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We present a study of the propagation of three-dimensional (3D) bipolar electromagnetic ultrashort pulses in
an inhomogeneous array of semiconductor carbon nanotubes (CNTs) in the presence of a control high-frequency
(HF) electric field. The inhomogeneity is present in the form of a layer with an increased concentration of
conduction electrons, which acts as a barrier for the propagation of ultrashort electromagnetic pulses through
the CNT array. The dynamics of the pulse is described by a nonlinear equation for the vector potential of
the electromagnetic field (it takes the form of a 3D generalization of the sine-Gordon equation), derived
from the Maxwell’s equations and averaged over the period of the HF control field. By means of systematic
simulations, we demonstrate that, depending on the amplitude and frequency of the HF control, the ultrashort
pulse approaching the barrier layer either passes it or bounces back. The layer’s transmissivity for the incident
pulse is significantly affected by the amplitude and frequency of the HF control field, with the reflection
coefficient nearly vanishing in intervals that make up a discrete set of transparency windows, which resembles the
effect of the electromagnetically induced transparency. Having passed the barrier, the ultrashort pulse continues
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to propagate, keeping its spatiotemporal integrity. The results may be used for the design of soliton valves, with
the transmissivity of the soliton stream accurately controlled by the HF field.

DOI: 10.1103/PhysRevB.103.085111

I. INTRODUCTION

Modern laser technologies offer a variety of opportuni-
ties for generating ultrashort pulses corresponding to several
half-periods of field oscillations [1–4]. This has provided
the impetus for studies of the formation and propagation of
nonlinear electromagnetic waves in various media [5–12].
In this connection, graphene-based materials have attracted
attention as promising media for both basic research and
practical applications in the fields of photonics and optoelec-
tronics (e.g., see reviews [13,14] and references therein). In
particular, carbon nanotubes (CNTs)—quasi-one-dimensional
carbon macromolecules [15–17]—offer high potential for the
development of optoelectronic devices, based on the propaga-
tion of nonlinear electromagnetic waves, such as ultrafast laser
pulses. These may be photodetectors, solar energy converters,
transparent conductive surfaces, displays, etc.

From the point of view of the potential applications to
optoelectronics, interest in carbon nanotubes is due to the
peculiarity of their electronic structure. In particular, the non-
parabolicity of the dispersion of conduction electrons (the
dependence of the energy on the quasimomentum) leads to
a significant nonlinearity in the response of nanotubes to the
application of a moderate electromagnetic field with intensi-
ties starting from 103−104 V/cm (see. e.g., Ref. [18]). This
circumstance makes it possible to observe a number of unique
physical phenomena in nanotube media, including nonlinear
diffraction, self-focusing of laser beams, propagation of soli-
tons, etc. [19–21].

The possibility of propagation of infrared solitary elec-
tromagnetic waves in arrays of CNTs was first theoretically
established in the approximation of a uniform field along
the axis of nanotubes in a one-dimensional (1D) model in
Ref. [21]. Subsequently, the possibility of the propagation and
interaction of solitary electromagnetic waves in CNT arrays
was studied in a 2D model, using the same approximation as
mentioned above [22–24], and taking into account localiza-
tion of the field in directions orthogonal to the propagation of
the electromagnetic wave [25]. In Refs. [26,27], taking into
account the most fundamental 3D spatial localization of the
laser pulse field, the propagation and interaction of solitary
electromagnetic waves in nanotube arrays in the 3D geometry
has been studied.

The previous studies have established that the evolution
of electromagnetic waves in arrays of semiconductor CNTs
substantially depends on various physical factors, such as
the presence of various impurities, as well as static and dy-
namic inhomogeneities. In particular, doping a sample with a
uniformly distributed multilevel impurity can lead to a mod-
ification of the parameters of a propagating electromagnetic
pulse, as compared to the propagation in pure samples [28]. In
addition, dynamic inhomogeneities of the spatial distribution
of the concentration of conduction electrons in CNT arrays in-
duced by laser pulses can serve as mediators in the interaction

of extremely short pulses [27]. Besides that, the interaction
of ultrashort pulses with static localized inhomogeneities in
the array deserves special attention from the perspective of
possible applications (see, e.g., Ref. [29]). For example, as a
result of the interaction of the ultrashort pulses with a layer
carrying high electron density (HED), selective nature of the
pulse scattering by such a layer has been established, offer-
ing new possibilities for developing light control methods in
micro- and nanostructures [30–32].

The concept of controlling the dynamics of ultrashort
pulses, proposed in recent works, suggests various outcomes
of the interaction of a solitary wave with the structural in-
homogeneity of the medium, depending on both parameters
of the pulse itself and properties of the inhomogeneity. For
example, a pulse with an amplitude significantly exceeding
a certain threshold value can pass the HED layer, while a
pulse with the amplitude falling below the threshold will be
reflected from the layer. In this case, decrease in the thickness
of the inhomogeneity layer also facilitates the passage of the
pulse through such a layer. However, properties of media
acting as the waveguides are usually fixed by the manufac-
turing procedure. Parameters of the laser pulses cannot be
easily adjusted either if the pulse stream is generated by a
standard source. Therefore, possibilities for the design of the
control of the pulse dynamics in micro- and nanostructures
are limited, and it is relevant to develop a method for con-
trolling the dynamics of ultrashort pulses in inhomogeneous
nonlinear media by means of an independent tool. In this
work we demonstrate that externally applied high-frequency
(HF) electric field may provide such a tool, which acts by
dynamically modifying properties of the electronic subsystem
in the CNT array. The control HF field is switched on for a
time significantly exceeding the characteristic duration of the
extremely short pulse scattered by the HED layer. During the
presence of the control HF field, the pulse has the time to enter
the system, to adjust its parameters to the properties of the
medium—modified by this control HF field—and to interact
(i.e., to perform the act of scattering/collision, transmission,
or reflection) with the HED layer. The result is the creation
of transparency windows at specific values of the amplitude
of the control HF field, at which the reflection coefficient
practically vanishes. This effect is similar to the well-known
phenomenon of the electromagnetically induced transparency
[33–35]. Further, turning the external field on/off may allow
ultrafast switching of the interaction of ultrashort pulses with
the HED layer, which thus acts as a controllable semitrans-
parent mirror for the pulses. As a result, pulses with the
same parameters can either pass the layer or bounce back
from it, depending on the presence of the HF control field.
Thus, in this work we address the dynamics of 3D ultrashort
electromagnetic pulses in the bulk array of semiconductor
CNTs, with the HED layer embedded into it, which acts as
a controllable obstacle for the transmission of pulses through
the system.
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The rest of the paper is organized as follows. The system
is formulated in Sec. II, the basic evolution equation for the
electromagnetic field carrying the ultrashort pulse is derived
in Sec. III, and characteristics of the field are presented in
Sec. IV. Numerical results for the transmission of the pulse in
the CNT array and its interaction with the HED layer, in the
absence and presence of the HF control field, are systemati-
cally reported in Sec. V, where, in particular, the existence of
the above-mentioned transparency windows is demonstrated.
Finally, main findings of the work are summarized in Sec. VI.

