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Unsteady incompressible viscous flows of a fluid partly enclosed in a cylindrical container with an
open top surface are presented in this article. These moving free-surface flows are generated by the
steady rotation of the solid bottom end wall. Such type of flows belongs to a group of recirculating
lid-driven cavity flows with geometrical axisymmetry. The top surface of the cylindrical cavity is
left open so that the free surface can freely deform. The Reynolds regime corresponds to unsteady
transitional flows with some incursions in the fully laminar regime. The approach taken here
revealed new nonaxisymmetric flow states that are investigated based on a fully three-dimensional
solution of the Navier–Stokes equations for the free-surface cylindrical swirling flow without
resorting to any symmetry property unlike all other results available in the literature. The results are
compared with those of Bouffanais and Lo Jacono �“Transitional cylindrical swirling flow in
presence of a flat free surface,” Comput. Fluids 38, 1651 �2009�� corresponding to the exact same
parameters but with a flat-and-fixed top free surface. These solutions are obtained through direct
numerical simulations based on a highly accurate Legendre spectral element method combined with
a moving-grid technique. © 2009 American Institute of Physics. �DOI: 10.1063/1.3156010�

I. INTRODUCTION

Lid-driven cavity flows present similar features typical
of shear-driven recirculating flows such as intense wall jets
and shear layers in the vicinity of the driven wall and sec-
ondary recirculating flows, which are very dependent on the
flow parameters. Nevertheless, the geometry—cubical on
one hand and cylindrical on the other hand—dramatically
influences the nature and structure of these secondary flows:
corner eddies for the cubical cavity and recirculation bubbles
in the cylindrical case. Following the pioneering work of
Bogatyrev and Gorin5 and Koseff and Street,26,27 it was
shown that contrary to intuition, the lid-driven cubical cavity
flow is essentially three dimensional �3D�, even when con-
sidering large aspect ratio. It is only recently that the three
dimensionality of the lid-driven cylindrical cavity flow was
confirmed numerically by Blackburn and Lopez2,3 after it
was suggested but not fully proved experimentally by
Sørensen,44 Spohn et al.,48 Sotiropoulos and Ventikos,45 and
Pereira and Sousa.38 In 2001, Sotiropoulos and Ventikos46

gave full experimental evidence of the 3D character of the
flow with the onset of nonaxisymmetric modes. The 3D na-
ture of these driven cavity flows is therefore a general char-
acteristic of internal recirculating shear-driven flows.

In the present study, we only consider the cylindrical
lid-driven cavity flow also referred to as “swirling” flow
without any additional precision. The first experiments by
Vogel52 and later Ronnenberg41 showed that Ekman suction
and pumping, induced by the Ekman layers on the rotating
and stationary disks, lead to the formation of a concentrated

vortex core along the axis in the closed-cavity case. The two
dimensionless groups characterizing this flow are the height-
to-radius aspect ratio �=H /R and the Reynolds number
Re=R2� /�, where H and R are, respectively, the height and
radius of the cylinder, � is the constant angular velocity of
the bottom end wall, and � is the kinematic viscosity of the
Newtonian fluid. For specific values of the aspect ratio � and
above a critical Reynolds number, the vortex core breaks
down in the form of one or more recirculation bubbles which
are on axis in the closed-cavity case and on or off axis in the
open cavity one. Owing to the enormous extent of work in
the area of vortex breakdown �VB� �see reviews by Hall,19

Leibovich,28 Shtern and Hussain,43 Kerswell,25 and Arnt1�,
we refer the reader to the previous reviews for a recall of the
central features of VB.

