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Abstract
How does the size of a swarm affect its collective action? Despite being arguably a key 
parameter, no systematic and satisfactory guiding principles exist to select the number 
of units required for a given task and environment. Even when limited by practical 
considerations, system designers should endeavor to identify what a reasonable swarm 
size should be. Here, we show that this fundamental question is closely linked to that of 
selecting an appropriate swarm density. Our analysis of the influence of density on the 
collective performance of a target tracking task reveals different ‘phases’ corresponding 
to markedly distinct group dynamics. We identify a ‘transition’ phase, in which a complex 
emergent collective response arises. Interestingly, the collective dynamics within this 
transition phase exhibit a clear trade-off between exploratory actions and exploitative 
ones. We show that at any density, the exploration–exploitation balance can be adjusted to 
maximize the system’s performance through various means, such as by changing the level 
of connectivity between agents. While the density is the primary factor to be considered, it 
should not be the sole one to be accounted for when sizing the system. Due to the inherent 
finite-size effects present in physical systems, we establish that the number of constituents 
primarily affects system-level properties such as exploitation in the transition phase. These 
results illustrate that instead of learning and optimizing a swarm’s behavior for a specific 
set of task parameters, further work should instead concentrate on learning to be adaptive, 
thereby endowing the swarm with the highly desirable feature of being able to operate 
effectively over a wide range of circumstances.
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1  Introduction

Decentralized multi-robot systems (MRS) have recently become a highly active field 
of study owing to their unique ability to tackle a number of critical and challenging 
problems where a task has to be accomplished in a highly dynamic environment. When 
facing rapidly evolving conditions, the effectiveness of an MRS critically hinges on its 
ability to change behavior owing to its flexibility and/or adaptivity Dorigo et  al. (2021). 
This includes a wide range of problems such as target tracking  (Coquet et  al., 2019, 
2021), area protection  (Strickland et  al., 2018; Shishika & Paley, 2019), dynamic area 
monitoring  (Vallegra et  al., 2018; Zoss et  al., 2018), area mapping  (Kit et  al., 2019; 
Crosscombe & Lawry, 2021; Liu et al., 2021), and environment classification (Ebert et al., 
2018, 2020). Beyond flexibility and adaptivity, the effectiveness of an MRS has also been 
shown to be related to robustness and scalability  (Bouffanais, 2016; Hamann, 2018b; 
Dorigo et  al., 2021). These key attributes stem from the lack of a central controller that 
dictates the actions of the individual agents and have made MRS very attractive when 
considering operations in some of the most challenging circumstances involving expansive, 
unstructured, and dynamic environments. The decentralized nature of such systems divides 
up the overall control of the MRS and gives individual robots the ability to make decisions 
based on their local environment. This allows them to: (1) quickly react to changes in their 
surroundings (flexibility), (2) continue operations despite agent failures given the lack of 
a central point of control (robustness), and (3) eliminate potential processing bottlenecks 
(scalability). In addition, an MRS also has the ability to learn or change its behavior to deal 
with new circumstances (adaptivity).

One key design consideration and a critical question that practitioners must contend 
with is selecting the number of robotic units required to achieve a desired performance 
for a given task and environment  (Hamann, 2018b). Indeed, it has been shown that in 
both biological and engineered multi-agent systems, effective emergent collective actions 
require a critical number of swarming agents  (Khaluf et al., 2017; Schranz et al., 2021). 
Specifically, Schranz et  al. (2021) stated that “the advantages of swarm intelligence 
algorithms can only be exploited if a critical mass of swarm members is reached." 
However, a system’s collective behavior is not the only consideration when determining 
a swarm’s size. For a given task, several other aspects also influence the selection of the 
number of swarming agents, such as: (1) system scalability, (2) technical capabilities of the 
individual agents (e.g., communications range, sensor range, maneuverability, maximum 
speed, etc.), and (3) financial or logistical constraints (i.e., the number of robots that can 
be built, stored, and operated given the available resources) (Schroeder et al., 2019). It can 
therefore be said that selecting the number of robotic units is far from being a trivial task 
for system designers.

In the literature, MRS come in various shapes and sizes, with their sizes covering three 
orders of magnitude. These range from the 1024-unit Kilobot swarm by Rubenstein et al. 
(2014), to the 150 unit subCULTron system by Thenius et al. (2016), to the hunter drone 
swarm by de Souza et  al. (2022) that can operate with less than 10 units. It should be 
noted that there is no consensus on what constitutes a robot swarm in terms of the number 
of units  (Hamann, 2018b). However, in the vast majority of works, it is often unclear 
how exactly this quantity is selected. Would a half-sized Kilobot swarm perform vastly 
differently from the full-sized Kilobot MRS (Rausch et al., 2019)? At the other end of the 
spectrum, the same question can be posed to system designers who utilize relatively small 
systems, e.g., with 10 or less units. While it is often argued that such a small system size 
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would be sufficient for the task at hand  (Zoss et  al., 2018; Kit et  al., 2019; Kwa et  al., 
2021), one is often left wondering if the limit in the actual number is not related to other 
factors, such as the logistical, financial, or technical challenges discussed above.

The size of the system is inextricably linked to the density of agents. Many works hint at 
the existence of a minimum critical density required to yield an effective self-organization 
of the swarm. For example, the agents used by the Kilobot swarm are only able to 
communicate with each other at a maximum distance of 10 cm (Rubenstein et al., 2014). 
Similarly, it was determined by Hornischer et  al. (2020) that for a robot to function as 
intended in their system, a minimum of 3 other robots had to be located within an agent’s 
communication range. Beyond the constraints in communications or information exchange, 
a scaling law has been used to quantify the effectiveness of the Bunch of Buoys (BoB) 
environmental monitoring system when performing a dynamic area monitoring task with 
50 buoys for a pre-determined surface area (Zoss et al., 2018).

Fundamentally, the question of the selection of an MRS size—or equivalently its agents 
density—for a given task has never been systematically and satisfactorily answered, if at all. 
As already mentioned, the importance of a minimum density has long been acknowledged 
to ensure the emergence of a desired collective behavior in simplistic physics models. The 
self-propelled particles (SPP) in Vicsek’s model is a paradigmatic example of that (Vicsek 
et  al., 1995). Irrespective of the amount of noise present, it was shown that the agent 
density is key in ensuring the self-ordering process. Specifically, at low density, the swarm 
of SPP exhibits a disordered state that undergoes a phase transition leading to an ordered 
phase—with all SPP being practically aligned—when increasing the density of agents. 
Beyond the simplistic case of SPP seeking to align their direction of travel, Hamann (2012) 
considered the effect of swarm size and density—the surface area being kept constant—on 
system-level performance for several collective behaviors and decision-making protocols. 
This revealed superlinear performance increases when the system was enlarged, followed 
by a decrease in performance once the swarm exceeded a certain size. This degradation 
in performance was attributed to the increasing effect of interference on the system’s 
performance, resulting from the increased amount of collision avoidance behavior carried 
out by the agents.

Besides collective motion, the problem of a system’s exploration–exploitation balance, 
which is an important factor in determining the overall swarm performance, also needs to 
be considered. In various computational optimization tasks, such as virtual agents carrying 
out particle swarm optimization, and in the operation of MRS, larger swarms have been 
shown to exhibit higher levels of exploratory activity (Shishika & Paley, 2019; Piotrowski 
et al., 2020). However, this large amount of exploration needs to be paired with an adequate 
amount of exploitation to make use of the information gathered during the exploration 
process.