II. SYSTEM

We consider the propagation of a bipolar solitary elec-
tromagnetic wave in the bulk array of single-walled semi-
conductor CNTs, embedded in an inhomogeneous dielectric
medium, under the influence of an external HF control elec-
tromagnetic field. The vector of the electric field of a bipolar
pulse should have opposite directions at different instants of
time at a fixed point. It is assumed that space between the
CNTs is filled with a dielectric, while the heterogeneity of the
array is represented by a layer with an increased concentration
of conduction electrons. The CNTs considered here are of
the zigzag type (m, 0), where integer m (different from a
multiple of three for semiconductor nanotubes) determines
the CNT radius, R = mb

√
3/2π , where b = 1.42 × 10−8 cm

is the distance between adjacent carbon atoms [15–17]. The
CNTs are arranged in such a way that their axes are parallel
to the common x axis, and an ultrashort laser pulse propagates
along the z axis, that is, in a direction perpendicular to CNT
axes. In this case, the electric field of the pulse, E = {E , 0, 0},
is collinear to the x axis, see Fig. 1. We assume that the overlap
of wave functions of electrons between adjacent CNTs is
negligible (no tunneling of electrons between adjacent nan-
otubes), and the system under consideration is electrically
quasi-one-dimensional, featuring conductivity only along the
x axis.

Further, we assume that, in addition to the field of the
ultrashort electromagnetic pulse, the system includes an ex-
ternal control HF electric field E1 = {E1, 0, 0}, with E1 =
E10 cos(ω1t + α), where E10, ω1, and α are the amplitude,
frequency and phase shift of the control field. We also as-
sume that frequency ω1 significantly exceeds the inverse of
the characteristic pulse’s temporal width: ω1 � 2π/�t pulse.
HF field E1 may be realized by exciting transverse standing
electromagnetic wave modes of the embedding waveguide, by
means of an appropriate laser source.

The CNT array, which is a discrete structure at the micro-
scopic level, is considered in this paper in the approximation
of a continuum medium, in the context of the interaction with
the electromagnetic pulse and the external HF radiation (the
control field). This approximation is valid for a wide range
of system’s parameters—in particular, when the wavelength
of the external HF radiation and the characteristic distance of
the variation of the pulse’s field substantially exceed the sep-
aration between adjacent CNTs, as well as the mean-free path
of conduction electrons along the CNT axis. For example, the
CNT radius R ≈ 5.5 × 10−8 cm and m = 7 produce the sepa-
ration between them (sufficient to ensure the conductivity of
in the CNT array only along the x-axis)—even if substantially

FIG. 1. Geometry of the system: (a) Schematic representation
of an array of nanotubes and the orientation of vectors of physical
quantities in the Cartesian coordinate system. (b) Location of a layer
of increased electron concentration.

exceeding radius R—as negligibly small in comparison with
wavelengths of the electromagnetic radiation in the infrared
range.

Given the orientation of the coordinate system axes relative
to the nanotube axis chosen in Fig. 1, the electron energy
spectrum for CNTs takes the form of

ε(px, s)=γ0

√
1+4 cos

(
px

dx

h̄

)
cos

(
π

s

m

)
+4 cos2

(
π

s

m

)
,

(1)
where γ0 = 2.7 eV, the electron quasimomentum is p =
{px, s}, px is the projection of the quasimomentum of the
conduction electron onto the CNT axis, and s is an integer
characterizing the momentum quantization along the perime-
ter of the nanotube, s = 1, 2, . . . , m. Here m is the number
of hexagonal carbon cycles forming the circumference of a
nanotube, γ0 is the overlap integral, and dx = 3b/2 [15–17].

We solve the problem in the semiclassical approximation,
thus requiring the following conditions to be satisfied: h̄ω0 �
2γ0 (ω0 is the characteristic frequency of the electronic sub-
system of CNTs), |Ee|d � 2γ0, |E1e|d � 2γ0, h̄/�tpulse �
2γ0. We adopt one more important assumption regarding the
ratio of the duration of the electromagnetic pulse, �tpulse,
relaxation time trel of the conduction current along the axis of
the nanotubes, and the time interval �t for observing the evo-
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lution of the electromagnetic field in the system. Specifically,
we assume that the observation time substantially exceeds
the characteristic pulse duration, but is still shorter than the
relaxation time: �tpulse � �t < trel. This condition allows us
to maintain the collisionless approximation, in which we can
neglect the influence of collisions of electrons with defects of
the CNT array on the evolution of the conduction current and
pulse’s electromagnetic field. It should be noted that typical
scattering times are strongly temperature dependent [36], as
trel ∝ sinh(1/T ). Thus, the collisionless approximation may
be readily maintained by appropriately cooling the experimen-
tal sample.

III. THE EVOLUTION EQUATION FOR THE
ELECTROMAGNETIC FIELD OF SHORT PULSES

A. Density of conductivity electrons

Starting from the full system of the Maxwell’s equations
[37,38], we derive the following wave-propagation equation,
in the geometry under the consideration:

ε

c2

∂2A

∂t2
− ∂2A

∂y2
− ∂2A

∂z2
− 4π

c
j = 0, (2)

where A(x, y, z, t ) and j(x, y, z, t ) are the projections of the
vector potential A = {A, 0, 0} and current density j = { j, 0, 0}
onto the x axis, and c is the speed of light in vacuum. The elec-
tric field of the laser pulse is then E = −c−1∂A/∂t [37,38].

The nonuniformity (localization) of the field along the x
axis drives evolution and spatial nonuniformity of the elec-
tron concentration in the sample, due to the action of the
conductivity along the axis of the nanotubes, while the field
nonuniformity along directions orthogonal to the axes of the
nanotubes does not contribute to the redistribution of the
electron concentration, due to negligible overlap of the wave
functions of the electrons in adjacent nanotubes and the ab-
sence of conductivity in the (y, z) plane. Full analysis of the
accumulation of electric charge and, accordingly, taking into
account the field of this charge is a separate problem that is be-
yond the scope of this work. However, as shown by numerical
simulations performed earlier (see Refs. [25–27]), differences
in electron concentration (dynamic inhomogeneities) emerg-
ing in the course of the passage of electromagnetic pulses
in the sample have the magnitude of few percent relative to

the initial equilibrium concentration, n0. In this case, there
is no significant disturbance in the dynamics of the pulses
with respect to the results obtained in the framework of the
approximating admitting uniform field along the CNT axis
(see, e.g., Ref. [22]). Thus, when considering ultrashort elec-
tromagnetic pulses, subject to the above-mentioned condition
�tpulse � trel, the nonstationary disturbance in the concentra-
tion of conduction electrons may be neglected.

Based on these considerations, we assume that the distribu-
tion of the concentration of conduction electrons in the sample
remains approximately constant, in accordance with the ap-
proximation of the uniform electric field acting in the axial
direction. Thus, equations for the concentration of conduction
electrons and scalar potential may be excluded from the sys-
tem under the consideration. As a result, for the propagation
of the short electromagnetic pulse through the CNT array, the
evolution of the field in the array is described, with reasonable
accuracy, by the single Eq. (2) for the vector potential.