The first comprehensive experimental study of the
closed cylindrical container case was undertaken by
Escudier15 and Escudier and Keller,17 who extended the ear-
lier results of Vogel52 and Ronnenberg41 to obtain the first
map of VB transitions with respect to the aspect ratio � and
the Reynolds number. Escudier15 revealed flow states with
one, two, or even three successive breakdowns, as well as a
transition from steadiness to unsteadiness. Sørensen44 ex-
tended to a broader range of Reynolds number in the same
experiment as Escudier15 for the closed container and in-
ferred that above a critical Reynolds number in the unsteady
flow regime, the meridional flow becomes highly asymmet-
ric. The first experimental study of the open cylindrical con-
tainer case with a free surface on the top was undertaken by
Spohn et al.,47 who highlighted the significant change in the
structure and the occurrence and the location of the break-
down bubbles. In the steady closed cylinder case, Hourigan
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et al.21 investigated the asymmetric spiraling effects along
the cylinder axis prior to the first VB. They argued that the
observed asymmetry was purely an experimental artifact and
not an evidence of the 3D nature of the flow. Spohn et al.48

were the first to investigate experimentally the origin of pos-
sible asymmetric features of the instabilities at their onset.
The steady breakdown bubbles reported by Spohn et al.48

showcase asymmetric features comparable to earlier mea-
surements and also to unsteady bubbles observed in circular
diffusers by Faler and Leibovich.18 As a matter of fact, the
work of Spohn et al.48 is really a pioneering work in the
acceptance of the axisymmetry breaking among fluid experi-
mentalists. It is noteworthy at this point that the complex
physics associated with these intricate phenomena occurring
in closed/open rotating cylindrical container is still not
clearly understood. Recently, Brøns et al.10 elegantly showed
how flow visualizations are inherently unable to characterize
perfectly axisymmetric VB bubbles. It should be added that
while it is no surprise that the flow can be asymmetric in the
unsteady case, it is more surprising when it happens in a
steady configuration with symmetric boundary conditions.
Such states were apparently observed experimentally by
Spohn et al.48 and computationally by Sotiropoulos et al.45,46

Brøns et al.9 showed that these asymmetries may be attrib-
uted to minute imperfections in the setup, and hence is not a
basic fluid mechanical instability.

Apart from the canonical case with a single driving lid in
rotation at a constant angular velocity, different variations of
the problem have been extensively studied in the past years:
e.g., cylinder with co- and counter-rotating end covers by
Brøns et al.,11 steady axisymmetric flow in an open cylindri-
cal container with a partially rotating bottom wall by Piva
and Meiburg,39 vortex scenario and bubble generation in a
cylindrical cavity with rotating top and bottom by Okulov
et al.,37 and swirling flow of a viscoelastic fluid by Escudier
and Cullen,16 Day et al.,13 Xue et al.,53 and Stokes et al.49,50

Mullin et al.35 also included a rod at the axis to control the
breakdown, and Pereira and Sousa38 significantly changed
the configuration by replacing the flat rotating bottom cover
by a cone. As noted by Brøns et al.,12 all these studies show
a large set of flow structures which are quite sensitive to
variations of external parameters. Mununga et al.36 and Lo
Jacono et al.29 investigated different strategies for the control
of VB.

The focus in the present article is on the canonical prob-
lem of a cylinder with a rotating bottom end wall but replac-
ing the stationary solid top end wall by a freely moving
surface. As mentioned earlier, the flow associated with this
problem was first studied experimentally by Spohn et al.47,48

They observed the influence of the top free surface—
assuredly clean of surfactants—on the onset, structure, na-
ture, and number of recirculating bubbles. Their central ob-
servations are that breakdown bubbles still appear but are off
axis and may be attached to the free surface depending on
the aspect ratio � and the Reynolds number. Of course, such
structures could not be observed in the closed-cavity case
because of the no-slip condition imposed on the top wall. All
the past simulations of free-surface swirling flows rely on the
central assumptions that the free surface is flat and clean,

