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Mechanotactic cell motility has recently been shown to be a key player in the initial aggregation of crawling
cells such as leukocytes and amoebae. The effects of mechanotactic signaling in the early aggregation of
amoeboid cells are here investigated using a general mathematical model based on known biological evidence.
We elucidate the hydrodynamic fundamentals of the direct guiding of a cell through mechanotaxis in the case
where one cell transmits a mechanotactic signal through the fluid flow by changing its shape. It is found that
any mechanosensing cells placed in the stimulus field of mechanical stress are able to determine the signal
transmission direction with a certain angular dispersion which does not preclude the aggregation from hap-
pening. The ubiquitous presence of noise is accounted for by the model. Finally, the mesoscopic pattern of
aggregation is obtained which constitutes the bridge between, on one hand, the microscopic world where the
changes in the cell shape occur and, on the other hand, the cooperative behavior of the cells at the mesoscopic
scale.
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I. INTRODUCTION

Life’s order is characterized by a cascade of emergent
phenomena. This fact was acknowledged long ago by the
physicist and Nobel laureate, Erwin Schrödinger, in his dis-
tinguished monograph “What is Life” �1�. In this book, the
author stresses the challenges faced by the physicist and the
chemist in apprehending some of the complexities encoun-
tered in life sciences. For instance, self-organization in bio-
logical systems pervades nature and takes a central part into
the morphogenesis of the vast majority of multicellular liv-
ing organisms. This is acknowledged by Macklem �2� as one
of the two secrets in life based on Schrödinger’s treatise �1�.

Emergence is better defined as the spontaneous self-
organization of a system made of interacting internal agents
without intervention by external directing influences �3�. To
produce order on a large scale, i.e., a pattern, the system’s
components—e.g., cells, amoebae—must intercommunicate,
interact, and cooperate; these communications and interac-
tions being local. Hence, deciphering emergence in a com-
plex biological system requires a clear understanding of the
intercommunications and interactions involved in it �2�.

The full range of living organisms manifests a direct con-
nection between behavior and internal information process-
ing. In addition to genetic information, all organisms obtain
information externally, in the form of signals or stimuli,
through their senses. This point was emphasized by Dusen-
bery �4�. There are three basic mechanisms by which stimuli
or signals are transmitted: propagation, diffusion, and flow
�4�. For instance, cell motility is critical for many biological
processes of spontaneous self-organization. It represents a
specific behavior of a microorganism, which is induced by
processed information obtained from sensed stimuli or sig-
nals available in the surroundings of the cell.

The molecular mechanisms underlying the migration of
highly motile cells, also known as amoeboid cell due to the

similarities with the prototypical locomotion of amoebae,
have been extensively studied in the past decades �5�. Cell
migration is a physically integrated molecular process in-
volving biochemical cascaded intercorrelated with external
chemical and mechanical stimuli �6�. From the medical
standpoint, stimuli-controlled cell motion plays a key role in
the immune system and metastasis responses and spreading
�7,8�. From a developmental biology standpoint, the direc-
tional rearrangement of cells induced by fields of external
stimuli is a key mechanism involved in metazoan morpho-
genesis; more specifically in early embryonic development:
gastrulation followed by organogenesis �9–12�.

The influence on morphogenesis of oriented motion up a
chemical gradient, i.e., chemotaxis, has been the focus of
attention for many years �4,13�. However, the impact of
mechanosensing on cell migration, i.e., mechanotaxis, has
been relatively overlooked �13�, though its importance has
proved to be central in recent experiments involving motile
amoebae �14–16�. More importantly, from the medical stand-
point, mechanotaxis is responsible for regulating leukocyte
functions, e.g., increasing motility and phagocytic capabili-
ties �17�. Further to both of these fundamental and medical
considerations, it is worth highlighting that mechanotaxis has
recently been considered as a way to control and manipulate
cell motility �18�, which could potentially lead to innovative
applications in biotechnology and more precisely in the field
of tissue engineering �19�.

To investigate the hydrodynamics of mechanotaxis and its
effects on the directed motion of cells, a good strategy is to
examine and model a simple system made of prototypical
motile cells. Many features of amoeboid motility appear to
be universal across species and cell types �20�, hence rein-
forcing the importance of an hydrodynamic-based model for
mechanotaxis. The social amoebae Dictyostelium discoideum
�Dd� has been a microorganism of choice for studying a va-
riety of basic processes in morphogenesis, including cell-cell
chemical signaling, signal transduction, and cell motility. In-
deed, this simple eukaryote is a genetically, biochemically,
and cell-biologically tractable model organism �5,8,21,22�
with an extensively studied social life �22,23�. The many*bouffana@mit.edu
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reasons for developing a model based on Dd have recently
been discussed in detail in �24�. This amoeba lacks a cell
wall and moves by crawling. Such amoeboid motility is in-
duced by complex internal processes responsible for the
changes in the cell shape over time �see �25� for an introduc-
tion and �26� for a recent review on this topic�. Dd is also a
prototypical motile cell of interest as it exhibits a remarkable
interplay between single-cellular and multicellular behaviors.
In the presence of nutrients, individual Dd cells move, feed,
and divide every few hours. Food scarcity leads to a behav-
ioral change in Dd toward a collective aggregation. Although
the change of behavior has a chemical origin, there is now
accumulating evidence that mechanotaxis plays a key role in
the early aggregation stages �14–16�. The cells integrate the
mechanical stress through mechanotransduction at their sur-
face into an intracellular biochemical signal acting on the
control system, which triggers a cellular response resulting in
a change of orientation �13–15�.

As already mentioned earlier, deciphering a complex self-
organization behavior in a biological system such as aggre-
gating amoebae requires a clear understanding of the inter-
communications and interactions involved in it. Since the
seminal work of Turing on chemotaxis �27�, there is now an
enormous body of knowledge on that specific chemical sig-
naling between cells. We know from recent experiments
�14–16� that mechanotaxis is another overarching compo-
nent of these local interactions responsible for initiating the
aggregation of amoebae. It seems therefore timely to perform
an investigation of mechanotaxis from a theoretical stand-
point, which is the central objective of the present work. Our
focus is on analytical analyses and results, but our aim is to
emphasize physical intuition and connections to the real-life
biological systems.

The outline of the present paper is as follows. Section II
presents a modeling approach of the problem in which the
governing equations and associated boundary conditions are
derived. A general representation of the cell boundary motion
is discussed in Sec. III, followed by the determination of the
associated mechanotactic stimulus field in Sec IV. Section V
presents the mechanosensing capabilities of the stimulus
field and in Sec. VI the results of a model for the stimuli-
controlled movement of the amoeboid cells are analyzed.
Finally, conclusions are drawn in Sec. VII.

II. MODELING APPROACH AND PROBLEM
FORMULATION

A. General considerations

To gain insight into local mechanotactic cell-cell signal-
ing, we propose a simplified model epitomizing the commu-
nication through hydrodynamic interaction between cells
when aggregation is initiated. In the early aggregation stages,
cells which are of typical size �=10 �m are widely sepa-
rated. Therefore, it is not of primary importance to consider
this many-body problem as a whole. Instead, we focus our
attention on an “isolated” subsystem of the multicellular ag-
gregating structure. This hypothesis of isolation remains
valid as long as the distance between the internal cells of the
subsystem, i.e., the characteristic size of the subsystem, is

smaller than the distances to the other neighboring cells. The
most elementary subsystem comprises two cells mechani-
cally interacting through the fluid flow. To simplify further
the analysis, we assume that these two interacting cells have
noninterchangeable roles: one cell, the transmitting cell
�TC�, is responsible for generating the hydrodynamic signal
while the other cell, the receiving cell �RC�, experiences the
mechanotactic stimulus field generated by the TC on its sur-
face wall. The central goal of this study is to show that
through integrated mechanosensing of the stress at its sur-
face, the RC can be directly guided �4� toward the TC, typi-
cal of an aggregative response.