The projection of the conduction current density j onto
the CNT axis is determined using the approach developed in
Refs. [39,40], which yields

j = 2e
m∑

s=1

∫ +π h̄/d

−π h̄/d
vx f (px, s)d px, (3)

where e is the electron charge (e < 0), vx and f (px, s) are the
electron velocity and distribution function over quasimomenta
px, and numbers s characterize, as said above, the quantization
of the electron momentum along the perimeter of the nan-
otube. Factor 2 in Eq. (3) takes into account the summation
of electrons over spins, and the integration over the quasimo-
mentum is carried out within the first Brillouin zone. Using
the expression for the energy of electrons (1) in determining
their velocity vx = ∂ε(px, s)/∂ px, and taking into account the
Fermi-Dirac distribution of electrons according to Eq. (3), we
obtain an expression for the current density (further details of
the derivation can be found in recent work [27]):

j = −en
dx

h̄
γ0

∞∑
r=1

Gr sin

(
rA

edx

ch̄

)
. (4)

Here, n is the concentration of conduction electrons at a given
point in the volume of the sample, and coefficients Gr are
determined as

Gr = −r

∑m
s=1

δr,s

γ0

∫ +π

−π
cos(rθ )

{
1 + exp

[ θ0,s

2 + ∑m
q=1 θq,x cos(qθ )

]}−1
dθ∑m

s=1

∫ +π

−π

{
1 + exp

[ θ0,s

2 + ∑m
q=1 θq,x cos(qθ )

]}−1
dθ

, (5)

where θr,s = δr,s(kBT )−1, kB is the Boltzmann constant, T
is temperature, and δr,s are coefficients of the expansion of
electron energy (1) in the Fourier series [41],

δr,s = dx

π h̄

∫ +π h̄/d

−π h̄/d
ε(px, s) cos

(
r

dx

h̄
px

)
d px. (6)

B. Introducing of the control high-frequency (HF) electric field

The presence of the field of the ultrashort pulse and exter-
nal (control) HF electric field can be taken into account by

replacing A → A + A1 in the expression for current density
(4). Taking into regard the definition of the electric field,
E1 = {E1, 0, 0} = −c−1∂A1/∂t , this replacement amounts to

A → A − E10
c

ω1
sin(ω1t + α). (7)

Further, substituting Eq. (7) into expression (4) for the current
density, and averaging the result over period 2π/ω1 of the
control HF electric field, we obtain an effective expression for
the current density arising in the sample under the combined
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action of both the short-pulse and control fields:

〈 j〉 = −en
dx

h̄
γ0

∞∑
r=1

J0

(
r
|eE10|dx

h̄ω1

)
Gr sin

(
rA

edx

ch̄

)
, (8)

where J0 is the zeroth-order Bessel function [41] (see Ap-
pendix A for full details).

C. High-electron-density (HED) layer

An increase in the concentration of conduction electrons in
a particular layer can be achieved, for example, by introducing
donor dopants at the stage of fabrication of the sample (a
detailed discussion of technical aspects of doping the CNT
array by donors is beyond the scope of this theoretical paper).
We stress that each segment of the sample is assumed to
be electroneutral; in particular, in the HED layer, the larger
charge density of free electrons is compensated by a balancing
higher concentration of ionized dopants.

We assume that the HED layer is a region of thickness
δzimp, placed parallel to the CNT axes and perpendicular
to the axis along which the ultrashort electromagnetic pulse
propagates, see Fig. 1. We model the profile of the elec-
tron concentration in the sample by a natural Gaussian, cf.
Ref. [31]:

n(z) = nbias + (
nmax

imp − nbias
)

exp

{
−

(
z

δzimp

)2}
, (9)

where nmax
imp is the maximum concentration of conduction elec-

trons in the layer, and δzimp is its half-width. The concentration
of conduction electrons is assumed constant in any part of the
(x, y) plane.

D. The effective equation for the vector potential

Substituting the expression for the conduction current den-
sity (8) into Eq. (2), and taking into account the electron
concentration profile (9), we obtain the following effective
equation for the evolution of the vector potential of the ul-
trashort pulse propagating through the CNT array, under the
action of the control (external) HF field:

∂2�

∂τ 2
− ∂2�

∂ξ 2
− ∂2�

∂υ2
− ∂2�

∂ζ 2

+ η(ζ )
∞∑

r=1

J0(κr)Gr sin(r�) = 0. (10)

The notation used in Eq. (10) is: � = (edx/ch̄)A is the di-
mensionless projection of the vector potential of the ultrashort
pulse onto the CNT axis;

τ = ω0t/
√

ε, ξ = xω0/c, υ = yω0/c, ζ = zω0/c

(11)

are dimensionless time and spatial coordinates; ε is the av-
eraged relative dielectric constant of the sample (for further
details, see Ref. [42]); η(ζ ) = n/nbias is the reduced distri-
bution of the concentration of conduction electrons in the
sample, calculated as per Eq. (9); and coefficients Gr are
given by dimensionless expressions (5) that decrease with the

increase of r. Further, the quantity

κ = |eE10|dx

h̄ω1
, (12)

characterizes the control HF electric field, and ω0 =
2|e|dxh̄−1(πnbiasγ0)

1/2
is a characteristic frequency of the

electronic subsystem of CNTs. With parameters used in the
paper (see below), it is ≈ω0 = 7.14 × 1012s−1, corresponding
to the vacuum wavelength λ0 = 264 μm, which belongs to
the far-infrared domain. The central frequency of the waves
under the consideration, typically determined by 1/�tpulse,
belong to the same range. As a consequence, high frequency
ω1 may be chosen in the midinfrared domain or even at
the highest-frequency edge of the far-infrared band. Thus,
Eq. (10) describes the evolution of the self-consistent field of
an the ultrashort pulse interacting with the electronic subsys-
tem of the CNT array, driven by control HF electromagnetic
field.