which means that the Froude number is taken equal to zero
and that surface tension effects are neglected. With these
assumptions, the flow is identical to the flow in the lower
half part of a cylinder with two solid covers in corotation,
i.e., rotating at the same angular velocity. Brøns et al.12 re-
ported a wide range of topologies of VB bubbles in a
bottom-driven cylinder with a free surface. Valentine and
Jahnke51 observed in their simulations the existence of one
or two toroidal-like types of recirculation bubble having their
stagnation lines attached to the free surface depending on the
value of the Reynolds number. Their study was comple-
mented by the works of Lopez30 for oscillating unsteady
flows and of Bouffanais and Lo Jacono8 for unsteady flows at
higher Reynolds numbers. Information relevant to the
present problem with a free surface all indicate consistent
flow behavior at small aspect ratio, i.e., 0.5���1.0, in that
stagnation occurs off axis and associated secondary flow cre-
ates a toroidal recirculation bubble. Steady free-surface flows
have been computed by Iwatsu22,23 providing flow state clas-
sifications with new flow patterns not revealed in the previ-
ous studies.

Gas-liquid interfaces are often modeled as flat, fixed, and
stress-free surfaces. This idealization is commonly used by
fluid dynamicists performing numerical simulations. Indeed,
by resorting to this assumption the physical problem is sig-
nificantly simplified and thus standard solution techniques
can be used to deliver the flow fields. However, this ideali-
zation is never realized physically, even in well-controlled
experimental setups, and this is mainly because of the pres-
ence of small amounts of surfactants. In addition, even for
small angular velocities of the bottom end wall, i.e., for
small Reynolds numbers, limited deformations of the top
surface are always present. These deformations are very of-
ten difficult to access by any of the measurement techniques
available in laboratory experiments. Compared with swirling
flows in a closed cylinder, the VB phenomena occur in dif-
ferent conditions for an open cylinder flow: lower critical
Reynolds number, smaller lower-limit aspect ratio � at
which VB occurs, large size of breakdown bubbles, possible
attachment to the top free surface, etc. Moreover, for the
relatively “shallow” system corresponding to �=1, the loss
of axisymmetry of these free-surface swirling flows is due to
unstable azimuthal modes developing at the interface be-
tween the “inner” fluid in quasi-solid-body rotation and the
“outer” fluid, where a surface jet of angular momentum ex-
ists and is directed toward the cylinder axis.

The present study is mainly motivated by the need to
gain insight into the influence of an unsteady and nonflat free
surface onto the cylindrical swirling flow. It is important to
note that even if the deformation amplitude of the free sur-
face is limited compared to the cylinder height, the relative
deformation amplitude may have rapid variations along ra-
dial lines. Those rapid variations could potentially have an
impact on the various physical terms appearing in the gov-
erning Navier–Stokes equations. Ultimately, the reported ef-
fects of the relative deformations of the free surface on the
physical terms—nonlinear convective terms, pressure gradi-
ent, viscous stress—may be extrapolated to cases where the
amplitude of the surface deformations is more important.
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Lower-Reynolds-number cases display a steady flow behav-
ior which persists in the presence of a free surface, which
acquires a steady shape. In addition, for the unsteady case
��=1, Re=6000� studied herein, the free surface displays
an unsteady evolution.

To date, all prior attempts to simulate this free-surface
flow were limited to the fixed and flat free-surface case and
primarily to steady open swirling flows. Such lack of study
in the scientific literature of this unsteady open swirling flow
with a moving free surface can be understood when reading
the following statement from Sarpkaya in his review entitled
“Vorticity, free surface and surfactants:”42 “…the modeling
of free-surface phenomena still poses difficulties, not only
because of an insufficient understanding of the physics of the
vorticity/free-surface interaction, but also because of the ne-
cessity to devise and use mathematical formulations, numeri-
cal schemes, and physical-property experiments of far
greater complexity than had hitherto been used….” Indeed,
when considering a real moving free surface, the complexity
of the physical problem is dramatically increased. On top of
the nonlinearity associated with the Navier–Stokes equations
themselves, here we deal with a complicated geometry,
which is changes in time and which is part of the solution
itself. In addition, the nature of the boundary conditions on
the free surface makes their imposition much more difficult
compared to standard no-slip or free-slip boundary condi-
tions. This particular point explains why all past studies of
this flow problem prior to the one reported in this article used
symmetry properties combined with a double-sized compu-
tational domain to enforce the stress-free condition at the flat
free surface. This accumulation of difficulties calls for elabo-
rate algorithms and numerical techniques.