In this paper, we study the effects of density on the effectiveness in target tracking 
by an MRS: a highly dynamic collective task. Given the importance of a swarm’s 
exploration and exploitation balance, we also examine the influence of swarm density 
on this balance, and show how it ultimately affects the overall system performance. It 
can be argued that in past studies, some of the tasks considered were too undemanding 
and could be accomplished using independently operating units, without the need for 
self-organization or emergent collective actions. However, we believe that it is only 
through dealing with such challenging problems that a system can demonstrate the full 
power of swarm intelligence. Therefore, this study is conducted using a fast-moving 
target (i.e., one that moves faster than any of the swarm’s component agents) that does 
not emit a signal gradient field, making it akin to a visual search task where a target 
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needs to be seen to have its presence confirmed  (Esterle & Lewis, 2020). Doing so 
eliminates the possibility of using simplistic methods such as gradient descent to track 
the target, thus forcing the system to self-organize and behave as a collective to track 
the target. It should be noted that while there are stochastic methods that attempt to 
control agent density, such as those using Markov processes  (Açikmeşe & Bayard, 
2012; Elamvazhuthi & Berman, 2019; Biswal et  al., 2021), in this paper, we focus 
mainly on strategies employing deterministic approaches.

Our investigation reveals three density ‘phases’ that characterize the tracking ability 
of an MRS, namely: (1) a low density phase where the system is simply unable to 
coordinate the agents’ behavior to carry out the tracking task, (2) a transition phase 
where the performance of the system rises very quickly with increasing swarm 
density, and (3) a high density phase where the system is able to continuously track 
the target without any interruptions. These phases occur regardless of the number of 
agents within the system. We explain these trends by the existence of a system-level 
exploration–exploitation trade-off within the transition phase, with clearly identifiable 
exploration-limited and exploitation-limited regimes. Interestingly, the level of 
connectivity among agents can be used to skew the swarm dynamics towards either 
exploration or exploitation. Specifically, increasing (resp. decreasing) connectivity 
boosts the tracking performance in the low density exploitation-limited (resp. high 
density exploration-limited) regime. Nonetheless, the system size still plays a role in 
determining the ability of the MRS to carry out exploration and exploitation. Lastly, 
we discuss the significant ramifications that these results have for the development of 
effective collective dynamics through machine learning and automated design.

2 � Related work

2.1 � System size and exploration

The number of units employed within a multi-agent system is one of the basic 
parameters that a system designer needs to select. In MRS or virtual multi-agent 
systems (MAS), studies on a system’s size usually occur within an environment of a 
fixed size. As such, adding agents into a system equates is equivalent to an increase 
in agent density, and conversely removing agents results in a system with a lower 
swarm density. In the field of optimization, the number of agents, sometimes known as 
candidate solutions, employed is synonymous with the amount of exploration carried 
out by a system  (Van Den Bergh & Engelbrecht, 2001; Piotrowski et  al., 2020). As 
can easily be understood, using a larger number of agents allows the system to more 
thoroughly explore the search space, thereby reducing the chances of the optimization 
algorithm to settle in local optima. Similar observations were made when studying bee 
colonies in the wild where it was observed that larger groups were able to employ 
more scouts, thereby increasing the amount of exploration carried out and the accuracy 
of the colony’s final consensus (Schaerf et al., 2013). These results were also observed 
in engineered MRS, with system performances tending to increase with larger system 
sizes (Kit et al., 2019; Prasetyo et al., 2019; Shishika & Paley, 2019; Jurt et al., 2022). 
Similar to the virtual MAS used in optimization and those found in Nature, these 
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increases in performance are attributed to the increased exploration carried out by the 
larger systems.

2.2 � Marginal utility

Given that larger MRS tend to yield systems with better performance, some studies have 
focused on the marginal utility gain when adding agents. These works focus on the marginal 
utility gain under the context of resource foraging. One of the earliest works on this topic was 
done by Lerman and Galstyan (2001), who demonstrated that while additional robots may 
indeed improve the foraging performance of the group as a whole, the amount of resources 
gathered by each robot, i.e., their individual efficiency, decreases. This is due to the increased 
level of physical interference in larger systems caused by the robots colliding with each other. 
Similar results were also demonstrated by Kit et al. (2019) in a collective area mapping task 
and by Sung et  al. (2018, 2020) in a target tracking scenario. However, in target tracking, 
unlike resource foraging and area mapping, the swarm performance no longer increases after 
the MRS reaches a certain size. This is because at this point, the system is able to track the 
target regardless of how it moves. As such, the addition of units into the MRS provides no 
extra performance gain for the system. Interestingly, even in MAS optimization, it is often 
reported that increasing the number of agents beyond a certain point yields only marginal 
benefits to the system’s accuracy and notably lengthens computational times  (Roeva et  al., 
2015).

The reducing robot efficiency with increased system size and higher agent densities is 
known in economics circles as the “Law of Diminishing Marginal Returns” and was modeled 
in MAS by Hamann (2012). This was done using an exponential function that accounted 
for both the benefits of inter-agent cooperation and the detriments caused by the additional 
interference. Subsequently, Schroeder et  al. (2019) combined this multi-agent performance 
strategy with a simple cost model to maximize the performance of their foraging MRS while 
minimizing the overall system cost by finding the ideal number of robots to be constructed for 
their system.

The diminished marginal utility caused by the addition of more agents may be further 
aggravated if common resources are to be shared and exploited. In a foraging task, Hecker and 
Moses (2015) concluded that when agents had to deposit their resources at a central location, 
individual robot efficiency decreased further in large swarms due to robots being required to 
travel longer distances to obtain resources. In Rosenfeld et al. (2006), the authors showed that 
the over-exploitation of common resources results in a higher level of physical interference 
between agents. In turn, this increased interference may result in negative marginal utility, i.e., 
the performance of the system decreases when more agents are included within the MRS. 
This occurs despite the higher amount of exploration taking place due to the increased swarm 
density and is because the advantages provided by the additional exploration is overshadowed 
by the exponentially larger level of interference encountered by the individual agents. This 
result was also demonstrated by Hamann (2018a) in a stick-pulling task, allowing the author to 
demonstrate three separate phases when adjusting a swarm’s size: (1) a phase where agents do 
not collaborate enough and do not make full use of the available resources, (2) a phase where 
agents share too much information, resulting in the depletion of shared resources, and (3) an 
intermediate phase where the resources are neither underutilized nor overutilized, resulting in 
the optimal performance of the system.
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2.3 � Motility‑induced phase separation

The increased amount of physical interference between agents is more apparent in systems 
tasked with clustering around certain points (e.g., target tracking and consensus tasks). 
As previously mentioned, high levels of clustering results in higher levels of physical 
interference in areas of high local swarm density. This in turn results in a positive feedback 
loop, causing more agents to aggregate in preexisting areas of high local agent densities in 
a phenomenon known as Motility-Induced Phase Separation (MIPS)  (Cates & Tailleur, 
2015). The buildup of agents in specific areas results in excessive amounts of exploitation, 
thus degrading the system’s performance. To combat such excessive levels of exploitation 
caused by MIPS, several strategies have been developed to take into account the local swarm 
density around individual agents. When using an MRS to identify areas of high light intensity, 
modifications were made to the original BEECLUST algorithm, allowing robots to move off 
from its waiting position should it determine that it is located within an area with high agent 
density. This subsequently prevented excessive flocking of agents and encouraged a higher 
level of exploration, thereby making the system more responsive to dynamic environment 
changes (Wahby et al., 2019). Li et al. (2017) developed a strategy to control the positional 
distribution of robots in an MRS based on local swarm density and the strength of a signal 
field. To carry out a foraging task, Pang et al. (2019) varied the step size taken by each robot 
based on its local swarm density estimation. In target search and track tasks, many strategies 
have incorporated inter-agent repulsion to prevent the excessive flocking of robots at a single 
location, thereby promoting area exploration (Zhang et al., 2019; Dadgar et al., 2020; Kwa 
et al., 2020a).