IV. CHARACTERISTICS OF THE SHORT-PULSE’S FIELD

For illustrating the localization of the electromagnetic
pulse in space, we will use the normalized electromagnetic
energy density of the wave, E2 ≡ W (ξ, υ, ζ , τ ). Taking into
account relation E = −c−1∂A/∂t , the energy density of the
field selected above can be represented as

W = W0

(
∂�

∂τ

)2

, (13)

W0 = E2
0 , E0 ≡ −h̄ω0/(edx

√
ε). (14)

When the electromagnetic pulse interacts with the HED
layer, in the general case the incident pulse splits in trans-
mitted and reflected wave packets. The ratio of their energies
depends on various factors, including characteristics of the
incident pulse, as well as parameters of the layer with an
increased electron concentration [30–32]. As characteristics
of the result of the interaction of the ultrashort pulse with
the layer, we define transmission and reflection coefficients,
following Refs. [31,32] :

Kpass =
∫ +∞

0 dζ
∫ +∞
−∞ dυ

∫ +∞
−∞ dξW (ξ, υ, ζ , τ∞)∫ +∞

−∞ dζ
∫ +∞
−∞ dυ

∫ +∞
−∞ dξW (ξ, υ, ζ , τ∞)

, (15)

Krefl =
∫ 0
−∞ dζ

∫ +∞
−∞ dυ

∫ +∞
−∞ dξW (ξ, υ, ζ , τ∞)∫ +∞

−∞ dζ
∫ +∞
−∞ dυ

∫ +∞
−∞ dξW (ξ, υ, ζ , τ∞)

, (16)

where τ∞ corresponds to any instant of time taken after com-
pletion of the interaction of the pulse with the layer, when
the pulse is already located at a sufficiently large distance
from the layer, and the field’s energy density at the location
of the layer is negligible in comparison to the maximum
pulse’s energy density. Coefficients Kpass and Krefl, defined by
Eqs. (15) and (16) represent, severally, the ratio of the energy
of the transmitted and reflected wave packets to the total field
energy in the entire calculation region. The system considered
in this paper being conservative, the coefficients are subject
to relation Krefl = 1 − Kpass, which is a consequence of the
energy conservation [43].

If the energy of the wave packet passing through the layer
of the increased electron concentration substantially exceeds

085111-5



EDUARD G. FEDOROV et al. PHYSICAL REVIEW B 103, 085111 (2021)

the energy of the reflected wave packet (Kpass � Krefl), then
the electromagnetic pulse passes through the layer. Otherwise,
when the energy of the reflected wave packet substantially
prevails over the energy of the transmitted one (Kpass � Krefl),
this outcome is identified as the reflection of the electro-
magnetic pulse. At certain values of the system parameters,
specifically, at the threshold value of the initial velocity of
the incident pulse, it splits in two wave packets with approx-
imately equal energies (Kpass ≈ Krefl), which, after interacting
with the layer of the increased electron concentration, propa-
gate in opposite directions.

V. NUMERICAL RESULTS

A. Initial conditions: The shape of the ultrashort
electromagnetic pulse

Equation (10) for the vector potential, which governs the
evolution of the field of the ultrashort pulse in the inhomoge-
neous CNT array under the action of the control HF electric
field, is a 3D generalization of the sine-Gordon equation.
As it does not admit exact analytical solutions, we carried
out numerical simulations, taking into account the electron
density-distribution profile (9). Following the approach elabo-
rated in previous works (see Ref. [32] and references therein),
for the initial condition we take a product of the snapshot of
the dimensionless projection �‖(ζ , τ0) of the field’s vector
potential onto the ξ axis of the CNTs at fixed time moment,
τ = τ0, and the initial distribution of the field in the (ξ, υ )
plane, orthogonal to the propagation direction of the pulse:

�(ξ, υ, ζ , τ0) = �‖(ζ )�⊥(ξ, υ ). (17)

We select the profile �‖(ζ , τ0) corresponding to the com-
monly known breather solution of the sine-Gordon equation
[44],

�‖(ζ , τ ) = 4 arctan

{(
1

�2
− 1

)1/2 sin χ

cosh μ

}
, (18)

where

χ = σ�
τ (ζ − ζ0)U√

1 − U 2
, (19)

μ = σ {τU − (ζ − ζ0)}
√

1 − �2

1 − U 2
, (20)

where U = u/v is the ratio of the initial propagation velocity
(19) of the pulse along the ζ axis to the speed of light in
the medium, v = c/

√
ε; ζ0 is the dimensionless coordinate of

the center of mass of the pulse along the ζ axis at the time
moment τ = τ0; � ≡ ωB/ω0, with self-oscillation frequency
of the breather ωB (0 < � < 1); σ ≡ √

G1; and coefficients
Gr are calculated using Eq. (5).

A Gaussian was chosen as the transverse profile of the
pulse’s field, which is adequate in many settings similar to
the present one [45–47]:

�⊥(ξ, υ ) = exp

(
−ξ 2 + υ2

w2
0

)
, (21)

where w0 is the initial transverse size of the pulse at τ = τ0.
Taking into regard Eqs. (18)–(21), the projection of the elec-

tric field strength of the pulse onto the CNT axis at τ = τ0

is

Ex = Emax
cos χ cosh μ − U (�−2 − 1)1/2 sin χ sinh μ

cosh2 μ + (�−2 − 1) sin2 χ

× exp

(
−ξ 2 + υ2

w2
0

)
, (22)

where Emax = 4E0σ
√

1 − �2/
√

1 − U 2.
The shape of the electromagnetic pulse generated by initial

conditions (18)–(22) periodically changes. It is called bipolar
because electric field (22) takes both positive and negative val-
ues. The characteristic duration of the pulse can be estimated
as (cf. Ref. [32])

�tpulse = 2
ln(2 + √

3)

σω0

√
ε

U

√
1 − U 2

√
1 − �2

. (23)

B. System’s parameters

As an environment for modeling the propagation of the
ultrashort electromagnetic pulse, we recall that we choose the
CNT array of the zigzag type (m, 0): m = 7, γ0 = 2.7 eV, b =
1.42 × 10−8 cm, dx ≈ 2.13 × 10−8 cm, nbias = 1016 cm−3, at
temperature T = 293 K. We assume that the array is embed-
ded in a dielectric matrix with the effective dielectric constant
ε = 4 (see Ref. [32] and references therein).

Dimensionless parameter U [see Eqs. (19) and (20)] is
varied within interval U ∈ (0.5; 0.999). Extreme values U >

0.999 were not considered due to limitations imposed by the
numerical scheme. On the other hand, at U < 0.5, the longi-
tudinal width of the pulse begins to approach the value of the
distance traveled by the pulse over a duration ∼trel, which is
of no significant practical interest.

The dimensionless frequency � of internal oscillations of
the initial pulse (18) was varied in interval � ∈ (0.1; 0.9). As
� decreases, the width of the pulse along the ζ axis decreases
too, the shape variation being insignificant at � < 0.5. For
� > 0.9, the width becomes comparable to the distance trav-
eled by the pulse over time ∼trel. Transverse width of the pulse
was varied in the range of 1.0 � w0 � 10.0.

When modeling the profile of the electron concentration in
the sample, we varied values of parameter ηmax

imp ≡ nmax
imp /nbias

that determines the maximum electron concentration in the
inhomogeneity layer, see Eq. (9), in the range of 1 � ηmax

imp �
100. The dimensionless thickness of the HED layer, δζimp =
δzimpω0/c, was varied in the range of 0.05–0.5. We stress that
the use of the collisionless approximation (which makes it
possible to consider the system as a conservative one) is justi-
fied if the evolution time is limited by the relaxation time trel.
In particular, with trel ≈ 10 ps, the ultrashort electromagnetic
pulse travels distance z � ctrel/

√
ε ≈ 0.15 cm in the medium

under the consideration.