The mathematical model and the problem formulation
are detailed in Sec. II, while the original computational ap-
proach of this study is presented in Sec. III. Subsequently,
Sec. IV contains all the numerical results corresponding to
various physical situations and flow states. Finally, the article
ends with Sec. V providing summary and conclusions on the
present work.

II. MATHEMATICAL MODEL AND PROBLEM
FORMULATION

A. Mathematical description of the problem

The fluid enclosed in the cylindrical cavity is assumed to
be incompressible and Newtonian with uniform density and
temperature. In the arbitrary Lagrangian–Eulerian �ALE�
kinematics,14 the flow is governed by the modified Navier–
Stokes equations

�ui

�t
+ �uj − wj�

�ui

�xj
=

��ij
�

�xj
+ gi, �1�

�uj

�xj
= 0, �2�

where �ij
� =−p�ij +2�Dij is the reduced Cauchy stress tensor

of the fluid, p the static or reduced pressure, Dij the rate-of-
deformation tensor, � the assuredly constant and uniform ki-

nematic viscosity, gi the components of the acceleration of
gravity �g1=g2=0 and g3=−g�, and wi the components of the
ALE mesh velocity. The reader is referred to Ref. 4 for a
comprehensive introduction to the ALE kinematics and for
the definition of the ALE mesh velocity w. For the sake of
clarity, we briefly present here the central details of the math-
ematical description of this problem in the ALE framework.
Inside the fluid domain denoted by V, no-slip boundary con-
ditions are imposed on all cavity walls: the tubular side wall
and the steadily rotating bottom end wall. A sketch of the
fluid domain along with additional information is depicted in
Fig. 1. The mathematical expressions of the no-slip condition
on the tubular side wall now account for the varying fluid
height and read

u�r = R,�,z,t� = v�r = R,�,z,t� = w�r = R,�,z,t� = 0,

�3�
0 � � � 2�, 0 � z � H + 	�R,�,t� ,

where 	�r ,� , t� is the algebraic free-surface elevation at the
point of polar coordinates �r ,�� and measured from its equi-
librium position z=H. The flow is driven by imposing a
regularized and steady angular velocity profile to the bottom
end wall, which transfers its kinetic energy to the fluid above
through shear stresses. The details regarding the imposition
of this Dirichlet boundary condition for the velocity field at
the spinning disk are discussed in Sec. II B. The top surface
is left open and is modeled as a moving and yet clean free
surface—i.e., surface tension effects are neglected. The im-
position of the dynamic and kinematic boundary conditions
�KBCs� at the free surface is discussed in Sec. II C.

B. Angular velocity distribution

Imposing a constant angular velocity profile leads to a
singularity �discontinuous behavior in the velocity boundary
conditions� at the circular edge between the bottom end wall
and the tubular side wall, see Fig. 1. Without adequate treat-
ment, this discontinuous behavior undermines the conver-
gence and the accuracy of any numerical method in the vi-
cinity of the lid. The same remedy as in the lid-driven
cubical cavity problem treated by Bouffanais et al.7 is used
here for the same reasons and with analogous justifications.
A regularized angular velocity profile is employed by pre-
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FIG. 1. Sketch of the 3D geometry of the cylindrical cavity.
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scribing the following high-order polynomial expansion
which vanishes along with its first derivatives on the circular
edge,