Before dealing with the mechanosensing at the RC’s sur-
face, it is instrumental to obtain first the mechanotactic
stimulus field generated by the TC in its motile behavior,
which is at small scale and hence at very low Reynolds num-
ber. The specificities of the biophysical and mechanical prin-
ciples of locomotion at low Reynolds number, though coun-
terintuitive from the human-scale viewpoint, are well known
�28,29�. Microbes evolve in a quasi-inertia-free environment
where the viscosity is of paramount importance. Swimming
strategies employed by large organisms that operate at large
Reynolds numbers, such as fish, are ineffective at the micron
scale �29�. Hence, microorganisms and cells essentially ex-
perience viscous drag which has to be employed in a nonre-
versible manner to yield a net motion �28,30�. This is the
Stokesian realm described by Purcell �28� as “very slow,
majestic, and regular.”

The amoeboid crawling is one of the many ways of loco-
motion at the micron scale and is essentially two dimensional
�2D� �25,26,31�. The shape evolution is the result of con-
trolled internal cytoplasmic mechanisms, whose details are
not relevant to the present study. During locomotion, cells
constantly change shape by rapidly protruding and retracting
extensions known as pseudopods �25�. Here we focus on the
hydrodynamics of the extracellular environment subject to a
prescribed evolution of the intracellular matrix, leading to a
known kinematic of the TC’s surface boundary.

B. Governing equations and boundary conditions

We formulate here the problem of the mechanotactic
stimulus field, introducing the key notations and the govern-
ing equations. For definiteness, consider one TC generating a
mechanical stimulus field �see the schematic representation
in Fig. 1�. The signal information is carried by mechanical

�

deformable cell wall C(t)

D̂(t)
environment
intracellular

pseudopod extension

retraction

uTC(x, t)

fluid domain D(t)
mechanotactic

stimulus
field

FIG. 1. Schematic of a transmitting cell with pseudopod exten-
sions and retractions generating a mechanotactic stimulus field in
the extracellular fluid domain.
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stress associated with the viscous flow generated by changes
of the TC shape reminiscent of amoeboid surface crawling
�25�. Our focus is on the hydrodynamics of the extracellular
environment denoted as D �see Fig. 1�.

We consider a cell placed in an otherwise quiescent fluid
of viscosity �. Given the small scales ��=10 �m� and hence
the low Reynolds number, the time evolution of the TC wall,
C�t�, yields an incompressible Stokes flow that is instantly
acting on any RC present in its vicinity. The velocity field u
and pressure field p are solutions of the Stokes equations
�32�

��u = �p , �1�

� · u = 0, �2�

plus appropriate boundary conditions given by the no-slip
boundary condition for the velocity field u on amoeba’s
moving surface C�t� and the vanishing of u far away

u�x,t� = uTC�x,t�, x on C�t� , �3�

u�x,t� = 0, x → � , �4�

where uTC is the time-dependent velocity of the cell bound-
ary. The subscript “TC” stands for transmitting cell to em-
phasize the fact that the cell wall motion is the actual source
of mechanotactic signal. Note that the Stokes equations �1�
and �2� are linear and independent of time, a fact with im-
portant consequences for the flow physics.

The time dependence of the present problem comes from
the no-slip condition �3� at the moving surface. The linear
and time independence of the governing equations for motil-
ity at small scales lead to two important properties �28,29�:
the rate independence and the so-called scallop theorem. The
rate independence property relates to the fact that the dis-
tance traveled by any microorganism does not depend on the
rate of change of the surface C�t� but only on the sequence of
geometric configurations taken by the C�t� over time. The
scallop theorem states that if the periodic sequence of shapes
displayed by a microswimmer is identical under a time-
reversal transformation, then the microswimmer cannot have
net motion. In the present case, the net motion of the cell
hence results from nonreciprocal changes of its shape. The
counterintuitive nature of the locomotion at low Reynolds
number is also apparent when one realizes the difficulty of
simply predicting the direction of motion �28,33�.

III. GENERAL REPRESENTATION OF THE CELL
BOUNDARY MOTION

A. General considerations

The change in the shape of the transmitting cell wall is the
source of the fluid flow and consequently of the mechanotac-
tic stimulus field, as pointed out in Sec. II after Eq. �3�.
Therefore, it is critical to obtain an appropriate representa-
tion for the shape. In a 2D framework, one powerful yet
compact method is to conformally map the domain D�t� ex-
terior to the cell boundary represented by the Jordan curve
C�t� �in z space, see Fig. 1� onto the exterior of the unit disk

D �in � space�. For clarity, the notations associated with the
mapping, domains, and spaces are schematically shown in
Fig. 2. From the physical standpoint, the moving-boundary
domain D in the z space is the fluid domain subject to a
Stokes flow and corresponds to the infinite domain outside

D; the complement D̂ of the fluid domain D, i.e., the interior
of D, is the intracellular environment and corresponds to the

interior of the unit disk logically denoted as D̂.

B. Conformal elements

The Riemann mapping �= f�z� is unique and should be
such that it exhibits a simple pole at infinity �34�. In the
present study, the inverse exterior mapping z= f−1���=g���,
from the exterior unit disk D onto the fluid domain D is of
main interest and shall only be considered in the sequel. This
inverse mapping is conformal and the mapping function g
admits a simple Laurent expansion which can be expressed
generally as

g��� = a1�t�� + a0�t� +
a−1�t�

�
+

a−2�t�
�2 + ¯ , � � D ,

�5�

where the time dependency of the complex coefficients of
the series is directly connected to the sole time-dependent
equation of the problem, namely, the no-slip boundary con-
dition �3� enforced on the moving cell boundary C�t�. It is
convenient to express the first complex coefficient in its po-
lar form, i.e., a1�t�=R0�t�ei�0�t�, which uniquely defines the
�outer� conformal radius R0 and the conformal orientation �0
�35�. The second coefficient, a0, of the Laurent series �5�

y

x

z

ζ

ξ

η

a0

ζ = f (z)

|ζ| = 1

0

z = g(ζ)

θ0

D

D

D̂

D̂R0

C(t)

FIG. 2. �Color online� Schematic representation of direct and
inverse mappings and the internal and external domains. The set
�a0 ,R0 ,�0� comprises the three conformal elements associated with
the fluid domain D.
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represents the conformal center which also has a unique defi-
nition �36�.

It is important to note that the �external� conformal map-
ping theory provides a convenient, yet not straightforward,
way of defining a unique center, radius, and orientation,
which can be interpreted as the fundamental characteristics
of the cell shape. Note also that, in general, the conformal
center a0 is different from the centroid of the interior domain

D̂, although the difference is often small. There are several
other approaches to this same measure of the “spread” of D.
For instance, the outer conformal radius is identical to the
transfinite diameter �see �37��. Other approaches involve
polynomial approximation �Chebyshev’s constant� or poten-
tial theory �logarithmic capacity, Robin’s constant� �see �38�
for more details�. The outer conformal radius, like the trans-
finite diameter, the logarithmic capacity, and the Robin’s
constant are all conformal invariants �37�.