C. Interaction of the ultrashort pulse with the
high-electron-density (HED) layer

To solve Eq. (10) numerically with initial conditions
(18)–(22), we used an explicit finite-difference three-layer
cross-type scheme for hyperbolic equations described in
Refs. [48,49] and adapted for the 3D model using the
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FIG. 2. Distribution of the field normalized energy density W (ξ, 0, ζ , τ ) in the CNT array, at various moments of dimensionless time
τ = ω0t/

√
ε, in the case when the incident laser pulse is reflected from the high-electron-density (HED) layer, placed at ζ = 0, in the absence

of the control (external) HF field [κ = 0, see Eq. (12)]: (a) τ = 0; (b) τ = 3.0; (c) τ = 6.0; (d) τ = 9.0. The dimensionless coordinates are
ξ = xω0/c and ζ = zω0/c [see Eq. (11)]. The color code shows values of the energy density normalized as W/W0 [see Eq. (14)], the yellow
and blue areas corresponding to the maximum and minimum values of the field energy density, respectively.

approach reported in detail for the 2D setting in Ref. [31].
The calculations produced the electromagnetic field, � =
�(ξ, υ, ζ , τ ), and the respective field energy density was
found as per Eq. (13).

It was thus found that, depending on values of the sys-
tem’s parameters, various scenarios of the interaction of the
ultrashort electromagnetic pulse with the HED layer are pos-
sible, leading to the passage of the layer or reflection from
it. The outcome is determined by control parameters, which
are characteristics of the electromagnetic pulse itself (such as
the speed of the incident pulse) and the layer (its thickness
and the peak concentration of conduction electrons in it). The
passage of the layer by the pulse is, naturally, enhanced by
both the increase of the incidence speed and the decrease
of the layer’s thickness and electron concentration in it, cf.
Ref. [32] and references therein. The reflection of short pulses
from the HED has a simple explanation. With an increase in
the concentration of carriers in the impurity band, the current
induced by the incident pulse increases too. Thus, the impu-
rity region becomes more conductive, in comparison to the
homogeneous sample, and, as a consequence, more strongly
reflects the electromagnetic wave [32]. On the other hand, a
faster moving pulse has higher energy, which makes it is easier
for it to overcome the effective potential barrier created by the
HED layer [44].

Parameters of the waveguide medium are fixed by the
manufacturing technology, therefore they cannot be changed
to control the pulse-layer interaction. Parameters of the pulse
may be altered, but applications may make it necessary to
control the behavior of pulses with fixed parameters, created
by standard sources. In this context, an essential option, devel-
oped in this work, is to change outcomes of the interaction by
means of the control HF field, i.e., its amplitude and frequency
may be used as efficient control parameters. In fact, the control
effect may be achieved not only by varying these parameters,
but also by turning the external field on/off. We present here
results of modeling the propagation of short electromagnetic
pulses in the inhomogeneous CNT array, for fixed parameters
of the pulse and HED layer, both in the absence or presence
of the control HF field.

Figures 2 and 3 display the interaction of the ultrashort
electromagnetic pulse with the HED layer for various values
of strength κ [see Eq. (12)] of the control HF field and fixed
values of the initial pulse’s parameters � = 0.5 and w0 = 2.0.
In this case, the maximum value of the electric field of the
pulse is |Ex|max ≈ 6.1 × 105 V/cm [see Eq. (22)], and its du-
ration is �tpulse ≈ 0.67 ps, see Eq. (23). For the definiteness,
we have selected the following fixed values of parameters of
the HED layer: ηmax

imp = 30 and δζimp = 0.1.
Figures 2 and 3 display the distribution of the field energy

density of the ultrashort pulse, W (ξ, 0, ζ , τ ), see Eq. (13),
in the (ξ, ζ ) plane (at υ = 0) at various moments of the di-
mensionless time, τ = ω0t/

√
ε. The normalized field energy

density is represented by colored-coded values of W/W0, with
W0 defined as per Eq. (14). The horizontal and vertical dimen-
sionless coordinates are ξ = xω0/c and ζ = zω0/c, which
are defined above in Eq. (11). With the values of the sys-
tem’s parameters selected above, ξ = 1 and ζ = 1 correspond
to distance ≈4.2 × 10−3 cm. Note that in these figures we
present the distribution of the energy density only in the (ξ, ζ )
plane (at υ = 0), as it is identical to that in the (υ, ζ ) plane.

Figure 2 shows an example of the reflection of the ultra-
short electromagnetic pulse from the HED layer in the absence
of the control HF field (κ = 0). The initial pulse’s speed is
taken as U = 0.8, which corresponds to the initial speed u =
0.012 cm/ps in physical units. In this case, the transmission
and reflection coefficients, defined by Eqs. (15) and (16), are
found to be Kpass ≈ 0.0143 and Krefl ≈ 0.9857, respectively,
confirming the nearly complete reflection of the incident pulse
(small-amplitude transmitting waves are not visible in Fig. 2).

Figure 3 shows the opposite situation, viz., the passage
of the pulse, with the same parameters as in Fig. 2, through
the same HED layer, in the presence of the control HF field
with amplitude E10 = 5.8 × 106 V/cm and frequency ω1 =
9.4 × 1013 s−1, which corresponds to κ ≈ 2.0, as per Eq. (12).
In this case, the transmission and reflection coefficients are
K pass ≈ 0.9196 and Krefl ≈ 0.0804, respectively, which con-
firms the practically complete passage, with a small reflected
wave being virtually invisible in Fig. 3. Note that, at κ ≈ 2.0,
significantly stronger diffraction spreading of the pulse is
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FIG. 3. The same as in Fig. 2, but for the case when the incident pulse passes the HED layer, in the presence of the control HF field, with
strength κ = 2.0 [see Eq. (12)]: (a) τ = 0; (b) τ = 3.0; (c) τ = 6.0; (d) τ = 9.0.

observed, in comparison to the case shown in Fig. 2, as in
present case the pulse propagates in the medium with prop-
erties of the electronic subsystem dynamically modified by
the control HF field, therefore self-focusing properties of this
medium are less pronounced in comparison with the case of
κ = 0.

Figure 4 shows dependencies of the reflection and trans-
mission coefficients Kpass and Krefl on initial speed U ,
longitudinal width and duration (for a fixed value of strength
κ of the control HF field), and on κ (for a fixed value of U ).
As can be seen in Fig. 4(a), the transmission and reflection
coefficients increase and decrease, respectively, with the in-
crease of velocity U , cf. Ref. [32]. When the initial velocity
of the incident ultrashort pulse significantly exceeds a certain
threshold value, U � Uthr, the passage of the pulse through
the HED layer prevails over the reflection. At U = Uthr the
transmission and reflection coefficients are equal, Krefl(Uthr ) ≈
Kpass(Uthr ) = 1/2, with the incident pulse splitting in two ap-
proximately identical wave packets, one of which continues
to move in the original direction, while the other one bounces
back. Figure 4(a) shows that, with the increase of strength κ of

the control HF field, the threshold velocity Uthr shifts to lower
values. In other words, the control field upholds the passage
of the short pulse through the HED layer.