��r,�,z = 0,t� = �0�1 − � r

R
�16�2

ez

and

u�x,y,z = 0,t� = �0�1 − �	x2 + y2/R�16�2�xey − yex� , �4�

for the prescribed velocity field on the bottom end wall in
Cartesian coordinates. This profile flattens very quickly near
the circular edge �r /R=1,� ,z /H=0� while away from it, it
grows rapidly to a constant value �0 of the angular velocity
over a short distance. The highest polynomial order of this
distribution is 32. Such high-order polynomial expansion
leads to steep velocity gradients in the vicinity of the circular
edge of the bottom end wall. This constraint in the grid de-
sign has been accounted for in order to ensure the proper
resolution of the lid velocity distribution by the spectral ele-
ment decomposition, see Sec. III.

C. Free-surface modeling

The mathematical problem corresponding to Eqs. �1� and
�2� requires the definition of three independent nondimen-
sional parameters to determine completely the flow state.
These three parameters are the height-to-radius aspect ratio
�=H /R, the Reynolds number Re=R2�0 /�, and the Froude
number Fr=R2�0

2 / �gH�=R�0
2 / �g�� based on the maximal

prescribed angular velocity �0 of the bottom end wall and
the acceleration of gravity g. Based on this set of nondimen-
sional parameters, the governing equations and boundary
conditions for this problem can easily be nondimensional-
ized. The reader is referred to the monograph by Pozrikidis40

for a detailed discussion of the possible scalings of the
Navier–Stokes equations when the sole body force acting is
the one due to the gravity. Given our focus here on transi-
tional flows for which Reynolds numbers can be quite high,
the choice of scaling is straightforward. It leads to nondi-
mensional governing equations and boundary conditions ob-
tained from the dimensional ones by simply and respectively
exchanging � with 1/Re and g with 1/Fr, see Ref. 40. Fur-
thermore, a comprehensive discussion of the different steps
from the dimensionalized governing equations and boundary
conditions to the discretized ones can be found in Ref. 4.

It is sometimes convenient to introduce an additional
nondimensional number: the Wehausen number denoted as
Wh and defined as the ratio between Re and Fr1/2,

Wh =
Re
	Fr

= R3/2
	g�

�
. �5�

This nondimensional number is obviously dependent on the
three other nondimensional numbers and may be regarded as
a measure of the relative magnitudes of the macroscopic time
scales and of the microscopic and viscous diffusive ones.
The interest for the Wehausen number lies in the fact that for
a given fluid—i.e., for a given kinematic viscosity �—under
the effect of gravitational forces, Wh solely depends on the
problem length scale—here the cylinder radius R, the depen-

dence on the aspect ratio � being marginal. The Wehausen
number has been introduced in the past for the study of
large-scale free-surface flows �see Ref. 33� to justify the use
of an irrotational flow hypothesis away from the free surface.
These arguments correspond to typical free-surface flows en-
countered in ocean engineering. In the present case, the
length scales correspond to typical experimental setup and
are therefore clearly smaller. Using g=9.81 m s−2 and the
kinematic viscosity of tap water at ambient temperature �
=10−6 m2 s−1, one can evaluate the order of the Wehausen
number for the cylinder used in a typical experimental setup,
of radius R=H=O�10−1� m: Wh=O�105�. Such a high order
for Wh is a further justification of the flat-and-fixed free-
surface modeling approach approximation systematically
used in the framework of this problem. However, this esti-
mate loses some of its interest when considering the dynam-
ics of some local effects at the free surface highlighted in the
present study. Indeed, as mentioned earlier, Wh does not de-
pend on any characteristic velocity scale but solely on the
characteristic length scale of the problem. The thorough
study of the unsteady flat-and-fixed free-surface problem by
Bouffanais and Lo Jacono8 has revealed some small-scale
structures near the free surface. These small-scale structures
lead to significantly smaller values of the Wehausen number
and this independently of their characteristic velocity or vor-
ticity scales.