3 � Strategy and simulation

3.1 � Search and track strategy

The strategy used to facilitate cooperative tracking of fast-moving targets was previously 
presented in (Kwa et al., 2021, 2022). This strategy consists of two main components: (1) agent 
aggregation augmented with a short-term memory and, (2) inter-agent adaptive repulsion, 
from which the system’s adaptivity is derived. These two components are responsible for 
directing system exploitation of information and environment exploration, respectively, and 
is done by generating two velocity vectors at each time-step that are combined to give a final 
agent velocity vector:

where vi,att[t] and vi,rep[t] are the velocity vectors generated by the attractive component 
and the repulsion component, respectively. The final velocity vector, vi[t] , is then scaled by 
vmax , the maximum speed of the agent. The overall exploration and exploitation balance, or 
exploration–exploitation dynamics (EED), of the system is controlled via the adjustment of 
the degree of the interconnecting topological k-nearest neighbor communications network. 
This adjustment and its effect on the EED will be further discussed in the next section.

The overall strategy employed in the system is summarized in Algorithm 1. For further 
details regarding the strategy’s components, the reader is referred to Kwa et al. (2021) and 
Appendix 1.

(1)vi[t] = vi,att[t] + vi,rep[t],
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Algorithm 1 : Dynamic k-Nearest Network Search and Tracking Strategy

1: Set t = 0, k ∈ [2, N − 1], ω = 1, and c = 0.5
2: while System active do
3: for All agents do
4: Set point of attraction
5: Calculate vi,att[t]
6: Calculate vi,rep[t]
7: vi[t] ← vatt,i[t] + vrep,i[t] // Apply Eq. (1)
8: vi[t] ← (vmax/vi[t]) · vi[t] // Ensure magnitude of velocity vector

does not exceed maximum speed
9: xi[t+ 1] ← xi[t] + vi[t] // Update agent position

10: end for
11: t ← t+ 1
12: end while

3.2 � Network connectivity

A key ingredient to any MRS is the communications network used by individual 
robots used to share information around the system  (Sekunda et  al., 2016). While 
most research on MRS have either assumed agents with unlimited communications 
range (Coquet et al., 2021; Rossides et al., 2021), or included all other robots within 
communications range (Dadgar et al., 2017; Jensen et al., 2018; Dadgar et al., 2020), it 
has been shown that tuning the network connectivity of a system can have considerable 
effects on a swarm’s collective dynamics. Mateo et  al. (2017) demonstrated that 
increased levels of communication resulted in reduced collective response to a 
simulated predator attack. Furthermore, Mateo et  al. (2019); Horsevad et  al. (2022b) 
also showed that while systems with higher levels of communication were more adept 
at collective mimicking of a slow-moving leader, lower levels of connectivity were 
required to more accurately replicate the movements of a fast-moving driving agent. 
Similar increases in performance were also observed in a scenario where agents were 
required to accurately characterize a static and noisy environment  (Crosscombe & 
Lawry, 2021; Liu et al., 2021; Kwa & Bouffanais, 2022).

Building off these conclusions, we previously showed that there exists an optimal 
level of connectivity, k∗ , of a k-nearest neighbor network at which the performance of 
a swarm is maximized while tracking a fast-moving target (Kwa et al., 2020a, 2022b, 
2021, 2022). At this optimum, an MRS is able to attain the ideal balance between 
the level of exploratory and exploitative activities that its component agents carry 
out. This value of k∗ changes depending on the conditions the MRS is operating in. 
It should be noted that a neighborhood is understood in the network sense; an agent i 
has as many neighbors as its degree k. Given that time-varying network topologies are 
considered, the neighborhoods of each individual agent are dynamic and change over 
time.
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3.3 � Problem statement

In this work, a set of N tracking agents A = {a1, a2,… , aN} and a single target, o, move 
within a bounded two-dimensional square search-space of dimensions L × L devoid of 
any obstacles, where L ∈ [100.6, 102.65] . The agents’ and target’s positions are denoted 
by xi = (xi, yi) , and maximum velocities of va,max and vo,max , respectively. It should be 
emphasized that in this work, we consider a target that moves faster than its pursuing 
agents. As such, va,max < vo,max . In this work, the maximum velocities are set as 
follows: va,max = 0.1 and vo,max = 0.15.

The target is modeled using a disc-shaped binary objective function with a fixed 
radius of r = 1 . A target is considered to be tracked if an agent lies within its radius. 
Formally:

The modeling of the target as a binary objective function, as done here, makes the problem 
more challenging and more similar to a visual search task where a target needs to be 
seen to have its presence confirmed  (Hönig & Ayanian, 2016; Esterle & Lewis, 2020). 
This is in contrast to tracking a target from the intensity of an emitted signal (e.g., radio 
signal strength, chemical plume, etc.) in which various gradient-descent methods can be 
used. While such gradient-descent methods form one of the most widely used classes of 
techniques tracking targets, such techniques become completely ineffective when dealing 
with such binary objective functions. The use of this type of function ensures that such 
simplistic techniques cannot be used by the system. This conservative approach represents 
one of the most challenging cases with a near-zero-range sensor tracking a target that is 
moving faster than the agent themselves. As already mentioned, it can be argued that the 
full power of swarm intelligence can only be accessed when dealing with such challenging 
scenarios.

The target is set to move according a non-evasive movement policy. Using this 
policy, a target travels toward a randomly generated waypoint within the search space. 
Upon reaching this waypoint, another waypoint is generated, causing the target to 
change its direction of travel. This process is repeated until the end of the simulation.

The goal of the system is to maximize its tracking performance within the 
environment, given by the reward function:

where T it the total time period of interest, set as T = 100, 000 . This large value of T was 
set to ensure the statistical stationarity of the results, i.e., the system that we are testing 
is ergodic and given that the conditions stay the same, its tracking performance will tend 
to a constant value when T → ∞  (Khaluf et al., 2013). In the simulations, the agents are 
tasked with tracking the targets in an environment free from obstacles and are assumed to 
have perfect information about the target’s location once within the target’s radius. While 
carrying out the tracking task, the agents are also assumed to have perfect information 
about their pose in the environment with respect to a global reference frame.

(2)cov(o, t) =

�
1, ∃i ∈ A s.t. ‖xi − xo‖ ≤ r,

0, otherwise.

