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Viscoelastic laminar drag bounds in pipe flow
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ABSTRACT
The velocity and friction properties of laminar pipe flow of a viscoelastic solution are bounded by the corresponding values for two Newtonian
fluids, namely, the solvent and a fluid with a viscosity identical to the total viscosity of the solution. The lower friction factor for the flow of the
solution when compared to the latter is tracked to an increased strain rate needed to enhance viscous dissipation. Finally, we show analytically
that the effective viscosity varies similarly to the radial diagonal component of the conformation tensor as observed numerically in turbulent
flows and give a lucid interpretation of shear-thinning through a sequence of underlying constitutive physical phenomena.
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Elasticity effects have long been known to affect transition
to turbulence and drag in fluid flows, whether these effects are
induced by fluid–structure interaction1–3 or by viscoelastic rheolog-
ical aspects associated with non-Newtonian fluids.4–8 For instance,
the addition of low concentrations of long-chain polymers generates
an astounding 80% drag reduction (DR) in turbulent regimes,9,10

which has significant implications for practical applications. At rela-
tively low Reynolds numbers, elasto-inertial effects set in,11,12 which
are also observed in the instabilities of flow bounded by compliant
walls.1–3

When considering turbulent dilute polymeric solutions, the
exhibited DR has been attributed to the interplay between flow tur-
bulence and elasticity of the polymers in the near-wall region.9,10,13,14

DR is most prominent when the time scale of the polymer elastic
dynamics—known to be dependent on the number and length of
monomers making the polymer—is of the same order or higher than
that of the turbulent fluid flow.15 In addition, such fluids exhibit
a maximum drag asymptote with respect to the polymer concen-
tration,15–20 which is suggested to be associated with elasto-inertial
instability.11,12 A phenomenon of reverse transition has even been
uncovered in such flow recently.21,22 The energy cascade is also dif-
ferent from that of the Newtonian counterpart23 since some energy is
rerouted to the polymer stretching dynamics, thereby reducing the
formation of the smallest eddies and the associated viscous energy
dissipation.

However, this DR phenomenology is absent in steady laminar
flows with polymers9,16 due to the absence of small time scale in the

flow dynamics. Here, we show analytically that the laminar drag of
a FENE-P (finitely extensible nonlinear elastic model under Peter-
lin approximation) fluid (the solution) in a cylindrical pipe exhibits
a set of lower and upper bounds. Specifically, the laminar drag is
lower than that of a Newtonian fluid with a viscosity matching the
total viscosity of the solution, while being higher than that of the
pure solvent. This previously unreported phenomenon is due to the
effective viscosity of the solution being bounded by the limits of that
of two Newtonian flows: (i) the flow of pure solvent and (ii) that of a
viscosity-matched fluid.

Finally, we relate the radial component of the stress tensor to
the effective viscosity, which has observational support from direct
numerical simulations of turbulent flows.24 Based on this result, we
give an interpretation of shear-thinning, which is well-known to be
directly correlated with the axial elongation of polymer molecules.
We argue that the perceived effect of shear-thinning is due to a
sequence of constituent fundamental physical phenomena, such as
elasticity and force balancing wrapped together.

The flow dynamics is characterized by three nondimensional
parameters: (1) Re = ρUcR/μ, (2) β = μs/μ, and (3) Wi = λUc/R, with
μ (resp. μs) being the total viscosity (resp. the solvent viscosity), Uc
the centerline velocity in the absence of polymer, R the pipe radius,
and λ the elastic relaxation time. A steady flow of dilute polymers
modeled as dumbbells is governed by25

u ⋅∇u = −∇p + Re−1
[β∇2u + (1 − β)∇ ⋅ τ], (1)

u ⋅∇c − c ⋅∇u − (∇u)T
⋅ c = −τ, (2)
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where τ = (fc − I)/Wi is the elastic stress of the polymers of maxi-
mum extensibility L. Under the FENE-P model, the Peterlin function
takes the form f = (L2