C. Shape normalization and representation

If one considers various domains having the same shape,
but shifted, dilated, and rotated, it is possible to find a unique
normalized inverse exterior mapping characterizing the
shape only and defined as its fingerprint �39�. The normal-
ization procedure consists of three basic steps in the complex
plane: a translation of amplitude −a0, followed by a dilation
by a factor 1 /R0, and finally a rotation about the origin by an
angle −�0. Mathematically, the normalization leads to the
definition of the shape fingerprint �39� as a univalent inverse
exterior mapping, denoted by h, defined on D, given by

z = a0�t� + R0�t�ei�0�t�h���, � � D , �6�

and admitting the Laurent series

h��� = � +
�1�t�

�
+

�2�t�
�2 + ¯ , � � D , �7�

where �k�t�=a−k�t� /a1�t�, k�1.
The normalization procedure �6� gives access to the set of

conformal elements �a0 ,R0 ,�0� �shown in red dashed lines in
Fig. 2� and the fingerprint h, providing a unique and com-
plete characterization of any 2D located shape. Note that this
procedure is completely general and can be applied to any
cell shape, even those extremely stretched and with multiple
pseudopod extensions and retractions �22,40�. Each term in
1 /�k in Eq. �7� has a clear geometric meaning associated
with a polygonal perturbation of the unit circle; more pre-
cisely to a �k+1�-gonal type perturbation, also referred to as
non-self-intersecting hypotrochoids of order k �41�. For ex-
ample, the leading terms in 1 /� and 1 /�2 correspond, respec-
tively, to a digonal and an equilateral-triangle-type of pertur-
bation.

The essential difference between the conformal elements
and the shape fingerprint is that the former is independent of
the relative distance to the cell � in the stimulus field, which
is directly related to the shape fingerprint through

� =
�z − a0�t��

R0�t�
= �h���� . �8�

For a given �, the number of useful terms in the asymptotic
series �7� is limited by the presence of noise and by the
limited mechanosensing capabilities on the surface of the
receiving cells. Without loss of generality, we consider only
the first two perturbation terms leading to a mapping and
associated fingerprint function expressed, respectively, as

g��� = a1� + a0 +
a−1

�
+

a−2

�2 , �9�

h��� = � +
�1

�
+

�2

�2 . �10�

The associated geometric shape construction process is high-
lighted in Fig. 3 for a �conformally normalized� shape taken
to represent an idealized TC. This idealized cell presents
three pseudopod extensions �two smaller identical ones in
the directions �=2� /3 and �=4� /3 and a more extended
one in the direction �=0� and limited retractions.
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FIG. 3. From the unit circle �top�, to an ellipse with �1=1 /5
�middle�, to the final shape with �1=1 /5 and �2=1 /3 �bottom�.
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IV. MECHANOTACTIC STIMULUS FIELD

A. Driving boundary condition

The general conformal representation of the cell shape
presented in Sec. III, mainly through Eqs. �5�–�7�, allows us
to parametrize its time evolution, e.g., to account for pseudo-
pod extensions or retractions, by specifying the time varia-
tions of �a0 ,R0 ,�0 , ��k�k�1�. The driving velocity on the sur-
face of the TC reads

UTC = uTC + ivTC =
�z

�t
= ȧ1	 + ȧ0 +

ȧ−1

	
+

ȧ−2

	2 , �11�

where 	=ei� is the running variable on the conformal image
of the cell boundary C�t�.

B. General solution for the Stokes flow

For 2D Stokes flow, the streamfunction 
 and pressure
field are, respectively, solutions of homogeneous biharmonic
and harmonic equations �32�. With the problem cast in terms
of analytic functions, conformal mapping is a straightfor-
ward and powerful technique to devise explicit solutions to
this intricate moving-boundary problem. Unlike harmonic
equations, the biharmonic equation is however not preserved
under conformal mapping �42�. Despite this fact, general
conformal-mapping-based solutions of the biharmonic equa-
tion in 2D have been available in elasticity theory �41� and
for Stokes flow �30,31,42�.

Any 2D Stokes flow solution of Eqs. �1� and �2� can be
expressed as

u + iv = ��z� − z���z� + ��z� , �12�

p = − 4� Re����z�� , �13�

where complex potentials ��z� and ��z� are holomorphic
functions in D�t� �30,31,41,42�. From Eqs. �12� and �13�, one
can obtain directly the stress tensor � carrying the mechano-
tactic signal.

Both � and � depend on uTC which has a known expres-
sion �11� in the � plane. Hence, these functions shall be ob-
tained analytically through conformal mapping �30,31,41�,
which allows Eq. �12� to be cast as

u� + iv� = ����� −
g���
g����

������ + ���z� , �14�

where � �� denotes the expression of a function in the � plane,
with the mapping �= f�z� and its inverse z=g���. This expres-
sion of the complex fluid velocity in the � plane allows one
to explicitly connect the complex potentials with the time-
varying geometric parameters characterizing the cell shape
evolution, through the driving no-slip condition now ex-
pressed in the � plane

ȧ1	 + ȧ0 +
ȧ−1

	
+

ȧ−2

	2 = ���	� −
g�	�
g��	�

����	� + ���	� ,

�15�

and more specifically on the TC image boundary �	�=1 or
	=ei�. Using the holomorphic character of the complex po-

tentials and the mapping function in D �including at the point
at infinity�, one may recast the boundary formulation �15�
into a functional equation for �� that is equivalent to ordi-
nary Fredholm equations of the second kind using Cauchy’s
formula for infinite region �41�. Although this technical step
is far from being trivial from a purely mathematical stand-
point, it is nonetheless instrumental as it gives a general way
of calculating the complex potential for any inverse exterior
mapping represented by a Laurent series such as Eq. �5�. The
use of Cauchy’s formula for infinite regions is suggested by
the fact that one aims at obtaining an expression of ����� for
��D based on some boundary information of ���	� for 	
��D. One can readily prove the following general expres-
sions:

����� = −
1

2�i
�

�D

UTC
� �	�

	 − �
d	 , �16�

which, given the no-slip driving boundary condition �11�,
leads to

����� =
ȧ−1

�
+

ȧ−2

�2 . �17�

In order to determine the expression of �, it is convenient to
recast Eq. �15� as

���	� = ȧ0 +
ȧ1

	
+

g�	�
g��	�

����	� . �18�

Using the expression �17� for ��, the fact that on �D g�	�
= ḡ�1 /	�, and Cauchy’s formula for the infinite region, one
finally obtains

����� = ȧ0 +
ȧ1

�
−

ḡ�1/��
g���� 	 ȧ−1

�2 +
2ȧ−2

�3 
 �19�

or more explicitly

����� = ȧ0 +
ȧ1

�
−

a1

�
+ a0 + a−1� + a−2�2

a1 −
a−1

�2 −
2a−2

�3

	 ȧ−1

�2 +
2ȧ−2

�3 
 .

�20�

With the expression of ����� and ����� given, respectively,
by Eqs. �17� and �20�, we have finally access to the exact
solution of the problem in the � plane, in terms of the com-
plex coefficients �a1 ,a0 ,a−1 ,a−2�, also equivalent to
�a0 ,R0 ,�0 ,�1 ,�2�, characterizing the geometric evolution of
the cell boundary C�t�. The expression of the velocity and
pressure solutions of the Stokes equations �1� and �2� in the
extracellular environment D of the z plane is trivially ob-
tained if the direct mapping �= f�z� is known.