(3)Ξ =
1

T

T∑

t=1

cov(o, t),
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3.4 � Metrics

In addition to the MRS tracking performance, its collective dynamics can also be studied 
through the quantification of the EED of the system. As such, the reward function presented in 
Eq. (3) is used to quantify how well a system exploits the targets’ positional information.

To further quantify a system’s collective dynamics, its exploration ratio is also calculated. 
An agent is considered to be exploring the environment if it has entered the ‘exploratory’ 
state and Si,exp[t] = 1 . In this exploratory state, the agent tries to repel itself away from its 
neighbors, causing it to explore the environment in the process. In contrast, when an agent 
detects a target, it enters a ‘tracking’ state, Si,exp[t] is set to 0, and the agent attempts to follow 
the target. Therefore, the overall exploration ratio of the swarm is calculated as follows:

where N is the total number of agents within the system. With the exploration ratio, a 
higher value of Θ indicates a higher proportion of agents spending more time searching for 
a target, and hence higher levels of exploration. Conversely, at lower Θ , agents attempt to 
move towards a target, thus spend more time exploiting target information.

The concept of system’s swarm density or agent density is also introduced. It should be 
noted that these two terms are used interchangeably in this paper. This is calculated as follows:

However, the global swarm density should not be taken at face value; it is very unlikely that 
the agents are evenly distributed across the environment. Instead, due to the flocking and 
dispersion of agents, the actual distribution of the swarm is likely to be nonuniform (Khaluf 
et  al., 2017). As such, the concept of local swarm density is quantified by means of the 
measure of the average distance from each agent to its 6 nearest neighbors (see Appendix 2 
for further details about the choice of this particular value). This allows for the calculation 
of the local swarm density for each agent. The local density is then averaged for all agents 
in the swarm across the entire duration of the simulation:

where Li is the average distance from an agent to its six closest neighbors. Using �L , 
one can quantify the level of clustering carried out by a system’s agents. This is done by 
finding the difference between the swarm density and the average local swarm density: 
Δ� = �L − � , referred to as the density difference.

4 � Results

4.1 � Effect of swarm density on tracking performance

To investigate the effects of swarm density on tracking performance, we first run 
simulations of different swarm sizes, ranging from N = 20 to N = 50 , tracking a non-
evasive target in different environment sizes. In Fig. 1, three separate ‘phases’ can be 

(4)Θ =
1

NT

T∑

t=1

N∑

i=1

Si,exp[t],

(5)� = N∕L2.

(6)�L =
1

NT

T∑

t=1

N∑

i=1

7

�L2
i,t

,
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observed. At low density ( 𝜌 ≲ 10−3 ), the system is effectively unable to track the target. 
This is due to the large distances between agents, preventing the units from effectively 
clustering together and tracking the target. The large inter-agent distances also reduce 
the chances of an agent encountering the target, further aggravating the problem of 
poor tracking performances. It is worth stressing that a key assumption of our model 
is that the quality of information exchanges remain unaffected by the large distances 
between agents—the agents keep the same number of topological neighbors, k, and 
communications are assumed to be perfect. At high density ( 𝜌 ≳ 10−1 ), the system is 
able to carry out near-perfect tracking of the target. At these densities, due to the small 
inter-agent separation and the lack of open space for the target to move into, the agents 
are able to constantly keep track of the target.

Between these two phases sits a ‘transition’ phase in which the tracking performance, 
Ξ , sharply rises with � . The start of this transition phase can be traced to the ability of 
agents to effectively cluster around a point of attraction and is important as it allows new 
agents to takeover the tracking task from the agents that initially encountered the target. 
This ability to cluster is revealed by the increase in density difference, Δ� , (introduced 
in Sect. 3.4) versus � (Fig. 2). The density at which the transition phase starts appears 
to be independent of N (Fig. 1). The inability of the agents to cluster and make use of 
target information suggests that at low density, the system’s performance is limited by 
its lack of exploitation. This is because when the level of connectivity, k, is constant, 
the same number of agents are drawn to the target. However, when approaching the high 
density phase, large swarms (i.e., high values of N) outperform smaller ones (i.e., low 
values of N) since the latter tend to dedicate more resources—i.e., a larger proportion 
of agents—to exploiting target information, thus leaving very few agents to carry 
out area exploration. Therefore, it can be said that these small systems tend to have 
their tracking performance limited by a lack of exploration. In summary, low density 
swarms are exploitation-limited, while high density ones are exploration-limited. The 
implications of swarm size and its level of connectivity on the systems EED is explored 
in the subsequent sections.
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Fig. 1   A swarm of N = 20 , 30, 40, and 50 agents with varying levels of connectivity, k, and swarm density, 
� , tracking a fast-moving non-evasive target traveling at v

o,max = 0.15 . In the low density phase, the system 
is unable to track the target. In the high density phase, the system able to track the target continuously 
without interruptions. Between these two phases, there is a transition phase in which the tracking 
performance of systems rapidly increase with swarm density, �
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4.2 � Effect of swarm density on exploration–exploitation dynamics

To determine the effects of changing a swarm’s density on its exploration–exploitation 
dynamics (EED), we characterize the system’s EED by calculating an exploration ratio, 
Θ , which is a system-level metric (introduced in Sect. 3.4). By construction, high Θ values 
indicate that the swarm is biased towards carrying out exploration. Conversely, low Θ 
values point to a shift of this bias towards exploitation, which may not always consist of 
‘useful’ exploitation, as will be discussed later in this section. In addition to quantifying 
the performance of the swarm, the tracking ability, Ξ , can also be used to quantify the 
effectiveness of the swarm’s exploitative actions (Sect. 3.4); high levels of Ξ serve as an 
indicator of a high level of effective exploitation. Note that in what follows, any optimum 
sought will always be with respect to maximizing Ξ.

The existence of a trade-off between exploration and exploitation for collective tasks 
has previously been reported in different MAS (Oliveira et al., 2017; Kwa & Bouffanais, 
2022). However, a clear understanding of the underpinning of this trade-off is lacking. 
Here, we provide a quantitative analysis of this EED balance across the density spectrum. 
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Fig. 2   Density difference, Δ� , of a swarm comprised of N = 50 agents with various degrees of 
connectivity, k, tracking a fast-moving non-evasive target traveling at v
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Starting with the low density phase identified in Fig. 1, we observe that the EED balance 
is fully skewed towards exploration regardless of the level of connectivity, k, (Fig. 3). At 
such low swarm density, even heavily favoring the conduct of exploitative actions through 
high levels of k is insufficient to yield minimal tracking of the target. In other words, the 
swarming strategy is plainly ineffective. As the system moves into the transition phase in 
Fig. 3, the trade-off between exploration and exploitation becomes apparent. This is rooted 
in the fact that small inter-agent distances make it easier for individuals to flock together, 
in turn promoting the exploitation of any target information picked up by exploring agents. 
As Ξ goes up, more resources become allocated to exploitation, causing the exploration 
ratio, Θ , to go down in tandem. In this transition phase, the influence of the connectivity, k, 
is clearly marked. As reported in the previous section, the rise in Ξ occurs at lower density 
for high k systems compared to low k ones. Specifically, when looking at the k = 35 case 
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Fig. 3   Tracking performance, Ξ , and exploration ratio, Θ , of a swarm of N = 50 agents using with levels 
of connectivity k ∈ [5, 15, 25, 35] , while tracking a non-evasive target traveling at v