− 3)/(L2
− tr(c)). The conformation tensor

has, for entries, cij = ⟨R̃iR̃j⟩, where R̃i is the end-to-end vector of a
polymer molecule and I denotes the identity matrix. For a formu-
lation of the FENE-P model alternative to Eqs. (1) and (2) with an
extended set of parameters and a different set of unknowns, refer
the study of Bird et al.,26 which has been solved by Cruz et al.27 for
laminar profiles in the pipe and channel. (For the profiles for inviscid
solvent, refer the study of Oliveira28). However, the FENE-P model
is widely known to the community studying turbulence and transi-
tion as it appears in Eqs. (1) and (2) with the Peterlin function f as
mentioned. We therefore solve these equations below and use the
resulting analytic solutions to study the bounds for velocity and fric-
tion. The laminar profiles derived here will also enable the study of
the transition to turbulence by perturbing Eqs. (1) and (2). Hith-
erto, the absence of a solution to Eqs. (1) and (2) has resulted in that
transition studies have only been conducted under the Oldroyd-B
model.7

For steady laminar flows, p = P(x), c =C(r), and u = [U(r), 0, 0]
using cylindrical coordinates (x, r, θ), which are in axial (ê1), radial
(ê2), and azimuthal (ê3) directions, respectively. The components of
∇ ⋅ τ in Eq. (1) can be found in the study of Bird et al.,29 while Eq. (2)
becomes

Ur

⎛
⎜
⎜
⎝

2C12 C22 C23

C22 0 0

C23 0 0

⎞
⎟
⎟
⎠

=
1

Wi

⎛
⎜
⎜
⎝

FC11 − 1 FC12 FC13

FC12 FC22 − 1 FC23

FC13 FC23 FC33 − 1

⎞
⎟
⎟
⎠

, (3)

where F(r) = (L2
− 3)/(L2

− tr(C)) and the subscript r denotes the
derivative along the radial direction. Equation (3) gives the non-zero
elements of C,

C11 = (2Wi2U2
r + F2

)/F3, (4)

C22 = C33 = 1/F, (5)

C12 =WiUr/F2. (6)

Equation (5) implies that the transverse components of τ follow
τ22 = τ33 = 0, which is in agreement with Ref. 27. Substituting
Eqs. (4)–(6) in F yields

F2
(F − 1) = 2Wi2U2

r /L
2. (7)

Since the driving pressure gradient in a pipe is given by

dP/dx = −4/Re, (8)

Eq. (1) can be written as β(rUr)r + (1 − β)(rUr/F)r = −4r, which
under the condition Ur(0) = 0 gives

Ur = −2rF[β(F − 1) + 1]−1. (9)

Substituting this expression for Ur into Eq. (7), we have

β2
(F − 1)3 + 2β(F − 1)2 + (F − 1) = 8Wi2r2

/L2. (10)

Given that Eq. (7) implies F − 1 ≥ 0, a solution of Eq. (10) reads

F(r) = 1 + (ζ1/3
1 + ζ1/3

2 − 2)/(3β), (11)

where ζ1 = a +
√
a2 − 1, ζ2 = a −

√
a2 − 1, and a = 1 + 108βWi2r2/L2

with the positive square-root and real cubic-root implied. Eventu-
ally, Eq. (9) gives the velocity profile

U(r) = 2∫
1

0

r′F(r′)[1 − U(r − r′)]
β[F(r′) − 1] + 1

dr′, (12)

where U(r) is the Heaviside step function. The set (4)–(6), along
with Eqs. (11) and (12), gives the complete FENE-P steady lami-
nar pipe flow solution that we use to study the laminar drag. Their
behaviors close to the pipe center, i.e.,

Ur(r) = −2r − 16(1 − β)Wi2L−2r3 +⋯, (13)

F(r) = 1 + 8Wi2L−2r2 +⋯, (14)

C11(r) = 1 + 8Wi2
(L2
− 1)L−2r2 +⋯, (15)

C12(r) = −2Wir + 32Wi3L−2r3 +⋯, (16)

C22(r) = C33(r) = 1 − 8Wi2L−2r2 +⋯, (17)

show that they exhibit even or odd symmetries with respect to
r. These parities can assist when analyzing the symmetries of
small perturbations close to the wall as performed for the case
of Newtonian flows30 and when deploying them in the numerical
calculations.31,32

Figure 1(a) shows the velocity profiles in the Newtonian case
(β = 1) and three non-Newtonian cases (β = 0.8 and increasing
Wi). They reveal that under the same driving pressure gradient, the
volume flow rate q̇ = 2π ∫10 U(r)r dr increases when β drops from
1 to 0.8, thereby implying an apparent DR in the laminar regime.
This increase in q̇ is further amplified when considering increasingly
large Wi. However, this should not be interpreted that the addition
of polymer reduces drag compared to the pure solvent Newtonian
case.