From the general solution Eqs. �17� and �20�, it is seen
that in the absence of changes in the cell boundary, i.e., ȧ1
= ȧ0= ȧ−1= ȧ−2=0, �� and �� are identically zero and there is
no flow, as expected. If one considers a bubble growing or
collapsing while maintaining a circular shape, one readily
retrieve

����� = 0, �21a�
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����� =
Ṙ0�t�

�
�21b�

from the general solution of the 2D Stokes flow. For this
specific problem, the conformal radius R0 is the sole time-
dependent problem as �0=0 �no conformal orientation for a
circular shape�, a0 is constant, and �1=�2=0. From the com-
plex potentials �21a� and �21b�, one can deduce the expres-
sion of the velocity in polar coordinates in the complex z
plane

u + iv =
Ṙ0R0

r
e−i�. �22�

This result is a particular case of general time-evolving
bubbles in a 2D Stokes flow studies by Tanveer and Vascon-
celos �43�.

The fluid is quiescent at infinity provided that both com-
plex potentials vanish there. Since the point at infinity in the
� plane maps to the point at infinity in the z plane, the con-
ditions ����=0 and �����=0 are equivalent and is valid
irrespectively of the shape and its changes given the expres-
sion �17� for ��. The same applies to ���� and �����. How-
ever, having a vanishing �� at infinity imposes a constraint
on the complex coefficients of the conformal mapping and
their time derivatives

a1�t�ȧ0�t� = a−2�t�ȧ−1�t� , �23�

as a consequence of Eq. �20�. This is a constraint on the cell
wall and its temporal evolution, which is clearer when ex-
pressed as

ȧ0 = �2�t��Ṙ0�1�t� − iR0�t��̇0�1�t� + R0�t��̇1�ei�0�t�.

�24�

Given the definition of the conformal elements and the shape
representation introduced, respectively, in Secs. III B and
III C, a physical interpretation of the constraint �24� is pos-
sible. The time derivative, ȧ0, of the conformal center repre-
sents the translational velocity of the cell in its motion, while

�̇0 is associated with the angular velocity of the cell �presum-
ing that somehow the cell is able to spin�. The time evolution

of the conformal radius, measured by Ṙ0, can be interpreted
as the growing or collapsing rate of the cell depending on the

sign of Ṙ0. Both the digonal and triangular coefficients, �1
and �2, appear in Eq. �24�, while only the time derivative �̇1,
rate of elliptical extension or retraction, is involved. From
Eq. �24�, it is clear that the cell’s translation velocity ȧ0 is
directly proportional to the amplitude of the triangular coef-
ficient �2. Moreover, three factors contribute independently
to that amoeboid motile translational motion: the growing or

collapsing rate Ṙ0, the angular velocity �̇0, and the rate of
elliptical extension or contraction �̇1. The natures of these
factors are different: the first two relate to the shape normal-
ization, while the former is purely geometrical and associ-
ated with the shape fingerprint definition.

C. Idealization of the cell boundary evolution

In this study, our primary focus is on mechanotactic cell-
cell signaling and not on cell motility per se. Even though
cell motility is generally a source of mechanotactic signal, it
is possible for a cell to produce a mechanotactic stimulus
field while remaining stationary. From the discussion associ-

ated with Eq. �24�, it is clear that a TC with vanishing Ṙ0, �̇0,
and �̇1 does not move, but clearly the mechanotactic signal
can still be nonzero �cf. Eqs. �17� and �20��.

Without loss of generality, let us consider a hypothetical
deformation of the cell in which the conformal radius R0 and
the conformal orientation �0 are kept fixed, which corre-
sponds to having a1 constant. This assumption is readily jus-
tified by the real-life observations of cell behaviors. It is
equivalent to assume the characteristic size of the cell to be
constant over time, which is practically the case given the
constant cytoplasmic internal volume of the cell. On the
other hand, considering the conformal orientation as constant
is similar to neglecting global solid-state-like rotation of the
cell, which is legitimate as the typical motion of a cell in-
volved in amoeboid crawling is primarily translational
�22,25�.

For simplicity and without loss of generality, we further
impose that the complex coefficient �1 remains constant over
time. This leads to having the TC remaining stationary and to
an additional simplification of the problem achieved by hav-
ing only �2 to be time dependent. Indeed, this is sufficient to
yield pseudopod extensions or retractions and to generate a
mechanotactic stimulus field equivalent to one encountered
in real-life aggregating systems. At this point, it is worth
emphasizing that for the TC to be able to generate a mecha-
notactic signal while not moving is of significant importance
as we shall see in Sec. V.

The triangular coefficient �2 is taken to have pulsatile
time variations of period T=2� /, characteristics of the cy-
clic nature of the mechanics of cellular motility �44�. Figure
4 presents these variations of the shape of the TC over a
period for given amplitudes of �1 and �2. For this idealized
cell boundary evolution, the general results of Sec. IV B can
be recast in a simplified set of equations. The driving veloc-
ity of the TC is obtained from Eq. �11� with ȧ−2=a1�̇2,

UTC
� �	� =

a1�̇2

	2 , �25�

while the complex potentials in the � space read

����� =
R0ei�0�̇2

�2 , �26a�

����� = 2R0ei�0�̇2	1/� + �1� + �2�2

2�2 + �1� − �3 
 . �26b�

Without loss of generality, the TC, being designed not to
move, is considered to be conformally centered, i.e., a0=0.

It is worth stressing that the idealization of the TC bound-
ary evolution in this section, while simplifying somewhat the
theoretical analysis, is primarily designed to account for
known biological factors focusing on the generation of
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pseudopod extensions as source of a mechanotactic stimulus
field. This is further studied in the next section.

V. MECHANOSENSING CAPABILITIES OF THE
STIMULUS FIELD

A. General considerations

The pulsatile variations of the shape of TC create a
mechanotactic stimulus field represented by Eq. �26� in the �
plane. The key issue here is to know whether a RC can be
directly guided by this stimulus field, i.e., whether it can
obtain information about the orientation of the stimulus field
with respect to itself.

The term “guiding,” be it direct or indirect, is due to
Dusenbery who gave a comprehensive discussion �the entire
chapter 17� about this topic in his monograph “Sensory Ecol-
ogy” �4�. Briefly, the term guiding denotes a behavioral re-
sponse of an organism detecting a stimulus that can be used
to move closer to a specific goal. In the present framework,
we study the possible response of the RC placed in the
stimulus field of mechanical origin generated by the TC. In
itself, the TC constitutes the ultimate goal for the RC in its
approach phase. The guiding is said to be direct when the
sensing organism follows a relatively straight-line path to the
goal. The chemotactic-based aggregation of Dd is one ex-
ample of direct guiding. In contrast, indirect guiding is typi-
cal of biased random walks employed by bacteria such as E.
coli �45�. The distinction is important because the direct ap-
proach requires that the sensing organism has some mecha-
nism for rapidly determining the direction to the goal �4�.
Note that we exclude here passive changes in the direction of
locomotion, such as cell reorientation, due to hydrodynamic
interactions, which is not based on a stimulus-response
mechanism.

In order for an organism to determine the orientation to-
ward its goal when placed in a stimulus field, it is necessary

to measure the spatial variation of the stimulus intensity.
Amoebae Dd cells have mechanoreceptors distributed along
their cell walls �14,15�, allowing them to perform an inte-
grated simultaneous sampling of the mechanical stress at
their surface, given the rapid signal mechanotransduction
�46�. The exact distribution of these sensors is still not
clearly known, although there is evidence that the protruding
front, also known as “head” of the cell wall, is more mecha-
nosensitive than the retracting “tail” �14,15�. For simplicity,
we assume that mechanotransducers are continuously distrib-
uted along the RC’s cell wall, measuring the root mean
square �rms� of the local surface stress. Details about the
mechanisms of cell responses to mechanical stimuli can be
found in the review by Janmey and McCulloch �13�. Al-
though there is a specific report of mechanosensitivity to
shear stress �16�, most of the studies commonly consider that
cells are mechanosensitive to the traction generated by the
local stress field, which includes both normal pressure and
shear stresses �13–15�.