o,max = 0.15 . The low, 
transition, and high density phases have been marked out on the plots
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in Fig. 3, we notice a rapid decrease in Θ across the entire transition phase, almost to the 
point where no exploration is carried out at all. This should be compared to the case k = 5 , 
for which at the higher density end of the transition phase, high Ξ values are achieved while 
still maintaining a relatively high level of exploration, Θ . It is therefore interesting to notice 
that in that case, this trade-off is not associated with mutually exclusive actions; it is still 
possible to maintain high levels of exploration while carrying out similarly high levels of 
exploitation at intermediate to high densities ( 8 × 10−2 ≲ 𝜌 ≲ 1 × 100 ). This is congruent 
with the current literature where it has been shown that systems are able to carry out both 
exploration and exploitation simultaneously (Kwa et al., 2022b). Finally, when moving to 
the high density phase, which is exploration-limited, we are better able to understand why 
low k systems outperform high k ones. Indeed, with a low connectivity, maximum tracking 
performance is achieved while still allocating resources to exploration. This effective EED 
balance at k = 5 therefore helps sustain high levels of system’s vigilance, which is key 
to achieving the coveted high tracking scores. In comparison, with k = 35 , the rise in Ξ 
across the transition phase, although starting earlier, is not as rapid as in the case k = 5 . 
For 𝜌 ≳ 10−1 (in the right half of the transition phase), the rise in Ξ markedly slows down, 
thereby requiring fairly high swarm densities to achieve perfect tracking. This noticeable 
drop in performance is traced to the reduced system’s vigilance given the rapid drop in Θ.

This rich and complex set of behaviors highlights an important fact: adaptivity in the 
MAS behavior is required when varying the swarm density. Indeed, at a given density, 
adaptivity allows one to seek the optimal EED balance that yields maximal tracking. 
Note that in the present search and tracking problem, the level of connectivity k serves 
as our ‘adaptivity’ lever. At this stage, the next question arising is how to identify the 
optimum EED balance (i.e., the value of k here) at any given density �.

Since there are different exploration–exploitation balances associated with different 
permutations of swarm densities and levels of connectivity, there exists an optimum 
level of connectivity for each density. This is illustrated in Fig.  4a (gray-shaded 
region) that reveals the existence of a crossover in performance within the transition 
region. Specifically, at the lower end of the transition phase, a higher level of tracking 
is achieved with a higher level of connectivity. However, as the density is gradually 
increased, the converse becomes true.

To gain better insights into these phenomena, we turn to the variations of the exploration 
ratio, Θ , with � . Low degrees of connectivity, k, are associated with higher levels of 
exploration across the density spectrum (Fig.  4b). Indeed, a reduced connectivity limits 
the spread of the target’s positional information to a small subset of agents. Consequently, 
the agents beyond that subset are left to explore the surroundings. Since swarms with low 
k tend to be exploitation-limited, they perform worse when operating at low � , where the 
conditions are known to hamper the conduct of exploitative activities. Conversely, high k 
values promote the social transmission of information between agents. Thus, agents are 
better able to exploit this information collaboratively and cluster around the target. This 
higher level of exploitation allows high k systems to outperform low k systems starting 
from the lower end of the transition phase (prior to the crossover).

As expected, when increasing the density within the transition phase, the reduced inter-
agent distances promote exploitation and the ensuing clustering of agents. Interestingly, at 
the higher end of the transition phase (past the crossover), low k systems outperform high 
k ones. Indeed, at these densities, such high k systems exhibit over-exploitative actions, 
which can be qualified as ‘redundant’ since excessive agent clustering around the target 
does not contribute to the tracking performance. As a consequence, these systems at these 
densities end up being exploration-limited.
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The fact that a system’s optimal level of connectivity changes with � can be further 
explained using Fig. 4c that shows the presence of an optimum level of exploration, Θ∗ , 
at which tracking performance is maximized. As already mentioned, for a given swarm 
density, � , there exists an optimal level of connectivity, k∗ , such that Ξ(k∗, �) = maxk(Ξ(�)) 
(Fig. 4a). In turn, this gives us that Θ∗ = Θ(maxk(Ξ)) . Although this optimum exploration 
level, Θ∗ , cannot easily be deduced from Fig.  4b, it is readily apparent in Fig.  4c (see 
vertical dotted line). Interestingly, while determining the exact position of Θ∗ requires 
further study, it appears to remain constant even as � changes, which is connected to the 
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Fig. 4   A swarm of N = 50 agents tracking a fast-moving non-evasive target traveling at v
o,max = 0.15 . 

a: Relationship between a swarm’s tracking performance ( Ξ ) and the average swarm density ( � ) while 
operating at different levels of connectivity (k). The crossover region, where the optimum k maximizes 
Ξ , is highlighted in gray. b: Relationship between a swarm’s exploration ratio ( Θ ) and the average swarm 
density while operating at different levels of connectivity. c: Relationship between the system’s tracking 
performance and exploration ratio. Lighter shaded points represent systems with lower k while darker 
shaded points represent systems with higher k. The optimum level of exploration, Θ∗ , is represented by the 
dotted line with exploration-limited systems lying on the left of that line, while exploitation-limited systems 
lie on the right. All three densities considered fall within the transition region (Fig. 1)
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changes in k∗ from one swarm density to the next. Furthermore, Θ∗ clearly delineates 
between two regions corresponding to exploration-limited and exploitation-limited 
systems— i.e., systems found to the left of the optimum are limited by their lack of 
exploration while systems on the right of the optimum have their performances limited 
by a lack of exploitation. This leads to the important conclusion that a system’s level of 
connectivity—our ‘adaptivity’ lever—must therefore be adjusted to manage and achieve 
an optimum balance between exploration and exploitation; a result previously suggested 
in several studies (Kwa et al., 2020a, 2021; Talamali et al., 2021; Horsevad et al., 2022b).

4.3 � Effect of swarm size

In previous sections, we have reported compelling evidence that the concept of swarm 
density is key to the analysis of any MAS. A minimum density is necessary to trigger 
effective emergent collective actions. Furthermore, as the density increases and we 
enter the transition phase, the existence of an intricate balance between exploratory and 
exploitative actions reveals that these emergent properties are strongly dependent on the 
density. Nonetheless, one should not put aside unavoidable finite-size effects; for instance, 
those that arise due to the limited number of agents employed within any MRS, usually 
constrained by financial and logistical challenges (Schroeder et al., 2019; Horsevad et al., 
2022a). As such, we must acknowledge the role that a system’s size plays, and it appears 
therefore necessary to complement our density analysis by investigating the effects of 
swarm size.

As previously discussed, in natural animal collectives and computational optimization 
problems, increasing the number of agents within a system primarily serves to increase 
the level of exploration carried out. Figure  5 illustrates that this is also the case in the 
target tracking swarm. Especially as the swarm density increases and when operating at 
high levels of connectivity, the figure shows that large systems tend to maintain higher 
exploration ratios compared to small systems. This is because the level of exploration 
carried out by the swarm varies according to k/N, the number of neighbors an agent 
has as a ratio to the total size of the swarm, as shown in Fig.  6. These results suggest 
that exploration is a system-level action and therefore depends on the proportion of 
agents carrying out exploratory activity. When one agent transitions from exploration to 
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connectivity, k, and varying swarm densities, � , tracking a fast-moving non-evasive target traveling at 
v
o,max = 0.15
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exploitation, small swarms lose a larger amount of their exploration capacity compared 
to large swarms (10% in a swarm comprised of 10 agents compared to 2% in a swarm 
comprised of 50 agents). As such, when using similar levels of connectivity, large systems 
tend to have a larger proportion of agents that remain unengaged with the target, allowing 
them to sustain higher levels of exploration compared to systems comprised of fewer units.

