −A} = 1− P{A}; inequality (16) is due
to the fact that in order to declare xsol feasible, the algorithm
needs to perform M i

ki
independent successful trials each having

a probability of success smaller than or equal to (1− εi).
At this point, combining (11) and (16), we obtain

P∞ {ExitBadi} ≤
∞∑

k=1

(1− εi)
Mi

ki

and the last series can be made arbitrarily small by an appropriate
choice of M i

ki
. In particular, by choosing

(1− εi)
Mi

ki =
1

kαi

1

ξ(α)
δi (17)
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where ξ(α) :=
∑∞

s=1
1
sα is the Riemann zeta function evaluated

at α > 1, we have
∞∑

ki=1

(1− εi)
Mi

ki =
∞∑

ki=1

1

kαi

1

ξ(α)
δi =

1

ξ(α)
δi

∞∑
ki=1

1

kαi
= δi.

Hence, the choice of sample size is obtained by solving (17) for
M i

ki
:

M i
ki

=

⌈α log(ki) + log(ξ(α)) + log
(

1
δi

)
log

(
1

1−εi

) ⌉
.

Note that the optimal value of α minimizing M i
ki

is computed
through empirical evaluation to be α = 1.1 (see, e.g., [25] for
more details). By means of this choice of α, we obtain the num-
ber M i

ki
specified in the algorithm, and we can, thus, conclude

that (10) is true, and so the thesis follows.
Proof of Statement 4: Define the following two sets:

V
.
=

{
q ∈ Q : xsol /∈

n⋂
i=1

F i(q)

}

W
.
=

{
q ∈ Q : J (Bsol ∩ F(q)) > J(Bsol)

}

where F(q)
.
=
⋂n

i=1 F i(q). We first prove that V = W .
Let qv ∈ V , that is, xsol /∈

⋂n
i=1 F i(qv), then J(Bsol ∩

F(qv)) ≥ J(Bsol) with F(qv)
.
=
⋂n

i=1 F i(qv). Also, due to As-
sumption 2.6, any subproblem of (1) has a unique minimum
point, and, hence, J(Bsol ∩ F(qv)) �= J(Bsol). Hence, qv ∈ W
and subsequently V ⊆ W .

Now let qv ∈ W , that is, J(Bsol ∩ F(qv)) > J(Bsol), and
suppose by contradiction that xsol ∈ F(qv), i.e., qv /∈ V . Con-
sidering the fact that Bsol is the basis corresponding to xsol,
we conclude that xsol ∈ Bsol ∩ F(qv) implying that J(Bsol ∩
F(qv)) ≤ J(Bsol). This contradicts the fact that J(Bsol ∩
F(qv)) > J(Bsol). Hence, qv ∈ V and, subsequently, W ⊆ V .
Since V ⊆ W and W ⊆ V , therefore, V = W . This argument
combined with the result of Statement 4 proves the fifth state-
ment of the theorem. That is, the probability that the solution
xsol is no longer optimal for a new sample equals the probability
that the solution is violated by the new sample.
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