To assess the capabilities of RCs in detecting the signal
originated from the TC with varying distance and bearing,
we consider different positions of the RC, centered at b=a0
+�ei�, at a distance � and a bearing � �measured from the
conformal axis of the TC� to the TC, as depicted schemati-
cally in Fig. 5. We further assume for simplicity that the RC
has an idealized circular shape of radius equal to the confor-
mal radius of the TC, namely, R0. As the mechanosensation
at the RC’s surface is considered, we also parameterize any
point M at the surface by a local angle � measured from the
axis making an angle � with respect to TC’s conformal axis.
This local parameterization is chosen for convenience, so
that, for any RC placed in the stimulus field, the value �
=� points toward the goal to reach, i.e., the TC, as shown in
Fig. 5.

B. Influence of the presence of the receiving cell on the
transmitted signal

When aggregation is initiated, the TC and RC are widely
separated. The Stokes flow generated by the TC is locally
perturbed by any RC present. In the current framework,
where only an isolated subsystem is considered �cf. Sec.
II A�, only one single RC participate to the local perturbation
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t = T/8

t = T/4

t = 3T/8

t = T/2

t = 5T/8

t = 3T/4

t = 7T/8

FIG. 4. Time evolution of the shape of the transmitting cell over
a period T. The constant digonal coefficient is �1=1 /5 and the
amplitude of the pulsatile triangular coefficient is taken as
�2=1 /3.
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of the mechanotactic stimulus field acting on it. Given the
large distance between the two cells, the enforcement of the
no-slip boundary condition on the RC’s surface can be ob-
tained by applying the method of reflection �32,47� and the
circle theorem for Stokes flow �48,49�, given RC’s assumed
circular shape.

The shape fingerprint Z=h���= �z−a0� / �R0ei�0� represents
a natural variable in this problem considered from the physi-
cal space standpoint. It can be seen as the general confor-
mally normalized variable based on the discussion in Sec.
III B. Owing to the biological factors that led to the ideali-
zation of the cell wall evolution presented in Sec. IV C, the
set of conformal elements �a0 ,R0 ,�0� is constant in time,
while the coefficient �2 in the Laurent series �10� of Z
=h��� has pulsatile variations and is the source of the stimu-
lus field. As mentioned in Sec. IV B, one seeks the expres-
sion of the various hydrodynamic fields of interest in the z
space or similarly in the Z space. To this aim, the inversion
of the shape fingerprint series h can be performed up to any
order; this inversion is guaranteed by the nature of the uni-
valent fingerprint h and the form of its Laurent series appear-
ing in Eq. �10�. For instance, up to the sixth order in 1 /Z, the
inversion gives

1

�
=

1

Z
+

1

Z3 +
�2

Z4 +
2�1

2

Z5 + O� 1

�6� , �27�

with �= �Z�. Subsequent higher powers of 1 /� can be found
accordingly. In practice, the assumed large distance between
the TC and the RC �i.e., ���=R0� allows us to considering
the leading-order terms in the following hydrodynamic quan-
tities. The general expression of the stress tensor � in terms
of the complex derivatives of the two complex potentials �
and � reads

	xx = 2� Re�2���z� − z̄���z� + ���z�� , �28a�

	yy = 2� Re�2���z� + z̄���z� − ���z�� , �28b�

	xy = 2� Im�z̄���z� − ���z�� . �28c�

Given Eqs. �25�, �27�, and �28�, we have access to the un-
perturbed stimulus field at the leading order

	xx = − 2��2 cos�t�Re� 4

Z3 +
6Z̄

Z4 � , �29a�

	yy = − 2��2 cos�t�Re� 4

Z3 −
6Z̄

Z4 � , �29b�

	xy = − 2��2 cos�t�Im�−
6Z̄

Z4 � , �29c�

in terms of the conformally normalized variable Z in the
physical plane, given �̇2=�2 cos�t�. As noted earlier, the
perturbed complex potentials, denoted �̃ and �̃, are obtained
through a “circular reflection” at the leading order, i.e., by
the joint application of the method of reflection and the circle
theorem for Stokes flow on the RC’s circular boundary. From

the general solution given in �30� for a problem with a cir-
cular boundary and the circle theorem for Stokes flow
�48,49�, one can prove that at the leading order, O�1 /�4�, the
perturbed potentials are

�̃�Z� = ��Z� , �30a�

�̃�Z� = ��Z� − R0�̇2 1

��̄ +
1

Z − �
�2 +

2��̄ +
1

Z − �
�

�� +
1

Z̄ − �̄
�3� ,

�30b�

where �=b /a1=b / �R0ei�0�. Hence, in the neighborhood of
the RC, the stimulus field reads

	̃xx = − 2��2 cos�t�Re	 4

Z3 +
6Z̄

Z4 + ��Z�
 , �31a�

	̃yy = − 2��2 cos�t�Re	 4

Z3 −
6Z̄

Z4 − ��Z�
 , �31b�

	̃xy = − 2��2 cos�t�Im	−
6Z̄

Z4 − ��Z�
 , �31c�

where

��Z� =
2

�Z − ��2	� 1

�̄3
−

1

�3� − 3� 1

�̄4�Z − ��
−

1

�4�Z̄ − �̄�
�


�32�

is directly connected to the derivative with respect to Z of
�̃−�, as per Eqs. �27� and �30b� at the prevailing leading
order.

When the RC is infinitely remote from the TC, the pertur-
bation of the stimulus field vanishes. Indeed in that case, �
tends to infinity and �1 /�� tends to zero. Hence we have �̃
=� and also ���Z��→0.

With hindsight, it may be noted that Eq. �31� �supple-
mented with Eq. �32�� is the nonlinear functional governing
the more general problem of determining TC’s complete set
of geometric characteristics based on mechanotransduction
at the RC’s surface. Intrinsically, this belongs to the broad
family of inverse problems which are generally not well-
posed problems. A sensitivity analysis reveals the level of
uncertainty associated with each unknown geometric param-
eters depending on the relative distance �= �Z� to the TC.
Independent local perturbation analyses show that the con-
formal elements �a0 ,R0 ,�0� have, respectively, their highest
correction term varying in 1 /�4, 1 /�3, and 1 /�3. This shows
that for a given distance ���1� away, the position �distance
and direction� a0 of the TC can be detected with 1 order
higher accuracy than its dimension �R0� or orientation ��0�.
However, it is critical to understand that the problem of di-
rect guiding, which is at the heart of mechanotactic cell-cell
signaling, is far less stringent than the inverse detection
problem. This fact is demonstrated in the following sections.
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C. Direct guiding

In terms of Dd aggregation through direct guiding, the
direction of TC relative to the RC is clearly of primary im-
portance. In the following, we focus our attention on this
directional guiding of a RC mediated by the signal transmit-
ted by the TC. Considering the mechanotransduced signal at
the RC’s surface, one can express the stress at any point M
locally positioned by � on the cell surface �see Fig. 5� by
expanding Eqs. �31� in which Z is taken as