The system-level nature of exploration can also be observed when analyzing the 
tracking performances of differently sized systems. Figure  7 illustrates that there also 
exists an optimal level of connectivity ( k∗ ) maximizing a system’s tracking performance. 
At k < k∗ , the system operates in the exploitation-limited phase. Conversely, at k > k∗ , the 
system belongs to the exploration-limited phase. Therein, it can be seen that all systems 
experience similar losses in performance that are proportional to k/N, regardless of system 
size. This further highlights that the amount of exploration carried out by a system is 
effectively a global property.

Fig. 6   Exploration ratio of a 
swarm of N = 50 , 40, 30, and 
20 agents with varying levels of 
connectivity at a swarm density 
of � = 0.0444 , tracking a 
fast-moving non-evasive target 
traveling at v

o,max = 0.15
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Fig. 7   Tracking performance of a swarm of N = 50 , 40, 30, and 20 agents with varying levels of 
connectivity at a swarm density of � = 0.0444 , tracking a fast-moving non-evasive target traveling at 
v
o,max = 0.15 . Tracking performances are plot against k (left) and k/N (right)



269Swarm Intelligence (2023) 17:253–281	

1 3

In contrast, when operating in the exploitation-limited phase, it can be seen that the 
systems’ performances are proportional to k, the absolute number of neighbors, regardless 
of the system size. This shows that exploitation is a local-level task that depends on 
the number of agents that are able to cluster around the target. When operating in the 
exploitation-limited phase, using the same level of connectivity results in the same number 
of agents being drawn to the target, thereby keeping the level of exploitation constant 
across systems with different numbers of agents.

Besides the trends observed in exploration and exploitation, Fig.  7 also reveals that 
small swarms display lower maximum tracking performances, as well as a lower k∗ , when 
compared to a large swarm. This can be traced to the lower capacity of small swarms to 
concurrently carry out exploratory and exploitative actions. As the level of connectivity 
of a small swarm rises, the system rapidly dedicates larger proportions of agents to the 
exploitation task by having them engage with the target. This in turn reduces the proportion 
of agents carrying out exploration, causing the system to move from the exploitation-
limited to the exploration-limited phase more quickly than for larger swarms.

The lack in exploitation capacity also explains the trends seen in Fig.  8 that shows 
the swarm’s performance when it is operating closer to the low density phase. Here, it 
can be observed that the tracking performance still increases proportionally with k, 
further confirming that the task of target tracking, and hence exploitation, requires 
localized coordination. However, for the swarms comprised of 30 and 20 agents, tracking 
performance continues to rise when k is increased and does not peak. This suggests that, 
due to the small number of agents and the large distances between them, the swarm is 
unable to fully exploit the target’s positional information when it is found. As such, there is 
no optimal level of connectivity and no transition to the exploration-limited phase.

5 � Discussion

When considering a system of N robots that collaboratively performs a given task over 
a given domain area, one typically seeks the minimum number of units to accomplish 
that according to a specific metric. On one hand, with too few robots, the MRS inevitably 
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fails to coordinate the actions of its individual units, thereby hindering the emergence 
of a robust collective response. On the other hand, with too many robots, unavoidable 
interference hampers the coordination of behaviors  (Hamann, 2012, 2018b). This points 
to a range of values for N that is neither too low, nor too high. More generally, this points 
to the existence of an interval in agents density over which, the system goes from poor (to 
nonexistent) collective action to a maximum in collective performance.

For our collective task of target tracking, we have indeed identified such an interval, 
with a clear minimum density required to effectively trigger the necessary emergent 
coordination in the so-called exploitation-limited regime (Fig. 4a). At the other end of this 
interval, the upper bound in density corresponds to a permanent and sustained tracking 
of the target by the MRS, within the so-called exploration-limited regime. From the 
practitioners perspective, one should seek all possible ways to shift this interval towards 
the lower density values. This would amount to achieving better tracking performance 
with a smaller system size—i.e., at a reduced overall cost. In other words, advances in the 
design of the collective actions can help take a fuller advantage of swarm intelligence.

To be specific, the swarm’s flexibility is reflected by a particular exploration–exploitation 
balance, ultimately responsible for the observed variations of the tracking performance 
with the density. For the sake of this discussion, it is worth recalling the complete 
definition of flexibility given by Dorigo et  al. (2021): “The capacity to solve problems/
perform tasks that depart from those chosen at design time." Needless to say that no 
absolute metric for flexibility has ever been proposed. We are therefore left to carry out 
relative comparisons of indirect flexibility measurements that have to be considered across 
a vast range of operating conditions. Indeed, for a given swarm strategy—i.e., a given set 
of local update rules—the effectiveness of the collective response of the system when 
the task/environment demands change is a proxy for flexibility. For our problem of target 
tracking, flexibility can be probed in many different ways: e.g., by changing the number of 
targets (Kwa et al., 2021, 2022), the speed of those targets (Kwa et al., 2020a), by adding 
obstacles (Sun et al., 2022), etc.

As a matter fact, at any given density, the only means to increase the collective tracking 
performance is to modify this exploration–exploitation balance by identifying potential 
adaptivity ‘levers’—“the ability to learn/change behavior to respond to new operating 
conditions" (Dorigo et al., 2021). In the results presented in the previous sections, the only 
two adaptivity levers involved are: (1) the one associated with the memory introduced in 
the velocity attraction component (Appendix 1.1), and (2) the adaptive repulsion strategy 
(Appendix 1.2). This fact is clearly illustrated by Fig. 9, where our search-and-track swarm 
strategy with k = 10 (Sect.  3.1) is shown alongside a strategy, which is identical in all 
ways except that it is memoryless and has a fixed repulsion strength. As expected, both 
strategies are equally ineffective at low density. As the swarm density increases, the red 
tracking performance starts outstripping the blue one, then rapidly increases and peaks at 
one for a density almost ten times lower than the blue curve. The swarm strategy in red 
therefore exhibits much higher levels of flexibility than the blue one. For any density within 
the transition phase, the introduction of the inter-agent adaptive repulsion and memory 
(Sect. 3.1) taps into adaptivity that yields a more swarm-intelligent collective tracking of 
the target. Hence, in this context it appears that adaptivity promotes flexibility. It is worth 
adding that beyond memory and adaptive repulsion, other adaptivity levers exist and can be 
harnessed to further improve the effectiveness of the collective strategy.