To better understand that, let us recall that the pressure gradi-
ent (8) is defined based on the Reynolds number and therefore the
total viscosity μ. For a given fixed value of dP/dx, the total viscosity
has to be the same for all values of β. Hence, when β is altered, the
viscosity of the solvent changes for the profiles shown in Fig. 1(a).
This implies that the various profiles for different β values corre-
spond to different solvents and that the non-Newtonian flow effec-
tively exhibits less drag when compared to a Newtonian fluid—other
than the solvent—having the same total viscosity as the one at the
particular β value considered.

We now show that the drag of a Newtonian flow of the pure
solvent is lower than that of the non-Newtonian solution after
adding polymers. In the non-Newtonian case, the dimensional pres-
sure gradient is given by dP∗/dx∗ = −4μUc/R2, where the super-
script “∗” indicates the dimensional value of a given variable. If the
same dimensional pressure gradient is applied on the pure solvent,
the centerline velocity increases by a factor of 1/β since dP∗/dx∗

= −4μs[Uc/β]/R2. Hence, the dimensional velocity profile of the pure
solvent is U∗s = Uc(1 − r2

)/β, and its non-dimensional counter-
part Us(r) is shown in Fig. 1(b) together with the profile U(r) of
the polymeric solution. As can be clearly observed, the pure solvent
experiences less drag. To study a range of Weissenberg numbers
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FIG. 1. Profiles and flow rates for L = 20:
(a) U(r); (b) U(r) and Us(r); (c) q̇/q̇s vs
Wi; (d) components of Cij (r) for β = 0.8
and Wi = 50, where the inset is a zoom-
in on C12, and C22 = C33; (e) F (β = 0.8);
and (f) divergence of polymer-stress for
β = 0.8. The arrows, covering three pro-
files in each figure [(a), (c), (e), and (f)],
indicate the increasing order of Wi [(a),
(e), and (f)] or β (c) on the curves.

Wi, we compare the volume flow rate of the polymeric solution,
q̇ = 2π ∫10 rU(r)dr, against that of the pure solvent, q̇s = π/(2β). As
shown in Fig. 1(c), there is always a drag enhancement for all values
of Wi, and this result holds when L is varied.

In the limit of Wi→∞ or L→ 0, we find F →∞ from Eq. (7).
Hence, considering the same limit in Eq. (9), we obtain Ur → −2r/β,
which is the derivative of (1 − r2)/β. These results therefore provide
the bounds for the velocity profile as

1 − r2
≤ U(r) ≤ (1 − r2

)/β (18)

for all values of Wi and L. Physically, this implies that the polymeric
solution experiences less drag than the Newtonian flow of a fluid
having a viscosity identical to the total viscosity of the former, but
higher drag than that of the pure solvent under the same driving
pressure gradient. This can be made more clear from the behaviors
of their respective friction factors.

The Darcy friction factor is defined as

f ≡
−8[μsU∗r∗ + (μ − μs)τ∗12]∣r∗=R

ρ⟨U∗⟩2
, (19)

where τ∗12 is a component of the dimensional version of the elastic
stress tensor τ and ⟨U∗⟩ is the cross-sectional average of U∗(r∗). For
Newtonian flows, the same definition holds, but without the second
term within the square brackets. The inequalities in Eq. (18) translate
into the following inequalities for the friction-factor:

64β2

Re
≤

4
Re
(∫

1

0
U(r)r dr)

−2
≤

64
Re

. (20)

The right-most term of Eq. (20) is f for a Newtonian fluid with vis-
cosity same as the total viscosity of the solution. The middle and the
left-most terms are f for the polymer solution and the pure Newto-
nian solvent, respectively. These expressions for the friction-factor
can be derived from Eqs. (6), (9), and (19) in the case of poly-
meric solutions and by using the parabolic profiles in the case of
Newtonian flows.