In Fig. 4(b), the coefficients become equal, Kpass = Krefl, at
strength κ of the control field equal to the respective threshold
value, κthr. A noteworthy result, clearly seen in the figure, is
that Kpass and Krefl vary nonmonotonously as functions of κ

at κ > κthr. In particular, the reflection coefficient features al-
most zero values at its local minima, which may be considered
as transparency windows of the medium for the propagation
of the ultrashort electromagnetic pulses.

Using Eq. (8), and taking into account the fact that, in a
rough approximation, all Gr with r �= 1 can be neglected, the
current in the absence of HF field can be expressed as

〈 j〉 ≈ −en
dx

h̄
γ0J0

(
r
|eE10|dx

h̄ω1

)
G1 sin

(
rA

edx

ch̄

)
, (24)

i.e., due to the electronic properties of the CNTs, it is a
periodic function of the vector potential. The external HF field
acts as a phase shift in this periodic function. Only the mean
value of the current over the fast oscillations has an effect on

FIG. 4. (a) The transmission and reflection coefficients, Kpass and Krefl (the solid and dashed lines, respectively) as functions of the initial
speed U of the incident electromagnetic pulse, for fixed values of strength κ of the control field attached to each curve. (b) The same coefficients
as functions of κ , at fixed values of U attached to the curves. In both panels, marked are threshold values Uthr and κthr, at which the transmission
and reflection coefficients are equal.
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FIG. 5. The schematic of a soliton valve, based on the HED layer embedded in the CNT array. (1) In the absence of the control HF field,
the incident pulse is reflected by the barrier layer. (2) The application of the control field unlocks the barrier, letting the pulse pass through it.

the infrared pulse propagation but, due to this dependence,
this mean value vanishes for specific values of the HF field
intensity only (unless either the infrared pulse or the HF field
strongly dominates). These values correspond to a specific
value of the parameter κ , which can be defined as the ratio
of two energies, say κ = WCNT/WHF, where WCNT = E10edx

is the typical magnitude of the energy of the electric dipolar
momentum of the CNT in the HF field, and WHF = h̄ω1 the
energy of the HF field photon. The transparency windows ap-
pear thus as a resonant effect, which occurs when the photon
energy matches the energy of the CNT dipolar momentum.

This effect resembles the phenomenon of the electromag-
netically induced transparency (EIT) [33–35,50–53], where
the photonic resonance is the key factor. The main difference
between the problem under consideration and the problem
with EIT is that the EIT effect is observed in an environment
in which an electromagnetic field propagates in a medium
considered as a set of discrete well-separated energy levels of
atoms. In our case, the electromagnetic field propagates within
the medium of electrons located in the conduction band (or
holes in the valence band) of the carbon nanotubes. The spec-
trum in our case is continuous. We also note that the EIT effect
leads to a deceleration of the pulse of the electromagnetic
field. This is achieved by saturating the population at certain
levels (depending on the level scheme). In the present study,
given the continuity of the spectrum, the concept of saturation
is irrelevant, and, accordingly, the pulse does not slow down
as in the EIT problems.

The location of the windows on the scale of κ may be
explained by rewriting current (8) in terms of κ , taking into
account that, in a rough approximation, all Gr with r �= 1 can
be neglected, and, with regard to Eq. (12), the result is:

〈 j〉 ≈ −en
dx

h̄
γ0J0(κ )G1 sin

(
A

edx

ch̄

)
. (25)

Indeed, it is easy to see that bottom points of the windows
in Fig. 4(b) are relatively close to zeros of function J0(κ ) in
Eq. (25). Actually, the Bessel factor J0(κ ) represents the result
of the above-mentioned resonance effect.

Because the nonlinearity nearly vanishes in Eq. (10) in
the region of the transparency windows, dynamics of the

ultrashort pulse becomes nearly linear in such cases. This
fact explains the spatiotemporal evolution in Fig. 3, in the
course of the passage through the HED layer, the pulse un-
dergoes noticeable transverse and longitudinal deformation
due to diffraction and dispersion, which is characteristic for
the propagation in quasilinear media. On the contrary, the
deformation is not prominent in Fig. 2, which pertains to the
case of strong nonlinearity.

Thus, the result of the interaction of the short laser pulse
with the HED layer depends on the values of several param-
eters, among which a special role is played by the amplitude
and frequency of the control HF field, which may be used as
the most effective control parameters of the system, as they
may be varied without changing the sample’s structure and/or
standard pulses employed by the scheme. In particular, these
parameters may be efficiently used to change, as required, the
threshold velocity of the incident pulse, Uthr, which separates
the reflection and passage outcomes of the collision of the
pulse with the HED barrier.

A conclusion is that the scheme elaborated here may be
used as a soliton valve, somewhat similar to the concept of
all-optical transistors (light controlled by light) [54,55]. An
illustration is presented in Fig. 5: while, in the absence of the
control HF field, the HED layer does not let the incident short
pulse pass the barrier, one can open the passage by applying
the control field with appropriate values of the amplitude and
frequency.

VI. CONCLUSIONS

This study reports four key results, which may have far-
reaching practical applications in the area of design and
development of optoelectronic systems. First, we establish
that, as a result of the interaction of the ultrashort electro-
magnetic pulse with the barrier layer of high electron density
(HED) in an array of carbon nanotubes (CNTs), the pulse can
either pass through the layer or be reflected from it. This first
result is important as it offers the possibility to effectively
use variable HED layers to achieve specific propagation or
reflection of ultrashort pulses.
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Second, our analysis of this rich phenomenon reveals that
the collision of the pulse with the HED layer exhibits a very
particular dependence on both the parameters of the pulse and
the properties of the HED layer itself. Specifically, we found
that an increase of the speed and amplitude of the incident
pulse facilitates the passage of the pulse through this layer.
This property paves the way to a particular modulation of the
pulse through its speed and amplitude in order to control its
penetration effectiveness.

Third, we establish the central result of this study, which
is built upon the two previous key results. It has been found
that the state of the electronic subsystem in the CNT array
may be controlled by an external HF field. That control field
may be used to facilitate the passage of the ultrashort pulse
through the barrier layer, thereby creating transparency win-
dows around particular values of the control field’s amplitude.
This effect, based in the resonant effect of the HF fields, is

similar to the phenomenon of the electromagnetically induced
transparency.

Lastly, and from the practical standpoint, we proved that
the latter effect can be used for the design of a soliton valve,
which allows one to efficiently switch the system between
the reflection and transmission regimes for the soliton stream,
without changing its parameters, but rather adjusting the am-
plitude and frequency of the control field.
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APPENDIX A: DETAILED DERIVATION OF EQ. (8)

This Appendix provides a detailed derivation of Eq. (8):

j = −en
dx

h̄
γ0

∞∑
r=1

J0

(
r
|eE10|dx

h̄ω1

)
Gr sin

(
rA

edx

ch̄

)
.