Z� =
zM − a0

R0ei�0
=

�

R0
ei��−�0��1 +

R0

�
ei�� . �33�

As noted in Sec. II B, the mechanotactic signal is instantly
transmitted from the TC to the RC’s surface. However, the
effectiveness of mechanotransducers at the cell’s surface is
subject to a certain level of latency. In addition, the internal
process of signal integration often leads to a time averaging
of the mechanotactic signal �13�. Hence, the behavioral re-
sponse of the RC is based on the available signal directly
connected to the surface stress. The variations in time of the
surface stress being sinusoidal and identical for each compo-
nents, the signal can simply be taken as the time-rms surface
stress, denoted ��M� in the sequel. By definition

��M� = ���̃ · n̂�2�1/2 = �fN
2 + fT

2�1/2, �34�

where n̂ is the local unit outward normal vector and fN �re-
spectively, fT� is the normal �respectively, tangential� stress
expressed as

fN�M� = 	̃xx�Z��cos2�� + �� + 	̃yy�Z��sin2�� + ��

+ 	̃xy�Z��sin�2�� + ��� , �35a�

fT�M� = 	̃xy�Z��cos�2�� + ��� +
1

2
�	̃yy�Z�� − 	̃xx�Z���sin�2��

+ ��� �35b�

in terms of the perturbed stress tensor �̃, given by Eqs. �31�
and �32�, and using the parametrization Z� given by Eq. �33�.
The time rms in Eq. �34� simply leads to a factor 1 /�2 in
presence of sinusoidal time variations of the traction, and in

addition all the components of �̃ are in phase as can be seen
from Eqs. �31�.

The values of ����, for 0���2�, represent the com-
plete mechanotactic signal transmitted by the TC and avail-
able to the RC, which is deprived of sense of orientation. To
be directly guided toward the TC and initiate an approach
phase, a RC must find a unique way to determine the trans-
mitted signal direction, denoted as �TS, based on ����. By
the definition of the local coordinate system in Fig. 5, �TS
=� is the true answer. From a navigation standpoint, this
direction that the RC needs to be going is called the bearing
and is measured with respect to a fixed frame of reference
�defined here by the conformal x axis and its directly normal
axis, the y axis�. Hence, for each RC placed in the stimulus
field, the bearing is given by �b=�+�TS=�+�.

It is shown in the sequel that the detection by the cell of
the maximum value of ���� provides a unique input to the
elementary control system of the cell to decide the direction
it should be going. This unique input can be considered to be
the angle denoted as �max for which ���max� is maximum.
Note that when the RC moves, its exposition to the stimulus
field changes and therefore �max also changes, which math-
ematically means that �max is a function of �� ,��. Again
from the navigation standpoint, �max defines the direction
that the cell is actually going which is called the heading and
is measured by �h=�+�max in the chosen frame of reference.
To understand the influence of RC’s position �� ,�� in detect-
ing the transmitted signal direction �TS, we display two re-
lated results: the variations of the signal � with � for differ-
ent values of � and � in the stimulus field, and the map of the
values of the relative difference between �max and �TS in the
surroundings of the TC.

Figure 6 shows the variations of the mechanical stress at
the surface of several RCs, which confirm the possibility of
direct guiding based on the resolution of �max. For RCs lo-
cated along the lines �1=0, � /3, 2� /3, and �, we have
exactly �max=�TS. These values of �1 refer to the directions
of extension or retraction of the cell wall �see Fig. 4� due to
the pulsatile variations of �2�t�. For RCs not aligned along
the lines of pseudopod extension or retraction of TC’s wall,
�max is shifted with respect to �TS. The maximum relative
shift is 25% �respectively, 14%� at a distance �=10R0 �re-
spectively, �=5R0� for the value �3=� /2. It is obtained
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when the RC is equally subject to two pseudopods in the
directions �=� /3 and �=2� /3. However, for mechanosens-
ing cells situated slightly away from these “symmetry lines,”
the situation is much less critical. Indeed, cells along the
lines �2=� /4 and �3=3� /4 can sense a maximum stress that
is shifted by only 14% �respectively, 8%� at a distance �
=10R0 �respectively, �=5R0�. Comparing Figs. 6�a� and 6�b�,
one notices that the relative angular dispersion, �
= ��max /�TS−1�, of the signal maxima decreases with the dis-
tance � to the TC. Thus, despite this angular dispersion in the
signal, cells can still be directly guided by the mechanotactic
stimulus, which appears more “focused” as the RC moves
toward its goal. As expected, the intensity of the absolute
maxima increases when � decreases, i.e., when the RC gets
closer to the TC.

The analysis above is elucidated by considering the map
of the relative angular dispersion, �= ��max /�TS−1�, in the
stimulus field. This map is shown in Fig. 7 together with
one-dimensional variations of � along circular arcs in Fig.
8�a� and converging ray lines in Fig. 8�b�. These graphs con-
firm the earlier conclusions based on the variations of the
normalized time-rms surface stress. The symmetric feature of
the map of � is directly connected to the symmetry of the
pseudopods in the idealized cell boundary evolution consid-
ered herein �see Sec. IV C and Fig. 4�. With the given color
�respectively, grayscale� code for the flooded contour levels,
one can clearly see in blue �respectively, dark gray� the re-
gions where the angular dispersion is minimal �below 10%�.
It is likely that the direct guiding of the RC toward the TC is
ineffective in these regions, which are centered around the
directions of extension or retraction of the pseudopods cor-
responding to �k=k� /3, with k=0, . . . ,5. On the contrary, in
regions centered in between the directions of the pseudo-
pods, i.e., �k�=k�� /3+� /6, with k�=0, . . . ,5, the angular
dispersion is maximal and continuously decreases as the RC
gets closer to the TC, which relates to the focusing of the
mechanotactic signal mentioned above. In summary, the map
of the relative angular dispersion �together with its one-
dimensional counterparts in Fig. 8� reveals the relatively
high directivity of the mechanotactic signaling, especially

when compared to the concurrent chemotactic signaling
whose potential directivity is intrinsically limited by the dif-
fusive nature of its communication channel.

The above analysis is an investigation of the dependence
of the mechanotactic signaling with distance and direction. It
sheds light on this not well-documented signaling process for
the direct guiding of amoeboid cells. However, this analysis
does not allow one to conclude on the possible and complete
direct guiding of any RC cell placed in the stimulus field. For
that, a dynamic model of the stimuli-controlled locomotion,
accounting for the ubiquitous presence of noise, is required.
Such a model is introduced and discussed in the next section.

VI. MODEL FOR THE STIMULI-CONTROLLED CELL
MOVEMENT

A. Description of the model

We now consider the next level of complexity in model-
ing the initial stages of Dd aggregation—the movement of
the cells �RCs� in response to the mechanotactic stimulus
field generated by a TC as described in Sec. IV and further
discussed in Sec. V. To model stimuli-controlled locomotion,
we make the central assumption that the cell uses its mecha-
nodetecting capability as a sense of orientation. In other
words, the cell keeps moving in the local and varying direc-
tion given by the maximum of surface stress, i.e., given by
�max, as considered in the direct guiding in Sec. V C. Exactly
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how cells accomplish this through their internal control sys-
tem is unspecified; only the end result is modeled.

The question is to know whether a RC placed anywhere in
the stimulus field can actually reach its goal, i.e., the TC,
through a direct guiding motion based on the above model
rule. The continuous track path of any RC subject to the
above model is represented by small straight-line steps of
size � in the direction of the heading �h=�+�max presented
in Sec. V C. To best represent the real continuous movement
of an actual Dd cell, the step size must be small enough
compared to the cell’s characteristic length, i.e., ��R0. By
enforcing such a requirement, the outcome of that modeling
approach yields results independent of the step size.