To analyze the influence of Wi and L, we consider the limit
β → 0 whereby the solutions are such that F = 1 + 8Wi2r2/L2 and
U(r) = 1 − r2 + 4Wi2(1 − r4)/L2. These relations show that the
volume flow rate increases with Wi and decreases with L. Indeed,
a large Wi implies that the relaxation time is far greater than the
time scale of the flow, allowing the polymer strain—i.e., the stretch-
ing of the ends of the polymer molecules—to be increased by the
mean shear. In what follows, we show that an enhanced stretching of
polymers reduces the drag when compared with a Newtonian fluid
with the same viscosity as the total viscosity of the non-Newtonian
case. Moreover, a large L implies that the ratio of

√
Cii to L becomes

small, resulting in a reduction of the restoring elastic modulus F.
This, in turn, generates an increase in C22 and C33 given by Eq. (5).
As shown below, an increase in C22 yields an increase in the effective
viscosity.

The profiles of the non-zero components of Cij(r) are shown
in Fig. 1(d). The large values of C11 originate from the polymers
undergoing stretching in the axial direction. On the other hand, the
fact that C22 and C33 have values below one implies contractions
in both the radial and azimuthal directions. The term C12 plays a
crucial role in translating polymer strain represented by C11 into an
enhancement of the strain rate Ur of the flow, as revealed by the ê1ê1
component of Eq. (3): 2C12Ur = (FC11 − 1)/Wi.

F(r) is essentially a representation of the elastic modulus [see
Fig. 1(e)]. The polymers undergo maximum stretching near the wall
given the higher values of the strain rate Ur . This causes an increase
in F; a feature of FENE models that is absent in the Oldroyd-B
model.

We can now explain the lower drag in the polymeric solution
when compared to that of the Newtonian fluid with identical total
viscosity. The divergence of the Newtonian stress tensor (∇ ⋅ τ) ⋅ ê1
[see Fig. 1(f)] without polymer stands at a constant value of −4,
with the negative sign implying (positive) dissipation. When poly-
mers are added, a ratio of (1 − β) of this viscous dissipative com-
ponent is replaced by the component due to polymer stretching,
which is also dissipative of the fluid momentum. As evident from
Fig. 1(f), this component is always greater than −4 throughout the
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flow field except at the center of the pipe. [Note that this compo-
nent can be written as {−2r2

/[β(F − 1) + 1]}r/r, which takes the
value of −4 in the limit r→ 0, which is same as the Newtonian com-
ponent.] To counterbalance the constant pressure gradient term, the
Newtonian part readjusts itself to increase the dissipation by increas-
ing the overall strain rate, thereby resulting in an enhanced volume
flow rate. Such an increase in the strain rate is characterized by an
increase in the slope of the velocity near wall with respect to 1 − r in
Fig. 1(a).

To explain the decrease in |(∇ ⋅ τ) ⋅ ê1| as r increases, we first
note that C12 ≡ ⟨R̃1R̃2⟩ = 0 at the pipe center, thus implying that the
polymer molecules undergo an uncorrelated random motion there.
Since C11 increases from the value of 1.0 with respect to r, the poly-
mers undergo a rapid stretching in the x-direction [see Fig. 1(d)],
causing the R̃2 component to pick-up a negative correlation with the
R̃1 component that undergoes stretching. This negative correlation is
due to the resistance to elongation associated with the restoring ten-
dency F. However, this negative correlation starts to decrease with
respect to r partly due to the slow-down in the axial stretching C11
and the restoring tendency, F—i.e., C11rr < 0 and Frr < 0 for most
part of the pipe. This causes less drag as the absolute value of the
resistance term [(C12F)r + C12F/r]/Wi comes down.

This phenomenon of C11 or C12 playing a crucial role in the
laminar regime is in stark contrast with the turbulent regime, where
the transverse diagonal component C22 (or C33) plays a critical
role—it acquires a radial distribution similar to the effective vis-
cosity.18,24 In fact, both interpretations are reconciled as explained
below.

The decrease in flow rate when compared to that of the pure
solvent, or, the increase in the same when compared to that of
a viscosity-matched Newtonian fluid, can also be understood by
considering the effective viscosity μeff, which is defined as

μeff(r)
μ
=
[β∇2u + (1 − β)∇ ⋅ τ] ⋅ ê1

[∇2u] ⋅ ê1

= β + (1 − β)[
1
F
−

rUrFr
F2(Ur + rUrr)

]. (21)

Taking note of the facts that F →∞ in the limits Wi→∞ or L→ 0
and F → 1 in the limits Wi→ 0 or L→∞, we arrive at the following
bounds for μeff/μ:

β ≤ μeff/μ ≤ 1, (22)

which contains the analogous information as the inequalities in
Eq. (18), i.e., the effective viscosity is less than the total viscosity,
but higher than the viscosity of the solvent. In Fig. 2, μeff/μ is shown
for a parameter set equal to that of Fig. 1(d). The figure confirms
that the ratio μeff(r)/μ obeys the inequalities in Eq. (22). Clearly,
μeff(r)/μ has a trend with respect to r, which is opposite to that of
C11. This shows that the stretching in the axial direction reduces
the effective viscosity. As a general non-auxetic matter, the polymer
exhibits an opposite trend in C22 and C33 by the way of contrac-
tion of the polymer dumbbells. This sets C22 and C33 to follow the
same trend as μeff(r)/μ [see the inset of Fig. 1(d)]. As stated previ-
ously, this phenomenon is well-known in the turbulent regime.18,24

The linear relation (up to the leading order) between μeff(r)/μ and

FIG. 2. Effective viscosity for L = 20, β = 0.8, and Wi = 50.

C22 is revealed by re-writing Eq. (21) as

μeff(r)
μ
= β + (1 − β)C22{1 −

2rFr
2F −Urr[β(F − 1) + 1]

},

where the second term within the braces is shown to be of O(r2).
In summary, the laminar regime of this non-Newtonian flow

has interesting bounds for flow and friction determined by two cor-
responding Newtonian flows. The flow of a polymeric solution with
a total viscosity identical to that of a Newtonian fluid exhibits lower
drag on comparison with the latter. Nonetheless, the experienced
drag is higher than that of the pure solvent under the same driv-
ing pressure gradient. It should be noted that these bounds are also
valid for plane Poiseuille flow.

During the course of arriving at these bounds, we also solved
the FENE-P model in a form widely known to the community
researching turbulence and transition. These alternative solutions to
those found by Cruz et al.27 will enable the study of small pertur-
bations to the FENE-P model expressed in Eqs. (1) and (2). How-
ever, any future study on transition should take into account that
the stability of the viscoelastic flow at a certain Re should be com-
pared against that of the corresponding flow of the solvent at Re/β in
order to maintain the same pressure gradient. If not, the comparison
would not be against the stability of the flow of the solvent, but with
another Newtonian fluid with the same viscosity as the total viscosity
of the solution.

This rich phenomenology can also be interpreted as an explana-
tion of the well-known shear-thinning effect through the following
sequence of comprehensive arguments: (1) The strain rate of the
flow stretches the polymers in the axial direction, a phenomenon
also known from the earlier literature; (2) such an extension causes
contraction in the radial direction due to the resistance to elonga-
tion exerted by the restoring force between the ends of the polymer
molecules; (3) this triggers a nonzero negative correlation between
the x-component and r-component of the end-to-end polymer vec-
tor, resulting in an elastic shear stress (τ12) to develop; (4) since there
is no strain rate at the pipe center, this correlation is zero due to
the liberty of the ends of the polymers to be at random motion; (5)
due to the increase in the elastic modulus with respect to r, a fea-
ture of the FENE-P model, the stretching rate with respect to r slows
down, giving rise to a convexity of C11 (i.e., C11rr < 0), which in
turn causes concavity in τ12; (6) The points in (3)–(5) imply that the
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divergence of elastic shear-stress, i.e., the resistive force contribu-
tion to the flow by the polymers decreases with r; (7) the driving
force, i.e., the pressure gradient, which is balanced completely by
the Newtonian viscous force and elastic force, is a constant; (8)
since the elastic force decreases radially, the Newtonian viscous force
should increase with r; (9) finally, this is achieved by enhancing the
strain rate owing to the fact that the dynamic viscosity of the sol-
vent is a constant, thus increasing the flow rate. The last point in
this sequence could be perceived as shear-thinning by introducing a
variable viscosity as a factoring function together with ∇2U, which
balances the total dissipation.

Indeed, we proved that U and the components of the tensor
C exhibit even or odd symmetries with respect to r. As an outlook,
these symmetries can be exploited to derive conditions for the regu-
larity of perturbations at the pipe center, as derived in the Newtonian
case.32 These are expected to be valuable for the study of the stability
and transition of viscoelastic pipe flows.

We thank Dr. Jurriaan J. J. Gillissen of the Department of Math-
ematics, University College London, for his fruitful comments on
this letter.
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