However, for this to be possible, it is key to have a clear understanding of the pivotal 
role played by the swarm density. As revealing as the previous analysis is, it does not stress 
enough the critical need to vary the density in order to: (1) identify in which phase the 
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MRS is effectively operating—low density, transition phase or high density (Fig. 1), and 
(2) characterize the actual exploration–exploitation balance and the associated level of 
flexibility. For instance, consider a practitioner designing and operating a given MRS with 
a given number of units N. Without varying the swarm density, this practitioner would 
not know whether the system is operating in the exploration-limited or exploitation-limited 
regime. Should the task require operations over a limited surface area, the density might 
be too high and swarm intelligence might not be necessary—it could induce interference 
effects hampering the collective dynamics. Arguably, the most interesting region is the 
transition phase, where adaptivity can be sought to boost swarm intelligence and deliver 
higher performances at the same density, or equivalently offer the same performance 
with a much lower number of units N. Beyond the need to identify the density interval 
corresponding to the transition phase, one also has to determine whether at that given 
density, the MRS behavior is exploration-limited or exploitation-limited. Failure to do so 
would significantly complicate the search for an effective adaptivity strategy. As is seen 
in Fig. 4a, in the lower range of densities within the transition phase, one can make use of 
the system’s level of connectivity as another adaptivity lever and increase k. However, this 
strategy completely backfires in the exploration-limited regime for slightly higher densities, 
still in the transition phase.

The previous analysis about the density dependence of robot swarms also helps explain 
some aspects of the simulation-reality gap for MRS. The latter has been acknowledged to 
be particularly wide owing to its typical characteristics as a complex system—i.e., the large 
number of interacting units responsible for the emergent behaviors (Francesca & Birattari, 
2016; Dorigo et  al., 2021). Indeed, challenges in adequately and accurately modeling 
and/or simulating robot swarms can lead to non-negligible differences in swarm density, 
which in turn would induce notable discrepancies between simulations and hardware 
experiments (Hamann, 2018b; Zhong et al., 2018; Dorigo et al., 2021; Kwa et al., 2020a, 
2021).

It is important to stress that the obtained results and analysis have been established for 
our problem of collective tracking. The question of how these results for this particular 
collective action can be generalized to other swarming behaviors naturally arises. At this 
point, it is worth recalling that few general results related to swarming behaviors effectively 
exist; there is no general scalability law, no robustness law, or flexibility law for that matter. 
The emergent nature of the collective action and the fact that swarms are complex systems 
can explain this dearth of general results, which is further compounded by the current lack 

Fig. 9   Comparison of the search 
and track strategy presented 
in Sect. 3.1 and a rudimentary 
memoryless strategy that uses 
a constant inter-agent repul-
sion behavior. Both sets of 
simulations were carried out at 
a level of connectivity, k = 10 . 
The performance curve for the 
rudimentary strategy is shifted 
towards a higher density range 
compared to the baseline swarm 
strategy
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of benchmark problems to quantitatively assess and compare the overall performance of a 
system with a given cooperative control algorithm (Kwa et al., 2022b). Nonetheless, the 
key question about the influence of the swarm density on the emergent response of MRS 
remains applicable and valid for all robot swarms involved in a wide range of collective 
actions. As mentioned earlier, at extremely low density the swarm inevitably fails to self-
organize. It is only by increasing the number of units—and thus the swarm density—can 
an emergent behavior materialize. At the other end of the density spectrum, a high swarm 
density means that so many units are available that swarm intelligence may not even be 
necessary to carry out the task at hand—too high a density may even hinder the collective 
organization. These well-known facts are unambiguous about the existence of a transition 
phase in which the system dynamics goes from lacking self-organization to exhibiting 
an emergent response. This transition phase has been observed in a number of collective 
behaviors including with Vicsek’s model for self-propelled particles (Vicsek et al., 1995; 
Bouffanais, 2016). Although the existence of this transition phase is not fundamentally 
new, its implications for the design of robot swarms performing any task—beyond just 
collective tracking—has been overlooked, in particular in relation with the sizing of the 
system. When characterizing the transition phase, some differences should naturally be 
expected across a wide range of tasks and problems. For instance, the adverse effects 
of interference at high density can effectively induce a drop in performance as has been 
recognized for foraging tasks with a central depository (Rosenfeld et al., 2006; Hamann, 
2012). Nevertheless, a systematic analysis of this transition phase for the class of collective 
tasks involving an exploration–exploitation balance (Kwa et al., 2022b) would contribute 
to further generalizing some of the results reported here. We therefore hope that this work 
will encourage other researchers to study the influence of swarm density across a wider 
range of platforms and tasks in swarm robotics.

We can conclude that an analysis of the density dependence for an MRS offers means 
of comparing and quantifying swarm intelligence when it is engaged in a particular task. 
This is a necessary step towards optimizing the collective performance, i.e., when seeking 
to boost swarm intelligence. From the machine learning perspective, these results and 
conclusions have far-reaching implications. Numerous strategies have been considered 
to establish the local control rules that lead to sought-after global collective actions: 
e.g., automatic design  (Francesca & Birattari, 2016; Ligot et  al., 2022), multi-agent 
reinforcement learning  (Kouzehgar et  al., 2020; Zhang et  al., 2021), deep reinforcement 
learning (Hüttenrauch et al., 2019), etc. However, in most of these approaches, the number 
of units (or equivalently the swarm density) is a parameter that is considered constant 
during the learning/optimization process. Based on the above analysis of the density 
dependence, one has to be cautious about the fact that if the learning/optimization process 
is simply carried out at a given density, it has the potential to yield dismal performance 
should the circumstances suddenly change. For instance, consider a learned behavior for a 
density in the upper range of the transition phase (say � ≃ 10−1 in Fig. 4a), which should 
offer a relatively high tracking performance. Given what is found in Sect. 4, the learned 
behavior will most likely find ways to promote exploration, which limits the tracking at 
that density. Should the density suddenly drop due to the loss of units or an expansion of 
the domain area, it is highly probable that the learned behavior optimized for exploration 
will under-perform given the increased need for exploitation. Similarly, the identified 
influence of swarm size in the exploration-limited regime (Sect. 4.3) should also be taken 
into consideration when resorting to machine learning approaches.

This does not imply that machine learning strategies should not be considered for this 
class of problems. Instead, what our analysis suggests is to use machine learning strategies 
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that aim at optimizing adaptivity across the density spectrum. In conclusion, one should 
aim towards “adaptivity learning" for MRS, while avoiding the learning of a specific set 
of behaviors for a given task and circumstances. To help convey the deep meaning of 
adaptivity learning, we can return once again to Fig.  4a, and learning adaptivity would 
amount to finding the optimal value of k that yields the highest tracking performance for 
any value of the swarm density. As mentioned earlier, with our search and track strategy 
(Sect.  3.1), another potential adaptivity ‘lever’—beyond memory and the repulsive 
behavior—is the system’s connectivity level, k. A caveat with this adaptivity learning 
approach is that it does not seem trivial to generalize to any swarm strategy. Nonetheless, 
the identification of all adaptivity levers associated with any swarm strategy is a first step 
in that direction.

Lastly, it can be argued that learning adaptivity is equivalent to dynamically optimizing 
the balance between exploitative and exploratory actions at the system level when 
circumstances and/or operating conditions change. We believe that learning adaptivity 
and the optimization of the exploration–exploitation balance will offer promising new 
opportunities and avenues for the community working on the design of effective collective 
swarm dynamics.