The model devised here would not be realistic without
accounting for the ubiquitous presence of noise which may
have disruptive behavioral effects. This so-called behavioral
noise can be divided into two broad categories: the stimulus
noise and the response noise �4�. The stimulus noise, also
known as intensity noise, may have different origins such as
channel noise, environmental or background noise, and re-
ceptor noise. In the present framework, the channel, environ-
mental, and receptor noises are indistinguishable. In order to
account for the global effects of stimulus noise together with
external perturbing factors �such as the possible presence of
other cells in the neighborhood of the RC�, a fixed level of
background noise is considered throughout the stimulus
field. In addition, the response noise may have different ori-
gins such as motor noise and developmental noise which
cannot be appropriately included within the present idealized
modeling framework. In the sequel, the response noise is
therefore discarded and the stimulus noise may simply be
referred to as noise without any possible confusion.

Noise can generally be assumed to be random fluctuations
with a normal distribution �50�. In the sequel, the back-
ground noise is considered to have a normal distribution
fully characterized by its noise level, denoted NL and defined
as the ratio of the amplitude of noise to the amplitude of the
signal. The noise level can simply be expressed in terms of
the signal-to-noise ratio �SNR�, NL=SNR−1/2. To our knowl-
edge, there is no report in the literature of the actual magni-
tude of NL. However, and as discussed above, there are nu-
merous potential sources for mechanical noise which has to
be accounted for. The objective in the present work is to
prove that despite the presence of possibly high NL noise,
mechanotactic guiding remains effective.

B. Effects of the stimulus noise

Adding a given level NL of isotropic stimulus noise af-
fects the signal ���� and hence reduces the capability of any
RC to seek the best estimate for �TS. Consequently, the di-
rection �max detected and selected by the cell as its direction
of locomotion is affected. It is informative to visualize these
effects on maps of the relative angular dispersion, �
= ��max /�TS−1�, in the stimulus field. Three noise levels,
NL=10%, 25% and 50%, are considered and the maps of �
are shown in Figs. 9�a�–9�c� respectively. These maps are to
be compared to the reference map without noise presented in
Fig. 7.

As expected, the isotropic stimulus noise has an increas-
ing effect with the distance � to the TC, irrespective of the
NL of the maps in Fig. 9. From a modeling standpoint, the
effects of the stimulus noise readily improve the representa-
tion of the real environment by the model for the initial Dd
aggregation. Indeed, when considering the map of � without
noise �Fig. 7�, it has been noted that the angular dispersion
for cells placed very close to the directions �k of pseudopod
extensions or retractions is extremely low, so that one can
expect an almost perfect direct-guiding by the mechanotactic
signal even at very large distance � from the TC. This fact is
better appreciated in Fig. 8�b� for �=0 and �=� /30. In both
of these cases, the angular dispersion reaches a plateau of
low magnitude for large values of �, suggesting an almost
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FIG. 9. �Color online� Map of the relative angular dispersion,
�= ��max /�TS−1� affected by stimulus noise. The circular region, of
unit radius and centered at the TC, has been excluded as the stimu-
lus field is undefined at the origin. Three noise levels are consid-
ered: �a� NL=10%; �b� NL=25%; �c� NL=50%.
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unbounded detection range of the TC by the RC. In the pres-
ence of noise, one clearly notices in Fig. 9 that the detection
range is limited for all directions of motion; more precisely,
the lower the NL, the longer the detection range.

C. Track paths

In this section, we report the results of an implementation
of the model presented and characterized in Sec. VI A to
determine the track paths of collections of RCs placed at
different locations in the stimulus field. Note that even when
a collection of RCs is considered, we continue to use the
isolated subsystem assumption of Sec. II A. Each individual
direct-guided motion of a RC is considered only in the pres-
ence of the TC and without any other RCs, and the indepen-
dent motions for all RCs in the collection are then superim-
posed. We add that the tracking of the paths followed by the
RCs consist in tracking the paths of their respective confor-
mal centers, i.e., the centers of the cells, as the RCs are
assumed to have a circular shape �Sec. V A�.

First we consider two collections of RCs directly guided
in the absence of noise. The first collection is made of RCs
evenly distributed along a circle centered about the TC. The
corresponding track paths are represented in Fig. 10 and pro-
vide a very symmetric six-lobe pattern directly correlated
with the six pseudopod extensions or retractions producing
the mechanotactic signal. These track paths confirm the as-
sumptions given in Sec. V C and based on the map of rela-
tive angular dispersion: cells initially placed very close to the
pseudopod lines �k=k� /3, with k=0, . . . ,5, are subject to an
almost straight-line direct guiding toward the RC. On the
other hand, RCs initially located in between the pseudopod
lines, close to the lines �k�=k�� /3+� /6, with k�=0, . . . ,5,
are subject to less direct guiding, which is not surprising
given the high angular dispersion found there. However,
these results confirm the possibility of a direct guiding even
for the cells placed in these critical regions of maximal �. In
the absence of noise, the same pattern as the one in Fig. 10 is

observed when changing the value of the radius of the circle
on which the RCs are distributed. This leads to the strong
conclusion that, in the absence of noise, any cell placed in
the stimulus field �even at very large distances � from the
TC� can be directly guided by the mechanotactic signal.

As a further illustration, we consider a second collection
of RCs evenly distributed along two straight-line segments.
The associated track paths are given in Fig. 11 and are easily
explained by extending the same conclusions as for the cir-
cular distribution apply in that case.

Having considered these two ideal cases in the absence of
stimulus noise, we now turn to the noisy direct guiding of the
same collection of RCs evenly distributed along a circle. The
corresponding track paths for three different noise levels,
NL=10%, NL=25%, and NL=50%, are shown in Figs.
12�a�–12�c� respectively.

As expected, when the level of noise is increased, the
track paths become less and less straight and direct, even for
the cells located near an axis of pseudopod extension or re-
traction �k. This is in agreement with the analysis of the
maps of relative angular dispersion in the presence of noise,
shown in Fig. 9. At large distances from the TC, when the
RCs are initially released, this behavior is more apparent and
for large noise levels very closely resemble a two-
dimensional random walk �see Fig. 12�c��. This resemblance
to the patterns of 2D random walks is readily explained by
the fact that the effects of noise overcome those of the
mechanotactic signaling. Indeed, at distances ���0=15R0,
the amplitude of the mechanotactic signal is much lower than
the amplitude of noise which precludes effective direct guid-
ing. The guiding therefore is indirect until the RC finally
reaches a region of the stimulus field much closer to the TC
where direct guiding is recovered because of the increased
amplitude of the mechanotactic signal and the track paths
become less tortuous. The leading effects of direct guiding
are clearly visible for all noise levels in a circular region
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centered about the TC. The extent of this region, the direct-
guiding region �DGR�, is fully determined by the noise level.

In summary, in the presence of noise, the direct guiding is
still effective but only in the DGR centered around the TC,
the dimensions of which are controlled by the noise level.
Outside the DGR, the movement of the RCs is indirectly

guided leading to patterns characteristics of random walks.

D. Path length

A more quantitative analysis of the track paths is possible
by considering a simple metric for these paths based on the
path length denoted as �. To facilitate comparisons, the rela-
tive path length � /�0 is considered, where �0 corresponds to
the initial distance between the RC and the TC. The varia-
tions of � /�0 as a function of the initial angular position �0
�in the interval 0��0�� /6 given the symmetries of the
system� are shown in Fig. 13 in the absence of noise. As
expected from the analysis of Fig. 10, the path length is
minimal and equal to the initial distance �0 to the TC when
the RC is perfectly aligned with the pseudopod extension or
retraction at �0=0. Conversely, the relative path length is
maximal when the RC is initially aligned in between two
pseudopod extensions or retractions, here for �0=� /6. More-
over, for RCs initially aligned along the line �0=� /6, � /�0
rapidly increases with the distance �0 to the TC. For RCs
initially located at a distance �0=20R0 from the TC, there is
an almost 15% difference between the path lengths of two
RCs initially along the lines �0=0 and �0=� /6.