The hypothesis of flat-and-fixed free surface is equiva-
lent to imposing a zero-Froude-number condition, which in
turn leads to a simplified KBC w=uz=0 at the free surface
z=H. The KBC expresses the fact that the free surface is a
nonpermeable material surface. In the ALE framework, the
KBC at the free surface in its most general form reads

u · n̂ = w · n̂ , �6�

where n̂ represents the local unit outward normal vector to
the free surface. The scalar equation �6� only constrains the
normal component of the mesh velocity w. Some freedom
remains for the choice of the values of the tangential part of
w. To simplify the implementation, a pure Lagrangian de-
scription of the free surface is chosen by imposing the tan-
gential part of w to be identical to the corresponding one for
the fluid velocity. Thus, the KBC takes the very simple form
of the following vector equation:

u = w , �7�

at the free surface.
The pressure and velocity boundary conditions at the

free surface are both formulated from the dynamic constraint
of continuity of normal momentum flux across the free sur-
face while assuming negligible momentum on the air side
and neglecting surface tension effects—hypothesis of clean
surface without any surfactant. This dynamic boundary con-
dition �DBC� reads

�ij
� n̂j = − p�ijn̂j + 2�Dijn̂j = 0 �8�

for zero atmospheric pressure. Unlike in the flat-and-fixed
free-surface case,8 the DBC equation �8� does not simplify
further but leads to a vanishing integral surface term �de-
noted by H� in Ref. 4� into the weak ALE formulation of the
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problem—see Ref. 4 for a complete theoretical presentation
of this aspect. As emphasized in this last reference, this ho-
mogeneous DBC is automatically incorporated into the com-
plete weak formulation of the problem expressed in its strong
form by Eqs. �1� and �2�. This automatic imposition of the
DBC through the weak formulation of the problem is one of
the most attractive feature of the newly developed numerical
method used in the direct numerical simulation �DNS� of this
open cylindrical swirling flow. Along the same line, the spe-
cific choice of the ALE kinematics allows to automatically
account for the KBC through Eq. �6�, or equivalently Eq. �7�.

D. Mesh velocity problem

When considering this free-surface swirling flow prob-
lem tackled in an interface tracking and ALE frame, the free
surface is treated in a Lagrangian way, whereas the fixed
tubular side wall and the prescribed-in-motion bottom end
wall are studied in the Eulerian frame. It is worth noting that
the vector expression Eq. �7� of the KBC is mathematically
compatible with the no-slip condition on the tubular side
wall expressed by Eq. �3� if and only if one imposes the
no-slip condition Eq. �3� to the ALE mesh velocity w at the
contact line defined by �r=R ,� ,z=H+	�. This homoge-
neous Dirichlet boundary condition for the mesh velocity on
the tubular side wall is supplemented by another homoge-
neous Dirichlet condition on the bottom end wall z=0. As a
consequence of the choice of kinematics on the fluid domain
boundary—Lagrangian and Eulerian but not yet arbitrary—
the values of the mesh velocity are prescribed by the bound-
ary conditions given by Eq. �7� and the two homogeneous
Dirichlet conditions on the bottom end wall and tubular side
wall. The freedom left for the choice of w lies solely in the
values of this field in the internal fluid domain.

The details associated with the underlying moving-grid
technique are dealt with by Bodard et al.4 For the sake of
clarity, we only briefly recall here the central details of this
method. The determination of the mesh velocity w in the
internal fluid domain is the cornerstone of the moving-grid
technique developed in the framework of the ALE formula-
tion. The values of the mesh velocity being prescribed on the
boundary, the evaluation of w is obtained as the solution of
the following steady Stokes problem:

� · �̃ = � · �− p̃I + �̃��w + �wT�� = 0 , �9�

� · w = 0, �10�

where �̃ can be seen as the Cauchy stress tensor of the mesh,
with p̃ and �̃ being, respectively, the fictitious mesh pressure
and the fictitious kinematic viscosity of the mesh, character-
izing the viscosity of the mesh in its flowing motion. The
reader is referred to Ref. 4 for the multiple explanations of
this choice of incompressible flow motion of the mesh. Fi-
nally, the update of the position x of the mesh points is
performed by integrating the following equation:

dx

dt
= w . �11�

III. COMPUTATIONAL APPROACH

This section is aimed at providing the reader with a brief
but nonetheless essential description of the numerical treat-
ment of the equations governing the problem studied by
DNSs using an ALE moving-grid technique jointly with the
Legendre spectral element method.