Appendix 1 Strategy velocity components

The search and track strategy given in Sect. 3.1 produces a velocity vector comprised of 
two parts: (1) the attraction velocity component, vi,att[t] , and (2) the repulsion velocity 
component, vi,rep[t] . These two components are then combined to give a final agent velocity 
using Eq. 1, which is restated here:

In this section, we state how the values for vi,att[t] and vi,rep[t] are obtained. This strategy 
was first presented in Kwa et al. (2022).

1.1 Attraction velocity component

The attractive component is used to encourage agents to aggregate at a point of interest, 
p[t] , determined using Algorithm  2. At every time-step, each agent measures its local 
environment to look for a target. Should an agent detect a target, the agent will transition 
from an exploratory state into a tracking state, set p[t] as the target’s current location, and 
broadcast the location. Should a target not be detected, the agent will communicate with its 
k-nearest neighbors and attempt to track targets detected by its neighbors. In addition, each 
agent is endowed with a memory, M, of a duration of tmem . Using this memory, each agent 
is able to keep track of the position and time at which a target was found. Each agent also 
receives a set of target positions and encounter times from its k-nearest neighbors. These 
received values are compared to an agent’s own values and the most recent target position 
is used as a point of attraction, p[t] . At this point, should the agent still not have any 
knowledge of the target’s location, p[t] is set to the agent’s own location, xi[t] , essentially 
disabling the attractive component. Through the use of this update algorithm, agents are 
able to compare information that is directly sensed from the environment with information 
received from its neighbors and choose which set of information to exploit.

(7)vi[t] = vi,att[t] + vi,rep[t].
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At this point, it is important to reemphasize that in this framework, the neighborhood 
of an agent is to be understood in the network sense. As such, an agent i has as many 
neighbors as its degree, k. Also, since time-varying network topologies are considered, 
it should be noted the neighborhood of each agent evolves over the course of the task 
duration. Given this dynamic network topology, all agents independently set p[t] using 
Algorithm 2.

Algorithm 2 : Point of Attraction Update Algorithm

Initialise M = tmem
if Agent detects target then

pself ← Target’s position
tbest ← t

end if
Determine Ni = {j ∈ [1, N ] s.t. agent j is a topological k -nearest neighbor
of agent i}
Get list of all neighbors’ p and tbest
pneigh ← Most recent entry in all neighbors’ p
tneigh ← Most recent entry in all neighbors’ tbest
if tbest +M < t then

pself ← ∅
end if
if tneigh +M < t then

pneigh ← ∅
end if
if pself = ∅ and pneigh = ∅ then

p[t] ← xi[t]
else if tbest > tneigh then

p[t] ← pself
else

p[t] ← pneigh
end if

Using an agent’s velocity in the previous time-step and its location in relation to p[t] , the 
attraction component can be calculated according to:

This equation is similar to that used in the social-only PSO model proposed by Engelbrecht 
(2010), where � is the velocity inertial weight, c is the social weight, and r is a number 
randomly drawn from the unit interval. In computational optimization, this is the main 
driver of a the system’s exploitative behaviour. Here, it is used to drive the MRS towards the 
target. It should be noted that in the proposed strategy, unlike the social-only PSO model 
that uses an infinite memory length, agents here instead use a limited memory length. This 
is done to prevent agents from exploiting outdated target positional information.

(8)vi,att[t] = �vi[t − 1] + cr
(
p[t] − xi[t]

)
.
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1.2 Adaptive repulsion

The adaptive repulsion component is used to promote agent exploration of the search space 
and stop agents from aggregating within a small area, thereby preventing over-exploitation of 
target information. In addition, this behavior also offers an anti-collision measure as a direct 
byproduct of this mechanism.

The inter-agent repulsion scheme adopted is based on the one used in the BoB swarm 
developed by Vallegra et al. (2018); Zoss et al. (2018). Using this behavior, an Agent i with 
topological neighbors j calculates its individual repulsion velocity as follows:

where rij is the vector from Agent i to Agent j and rij = ‖rij‖ . This inter-agent repulsion 
is controlled by two parameters: the repulsion strength aR , affecting the agents’ distance 
from each other at equilibrium, and the exponent d in the pre-factor term (aR∕rij) . In the 
work carried out, d is fixed at 6 given that this value has very moderate effects on the 
performance of the EED strategy. At large (aR∕rij) and d values, the repulsion strength 
of the agents is approximately equal to the nearest-neighbor distance in equilibrium 
configuration (Vallegra et al., 2018; Coquet et al., 2021).

The key aspect of this inter-agent repulsion is an agent’s ability to adjust its own 
repulsion strength, aR[t] , based on its local environment and neighbourhood. To this end, 
the agent’s exploratory state, Si,exp[t] , is used. When an agent has no target information, 
it enters an exploratory state, i.e., Si,exp[t] = 1 , it increases its aR value until a maximum 
value is attained. Conversely, if the agent is in a tracking state, i.e., Si,exp[t] = 0 , the agent 
gradually reduces its aR value until a minimum value is reached. The adaptive repulsion 
behavior used to obtain the repulsion component is summarized in Algorithm 3.

Algorithm 3 Adaptive Repulsion

Initialise aR,min, aR,max, d = 6, δexplore = 0.1, and δtrack = 0.75
while System active do

if Si,exp[t] = 0 then // Agent in tracking state. Reduce aR.
if aR > aR,min then

aR ← aR − δtrack
end if

else if aR < aR,max then // Agent in exploratory state. Increase aR.
aR ← aR + δexplore

end if
Calculate vi,rep using Eq. A3

end while

(9)vi,rep[t] = −
∑

j∈Ni

(
aR[t]

rij[t]

)d
rij[t]

rij[t]
,
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Appendix 2 Local density

This section shows the reasoning why Eq. 6 was used in the calculation of the system’s 
local swarm density. This is restated here for completeness:

Due to the implemented inter-agent repulsion behavior, agents will tend to fall into a 
hexagonal packing pattern as seen in Fig. 10a. As such, an individual agent will usually 
be surrounded by six other neighboring agents unless they are located at the edges of 
the system. By defining an Li as the average distance between an agent i and its 6 nearest 
neighbors, it can be assumed that all 6 neighboring agents are located a distance of Li away 
for the purposes of calculation of an individual agent’s local agent density.

While a different number of agents can be used for this calculation, the same trends 
in the local agent density when varying the global average swarm density, as seen in 
Fig.  10b. However, if less agents are used in this calculation, the initial divergence 
between the local agent density and the global average swarm density is accentuated. As 
such, an agent that finds itself in close proximity (relative to the size of the environment) 
to another agent while moving around the domain will return an artificially high local 
density. Conversely, if too many agents are used, the presence of such coincidental agent 
‘clusters’ is not reflected. As such, an intermediate number, six in this case, was chosen 
to be used for the local density calculations.

(10)�L =
1
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Fig. 10   a: Positioning of agents (black dots) in relation to each other and the repulsion fields generated 
by the individual agents while in their equilibrium positions. Areas in yellow represent areas of high 
repulsion potential while those in blue represent areas of low repulsion potential. Given these repulsion 
potential fields, agents tend to fall into a hexagonal packing pattern around each other. b: Local agent 
density calculated with different number of neighboring agents for a swarm comprised of 50 agents, 
connected using a k = 20 communications network. The system is tracking a non-evasive target traveling at 
a maximum speed of v

o,max = 0.15 . The local agent density is compared against the global average swarm 
density (dashed line) (Color figure online)
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