As a starting point, we replace A by (A + A1) inside the term sin (rA edx
ch̄ ) in Eq. (4). As specified by Eq. (7), this amounts to

replacing A by A − E10
c
ω1

sin(ω1t + α) in the rightmost sine term in Eq. (8):

sin

(
rA

edx

ch̄

)
→ sin

[
r

(
A − E10

c

ω1
sin(ω1t + α)

)
edx

ch̄

]
, (A1)

with

sin

[
r

(
A − E10

c

ω1
sin(ω1t + α)

)
edx

ch̄

]
= sin

(
rA

edx

ch̄

)
cos(ρ sin β ) − cos

(
rA

edx

ch̄

)
sin (ρ sin β ), (A2)

where the following two quantities have been introduced to simplify the notations:

ρ = rE10
c

ω1

edx

ch̄
, (A3)

β = ω1t + α. (A4)

Using Bessel functions of the first kind, one can obtain that

cos (ρ sin β ) = J0(ρ) + 2
∞∑

k=1

J2k (ρ) cos(2kβ ), (A5)

sin (ρ sin β ) = 2
∞∑

k=1

J2k−1(ρ) sin [(2k − 1)β], (A6)

where Jμ is the μth order Bessel function of the first kind [41]. Substituting these last two equations into Eq. (A2), and
subsequently in Eq. (4), we obtain the expression for the electric current density

j = −en
dx

h̄
γ0

{ ∞∑
r=1

Gr sin

(
rA

edx

ch̄

)
J0

(
rE10

c

ω1

edx

ch̄

)
+ 2

∞∑
r=1

∞∑
k=1

Gr sin

(
rA

edx

ch̄

)
J2k

(
rE10

c

ω1

edx

ch̄

)
cos[2k(ω1t + α)]

+ 2
∞∑

r=1

∞∑
k=1

Gr cos

(
rA

edx

ch̄

)
J2k−1

(
rE10

c

ω1

edx

ch̄

)
sin[(2k − 1)(ω1t + α)]

}
. (A7)
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As a next step, we average the electric current density j in Eq. (A7) over the period T1 = 2π/ω1 of the high-frequency external
electric field and obtain the desired equation:

〈 j〉 = −en
dx

h̄
γ0

∞∑
r=1

J0

(
r
|eE10|dx

h̄ω1

)
Gr sin

(
rA

edx

ch̄

)
. (A8)

[1] E. A. Khazanov, S. Yu. Mironov, and G. Mourou, Nonlin-
ear compression of high-power laser pulses: compression after
compressor approach, Phys. Usp. 62, 1096 (2019).

[2] M. Kolesik and J. V. Moloney, Modeling and simulation tech-
niques in extreme nonlinear optics of gaseous and condensed
media, Rep. Prog. Phys. 77, 016401 (2014).

[3] Y. Yin, X. Ren, A. Chew, J. Li, Y. Wang, F. Zhuang, Y. Wu, and
Z. Chang, Generation of octave-spanning mid-infrared pulses
from cascaded second-order nonlinear processes in a single
crystal, Sci. Rep. 7, 11097 (2017).

[4] A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing,
U. Keller, and A. Mysyrowicz, Self-compression of ultra-short
laser pulses down to one optical cycle by filamentation, J. Mod.
Opt. 53, 75 (2006).

[5] B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, Spa-
tiotemporal optical solitons, J. Opt. B: Quantum Semicl. Opt. 7,
R53 (2005).

[6] H. Leblond and D. Mihalache, Models of few optical cycle
solitons beyond the slowly varying envelope approximation,
Phys. Rep. 523, 61 (2013).

[7] S. V. Sazonov and N. V. Ustinov, Propagation of few-cycle
pulses in a nonlinear medium and an integrable generalization
of the sine-Gordon equation, Phys. Rev. A 98, 063803 (2018).

[8] N. N. Konobeeva and M. B. Belonenko, Influence of initial
shape of three-dimensional few-cycle optical pulse on its prop-
agation in topological insulator thin films, Rom. Rep. Phys. 70,
403 (2018).

[9] B. A. Malomed and D. Mihalache, Nonlinear waves in optical
and matter-wave media: A topical survey of recent theoretical
and experimental results, Rom. J. Phys. 64, 106 (2019).

[10] D. Mihalache, Multidimensional localized structures in optical
and matter-wave media: A topical survey of recent literature,
Rom. Rep. Phys. 69, 403 (2017).

[11] I. Babushkin, A. Tajalli, H. Sayinc, U. Morgner, G. Steinmeyer,
and A. Demircan, Simple route toward efficient frequency con-
version for generation of fully coherent supercontinua in the
mid-IR and UV range, Light: Sci. Appl. 6, e16218 (2017).

[12] A. B. Aceves, C. De Angelis, A. M. Rubenchik, and S. K.
Turitsyn, Multidimensional solitons in fiber arrays, Opt. Lett.
19, 329 (1994).

[13] A. Geim, Graphene: Status and Prospects, Science 324, 1530
(2009).

[14] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene
photonics and optoelectronics, Nat. Photonics 4, 611 (2010).

[15] A. V. Eletskii, Carbon nanotubes, Phys. Usp. 40, 899 (1997).
[16] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Car-

bon nanotubes–the route toward applications, Science 297, 787
(2002).

[17] Y. Segawa, H. Ito, and K. Itami, Structurally uniform and
atomically precise carbon nanostructures, Nature Rev. Mater.
1, 15002 (2016).

[18] M. B. Belonenko, S. Yu. Glazov, and N. E. Meshcheryakova,
Nonlinear conductivity of single-walled zigzag carbon nan-
otubes, Bull. Russ. Acad. of Sci.: Phys. 73, 1601 (2009).

[19] A. V. Zhukov, R. Bouffanais, M. B. Belonenko, and E. G.
Fedorov, Propagation of laser beams in an array of semicon-
ductor carbon nanotubes, Mod. Phys. Lett. B 27, 1350045
(2013).

[20] M. B. Belonenko and E. G. Fedorov, Self-focusing of super-
Gaussian laser beams propagating in an array of carbon
nanotubes, Russ. Phys. J. 55, 436 (2012).

[21] M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Elec-
tromagnetic solitons in a system of carbon nanotubes, J. Russ.
Laser Res. 27, 457 (2006).

[22] E. G. Fedorov, A. V. Zhukov, M. B. Belonenko, and T. F.
George, 2D electromagnetic breathers in carbon nanotubes,
Eur. Phys. J. D 66, 219 (2012).

[23] H. Leblond and D. Mihalache, Spatiotemporal optical soli-
tons in carbon nanotube arrays, Phys. Rev. A 86, 043832
(2012).

[24] E. G. Fedorov, A. V. Pak, and M. B. Belonenko, Interaction
of two-dimensional electromagnetic breathers in an array of
carbon nanotubes, Phys. Sol. State 56, 2112 (2014).

[25] M. B. Belonenko and E. G. Fedorov, Extremely short elec-
tromagnetic pulses in an array of carbon nanotubes with a
longitudinal field inhomogeneity, Phys. Sol. State 55, 1333
(2013).