A. Space discretization

A classical Galerkin approximation is applied to the set
of governing equations expressed in the weak transient ALE
form in order to determine the pressure and the fluid velocity.
The Galerkin approximation is then discretized by using the
spectral element method with the classical staggered
PN−PN−2 approach to avoid the development of spurious
pressure modes.32 Discontinuous and continuous approxima-
tions are taken for the pressure and fluid velocity, respec-
tively. The mesh velocity is discretized using the same poly-
nomial space as the fluid velocity, namely, PN, based on a
Gauss–Lobatto–Legendre �GLL� grid of order N. For the dis-
continuous approximation of the pressure, a Gauss–Legendre
�GL� grid of order N−2 is used. Consequently the ALE
Navier–Stokes semidiscrete equations reads

d

dt
�Mu� � + C�u� ,w� �u� + Au� + DTp� = F� , �12�

− Du� = 0 , �13�

M denoting the tensorized mass matrix, A the tensorized
stiffness matrix, DT the tensorized discrete gradient operator,
D the tensorized discrete divergence operator, C�u� ,w� � the
tensorized discrete convective operator depending both on
the fluid and mesh velocity, and F� the discrete body force
which accounts for the macroscopic effects of the accelera-
tion of gravity g. The update of the position x of the mesh
points is performed by integrating the discrete counterpart of
Eq. �11�,

dx�

dt
= w� . �14�

The spectral element grid prior to any motion in the ALE
framework and used for all simulations is presented in Fig. 2
in the case �=1. This mesh comprises 440 spectral elements
distributed into ten cylindrical layers of different heights but
all made of the same distribution of 44 spectral elements. In
order to resolve the boundary layer along the tubular side
wall, the Ekman shear layer above the rotating bottom end
wall, and the surface shear layer below the free surface, the
spectral elements are unevenly distributed as can be seen in
Fig. 2. The choice of polynomial order in the three space
directions, defining the inner GLL and GL grids into each
spectral element, is based on a convergence analysis reported
by Bouffanais and Lo Jacono:8 the temporal convergence is
achieved using a time step small enough to satisfy the
Courant–Friedrichs–Lewy condition, while a polynomial or-
der N=8 �except for a very laminar case for which N=7
suffices� in all three space directions ensures the spatial con-
vergence. The essential Dirichlet boundary conditions—
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homogeneous for u on the tubular side wall as expressed by
Eq. �3� and nonhomogeneous for u on the rotating bottom
end wall as expressed by Eq. �4�—are embodied into the
choice of test and trial functions chosen for the velocity field.

B. Time integration

The set of semidiscrete equations �12�–�14� is dis-
cretized in time using finite-difference schemes in a decou-
pled approach. The computation of the linear Helmholtz
problem—corresponding to the stiffness matrix A—is inte-
grated based on an implicit backward differentiation formula
of order 2; the nonlinear convective term—corresponding to
the operator C—is integrated based on a relatively simple
extrapolation method of order 2, introduced by Karniadakis
et al.24 The discrete body force vector F� appearing in Eq.
�12� may be expressed in a more intuitive way as Mg� , where
M denotes the tensorized mass matrix. The fully discretized
set of governing equations reads

�3Mn+1

2
t
+ An+1�u� n+1 − �Dn+1�Tp�

n+1

=
1


t
�2Mnu� n −

1

2
Mn−1u� n−1� + Mn+1g�

n+1 − Cn+1u� n+1, �15�

Cn+1u� n+1 = 2Cn�u� n,w� n�u� n − Cn−1�u� n−1,w� n−1�u� n−1, �16�

− Dn+1u� n+1 = 0� , �17�

x�n+1 = x�n + 
t�23

12
w� n −

16

12
w� n−1 +

5

12
w� n−2� , �18�

where 
t is the time step. Again for this technical aspect, the
reader is referred to Ref. 4.