In the presence of a noise level of 10%, the above results
are significantly modified as can be seen in Fig. 14. For
initial distances �0�7.5R0, the relative path length is only
slightly affected. For larger distances, the path lengths are
increased for all values of �0 and for values �0�12.5R0, the
path lengths no longer exhibit an increasing trend with re-
spect to �0. Instead, the path lengths fluctuate around a mean
value practically constant in the interval 0��0�� /6. From
these observations, one can indirectly conclude that the ra-
dius of the DGR, �DGR, is close to 7.5R0 with NL=10%. The
same study for NL=25% �respectively, NL=50%� provides
�DGR�5R0 �respectively, �DGR�3R0�.

E. Eulerian pattern of initial aggregation

The study of the Lagrangian tracking of RCs in the stimu-
lus field of the TC presented in Secs. VI C and VI D suggests
the possibility of observing mesoscopic-scale patterns,
formed by surrounding RCs, characterized by the signaling
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motion of a microscopic TC—in this present case, the six
lobe patterns centered about the directions of extensions or
retractions of the TC. We obtain the pattern formed by large
numbers of surrounding RCs moving under the influence of
the mechanotactic signaling of a TC by computing the prob-
ability density function �PDF� of passage of a RC in the
stimulus field. Note that such an approach is more in line
with the Eulerian approach considered by experimentalists.
For the present results, the PDF is computed by randomly
releasing 16 million RCs in a given region of the stimulus
field and by tracking the cell positions as in Sec. VI C. Each
cell position is then mapped onto a 2D refined regular grid
comprising 5002 points. By properly normalizing the number
of passages at each grid point, one obtains the Eulerian map
of the PDF of passage of a stimuli-controlled RC, which is
shown in Fig. 15 in the absence of noise.

This map of the PDF of passage confirms the expectations
based on the Lagrangian tracking of RCs. A clear symmetric
six-lobe mesoscopic pattern is visible in Fig. 15. While the

specific symmetric feature of this Eulerian map is artificial in
that it is a result of a specific imposed evolution of the TC’s
cell surface, it is important to observe how the pseudopod
extension or retraction of the TC leads to a clear and intense
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mesoscopic lobe features in the PDF of passage. The exis-
tence of such lobes is another revealing feature of the high
directivity of the mechanotactic signaling, especially when
compared to chemotaxis. Indeed chemotactic signaling can-
not be directive due to its diffusive nature which tends to
homogenize the density of chemical released to generate the
signal. In this case, experimental mesoscopic observation of
such a lobe of the PDF of passage would suggest micro-
scopic TC pseudopod extension or retraction motions. It also
provides strong evidence for the existence of direct guiding
through mechanotactic signaling and possibly the quantifica-
tion of the stimulus noise in the system.

The presence of noise affects the map of the PDF of pas-
sage in the stimulus field as can be shown in Fig. 16 for three
different noise levels. The main effect induced by the pres-
ence of noise is to reduce the extent of the lobes which are
now confined to the directly guided region. This observation
is in good agreement with the Lagrangian observations in
Fig. 12.

We remark that, for the sake of theoretical simplicity and
clarity, we have considered somewhat idealized signaling
herein, but our formulation and approach are indeed quite
general and could be extended to model general cell signal-
ing encountered in nature. More importantly, the salient in-
sights and conclusions we obtain here for this idealized
mechanotactic signaling should apply to real-life mechano-
tactic signaling. We have shown the ability to decipher the
microscopic mechanotactic signaling produced by the TC by
observing the mesoscopic aggregative behavior of the RCs in
its neighborhood. Such lobes have been observed experimen-
tally and reported by Kessin in �51� �Fig. 1� for Dd cells
aggregating. A purely chemotactic explanation was proposed
by Kessin to explain the existence of these streams of Dd
cells. The mechanotactic signaling, however, was not consid-
ered in �51�. Despite the limitations of our model, we hy-
pothesize here the possible mechanotactic origin of these
streams of Dd experimentally observed.

VII. CONCLUSIONS

The effects of mechanotactic signaling in the initial ag-
gregation of amoeboid cells are investigated. A specific-
modeling approach based on known biological evidences is
devised to elucidate the hydrodynamic aspects of mechano-
taxis at premorphogenesis. This model suggests a signal de-
tection based on the resolution by each cell of the absolute
maximum of the mechanical stress at its surface. With this
signal detection, it was found that aggregation can indeed be
initiated by means of mechanotaxis.

In this framework, we quantify the cell-cell mechanical
signaling capabilities. The results we present show that a RC
can be directly guided by the TC through mechanotactic sig-
naling. By changing its shape, the TC generates a mechanical
signal transmitted through the fluid flow which leads to a
specific mechanical stress on any RC’s surface located in the
stimulus field. The resolution of the maximum of this surface

stress serves as an indicator of the transmitted signal direc-
tion. The analysis presented in this paper is based on an
idealized evolution of the shape of the cell but the math-
ematical theory allow for a general treatment of the cell
shape.

We show that a RC can detect the signal direction with a
limited angular dispersion, which decreases as the source is
approached. In real field situations, the mechanotactic signal
would be subject to ubiquitous mechanical noise. The effects
of background noises of varying levels are studied and reveal
that the noise level controls the extent of a directly guided
region centered about the TC. Outside that region, the cell’s
motility is no longer controlled by the mechanotactic signal
and hence the cell becomes indirectly guided.

The Lagrangian tracking of the path of RCs placed in the
stimulus field is performed and confirms the direct guiding of
all cells, including those placed in the regions of high angu-
lar dispersion of the mechanotactic signal. According to our
model, we can conclude that it is possible to initiate aggre-
gation of amoeboid cells based entirely on mechanotaxis.

The study of the PDF of passage through the stimulus
field reveals the presence of a high-intensity mesoscopic lobe
associated with each pseudopod extension or retraction of
the cell. This specific pattern confirms the high-directivity of
mechanotactic signaling and could serve as an experimental
mesoscopic indicator of the actual microscopic changes in
the cell shape. Given the straightforward generalization of
our modeling approach based on a rather idealized cell sig-
naling, the results and conclusions reported here should still
hold for complex signaling encountered in nature. It is ulti-
mately hypothesized that the pattern of streams of Dd ob-
served and reported by Kessin in �51� �Fig. 1� might have
also a mechanotactic origin.

The present analysis leads to the conclusion that mecha-
notaxis is a likely tropotactic mechanism of directed guiding
�4�, possibly concurrent with chemotaxis. The possible syn-
ergism or competition between these different mechanisms at
different stages of cell organization is not yet understood.
The fundamental physical laws governing these two mecha-
nisms are extremely different and hence they can be consid-
ered completely independently from one another. For in-
stance, any chemotactic model commonly available in the
literature could be incorporated in the present modeling ap-
proach to study the joint effect of mechanotaxis and chemo-
taxis. This model also highlights that mechanotaxis, by its
very nature, transmits the mechanical signal instantaneously
and potentially with a high directivity. In comparison,
chemotaxis is known to be slower in transmitting signals,
which are poor directionally given the diffusive nature of the
mechanisms involved in it �4�.
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