[26] A. V. Zhukov, R. Bouffanais, E. G. Fedorov, and M. B.
Belonenko, Three-dimensional electromagnetic breathers in
carbon nanotubes with the field inhomogeneity along their axes,
J. Appl. Phys. 114, 143106 (2013).

[27] A. V. Zhukov, R. Bouffanais, B. A. Malomed, H. Leblond,
D. Mihalache, E. G. Fedorov, N. N. Rosanov, and M. B.
Belonenko, Collisions of three-dimensional bipolar optical soli-
tons in an array of carbon nanotubes, Phys. Rev. A 94, 053823
(2016).

[28] E. G. Fedorov, N. N. Konobeeva, and M. B. Belonenko, Two-
dimensional electromagnetic breathers in an array of nanotubes
with multilevel impurities, Russ. J. Phys. Chem. B 8, 409
(2014).

[29] M. Belonenko, A. Popov, and N. Lebedev, Dynamics of laser
bullet propagation in carbon nanotube array with metal inho-
mogeneities, Tech. Phys. Lett. 37, 119 (2011).

[30] A. V. Zhukov, R. Bouffanais, E. G. Fedorov, and M. B.
Belonenko, Interaction of a two-dimensional electromagnetic
breather with an electron inhomogeneity in an array of carbon
nanotubes, J. Appl. Phys. 115, 203109 (2014).

[31] A. V. Zhukov, R. Bouffanais, H. Leblond, D. Mihalache,
E. G. Fedorov, and M. B. Belonenko, Interaction of a
two-dimensional electromagnetic pulse with an electron inho-
mogeneity in an array of carbon nanotubes in the presence of
field inhomogeneity, Eur. Phys. J. D 69, 242 (2015).

085111-11

https://doi.org/10.3367/UFNe.2019.05.038564
https://doi.org/10.1088/0034-4885/77/1/016401
https://doi.org/10.1038/s41598-017-11652-9
https://doi.org/10.1080/09500340500227760
https://doi.org/10.1088/1464-4266/7/5/R02
https://doi.org/10.1016/j.physrep.2012.10.006
https://doi.org/10.1103/PhysRevA.98.063803
https://doi.org/10.1038/lsa.2016.218
https://doi.org/10.1364/OL.19.000329
https://doi.org/10.1126/science.1158877
https://doi.org/10.1038/nphoton.2010.186
https://doi.org/10.1070/PU1997v040n09ABEH000282
https://doi.org/10.1126/science.1060928
https://doi.org/10.1038/natrevmats.2015.2
https://doi.org/10.3103/S1062873809120120
https://doi.org/10.1142/S0217984913500450
https://doi.org/10.1007/s11182-012-9830-5
https://doi.org/10.1007/s10946-006-0027-7
https://doi.org/10.1140/epjd/e2012-30187-0
https://doi.org/10.1103/PhysRevA.86.043832
https://doi.org/10.1134/S1063783414100126
https://doi.org/10.1134/S106378341306005X
https://doi.org/10.1063/1.4824370
https://doi.org/10.1103/PhysRevA.94.053823
https://doi.org/10.1134/S1990793114030051
https://doi.org/10.1134/S1063785011020039
https://doi.org/10.1063/1.4879900
https://doi.org/10.1140/epjd/e2015-60256-7


EDUARD G. FEDOROV et al. PHYSICAL REVIEW B 103, 085111 (2021)

[32] E. G. Fedorov, A. V. Zhukov, R. Bouffanais, A. P. Timashkov,
B. A. Malomed, H. Leblond, D. Mihalache, N. N. Rosanov,
and M. B. Belonenko, Propagation of three-dimensional bipolar
ultrashort electromagnetic pulses in an inhomogeneous array of
carbon nanotubes, Phys. Rev. A 97, 043814 (2018).

[33] O. Kocharovskaya and Ya. I. Khanin, Coherent population trap-
ping and the attendant effect of absorptionless propagation of
ultrashort pulse trains in a three-level medium, Zh. Eksp. Teor.
Fiz. 90, 1610 (1986) [English translation: Sov. Phys. JETP 63,
945 (1986)].

[34] Y. Rostovtsev, O. Kocharovskaya, G. R. Welch, and M. O.
Scully, Slow, ultraslow, stored, and frozen light, Opt. Phot.
News 13, 44 (2002).

[35] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electro-
magnetically induced transparency: Optics in coherent media,
Rev. Mod. Phys. 77, 633 (2005).

[36] R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, Electro-
phonon coupling and the electrical conductivity of fullerene
nanotubules, Phys. Rev. B 48, 11385 (1993).

[37] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electro-
dynamics of Continuous Media, 2nd ed. (Elsevier, Oxford,
2004).

[38] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields,
4th ed. (Butterworth-Heinemann, Oxford, 2000).

[39] E. M. Epshtein, Solitons in a superlattice, Fiz. Tverd. Tela 19,
3456 (1976).

[40] E. M. Epshtein, Drag of electrons by solitons in a semiconduc-
tor superlattice, Fiz. Tech. Polupr. 14, 2422 (1980) [Sov. Phys.
Semiconductors 14, 1438 (1980)].

[41] G. A. Korn and T. M. Korn, Mathematical Handbook for Scien-
tists and Engineers (McGraw Hill, New York, 1968).

[42] F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High Fre-
quency Properties of Semiconductors with Superlattices (Nauka,
Moscow, 1989).

[43] J. D. Jackson, Classical electrodynamics (John Wiley & Sons,
New York, 2007).

[44] Yu. S. Kivshar and B. A. Malomed, Dynamics of solitons in
nearly integrable systems, Rev. Mod. Phys. 61, 763 (1989).

[45] C. Rulliére, Ed., Femtosecond Laser Pulses: Principles and
Experiments (Springer-Verlag, Berlin, 1998).

[46] A. N. Pikhtin, Optical and Quantum Electronics (High School
Publishers, Moscow, 2001).

[47] D. S. Simon, A Guided Tour of Light Beams (Morgan & Clay-
pool Publishers, Williston, 2016).

[48] S. E. Koonin, Computational Physics: Fortran Version (Ingram
Publisher Services, Boulder, 1998).

[49] J. W. Thomas, Numerical Partial Differential Equations - Finite
Difference Methods (Springer-Verlag, New York, 1995).

[50] S. E. Harris, J. E. Field, and A. Imamoglu, Nonlinear Opti-
cal Processes Using Electromagnetically Induced Transparency,
Phys. Rev. Lett. 64, 1107 (1990).

[51] K.-J. Boller, A. Imamoglu, and S. E. Harris, Observation of
Electromagnetically Induced Transparency, Phys. Rev. Lett. 66,
2593 (1991).

[52] A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Electromagneti-
cally Induced Transparency: Propagation Dynamics, Phys. Rev.
Lett. 74, 2447 (1995).

[53] M. G. Payne and L. Deng, Consequences of induced trans-
parency in a double-Lambda scheme: Destructive interference
in four-wave mixing, Phys. Rev. A 65, 063806 (2002).

[54] M. F. Yanik, S. H. Fan, M. Soljačić, and J. D. Joannopoulos,
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