C. Computational parameters

The DNSs correspond to three different values of the
Reynolds number sharing the same aspect ratio �=1. As
stated earlier, the physics of these free-surface swirling flows
depends critically on both the Reynolds number and the
height-to-radius aspect ratio �. Very often, situations corre-
sponding to extreme values of � have been studied, as they

generally lead to simplified flow mechanisms. For instance,
shallow systems ���1� are often referred to as “rotor-
stator” configurations, in which the fluid is almost in a state
of solid-body rotation. On the other hand, deep systems as-
sociated with large values of � generate recirculation
bubbles away from the free surface and generally on the
cylinder axis. Consequently, systems corresponding to values
of � close to unity are intermediate in the sense that the
physics of the flow observed is a complex combination of the
general features reported for the shallow and deep systems.
Given the nondimensionalization used, these three cases cor-
respond to the same Froude number. In terms of initial con-
ditions, the steady rotation is started from the steady state
�statistically steady state� reached in the fixed-and-flat free-
surface simulations �a� and �b� ��c�� from Ref. 8. The steady
�statistically steady� state for cases �a� and �b� ��c�� is
reached after a transient of very short duration. The physical
and computational parameters corresponding to the three
moving cases are reported in Table I.

In this study, the primary focus is on the unsteady case
�c�. The value of the Reynolds number is intentionally set to
a high value compared to previous studies—the highest to
our knowledge—in order to ensure producing fields of a rela-
tive intensity at the free surface. The central case �c� is
supplemented with two secondary cases �a� and �b� allowing
to better understand the complex dynamics of the primary
case ��=1, Re=6000�. The value of the Froude number
Fr=0.1 corresponds to a practical configuration in which the
value of �0 corresponds to Re=6000, case �c�, with H=R
=32.5 mm as in the experimental setup used by Lo Jacono
et al.29 To simplify the comparison between the different
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FIG. 2. Left: half-meridional spectral element grid. Center: spectral element grid in any plane normal to the z direction. Right: 3D grid comprising ten
cylindrical layers of nonuniform heights made of 44 spectral elements each. Case �=1.

TABLE I. Parameters and characteristics of the cases considered. The time
step 
t is expressed in �0

−1 units and N refers to the same polynomial order
used in all space directions.

Case Re �=H /R Fr Time step 
t Time evolution N

�a� 900 1.0 0.1 0.0025 Steady 7

�b� 1500 1.0 0.1 0.0025 Steady 8

�c� 6000 1.0 0.1 0.0010 Unsteady 8
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cases, the same value of the Froude number is taken for cases
�a� and �b�. In a common approach to unsteady problems,
the complex dynamics of case �c� is analyzed by means of an
averaging process supplemented with instantaneous flow
sample. The mean flow is obtained by averaging 400 flow
samples corresponding to successive flow states extracted
every 0.1 time units �or equivalently ten samples are ex-
tracted for each complete turn of the bottom end wall, i.e.,
every 100 iterations�. Subsequently, the root-mean-square
�rms� fluctuations of flow fields are calculated using the same
extracted flow samples and the mean flow field obtained ear-
lier. Given the moving-grid nature of the present DNS, the
averaging process poses severe technical difficulties as the
database comprises flow samples being all defined on differ-
ent grids. In the spectral element framework and given the
high-order representation of the flow fields, no simple inter-
polation procedure can be used to transfer the data onto some
sort of common grid. To circumvent this central issue, two
procedures have been adopted. First for the free-surface el-
evation, a one-dimensional line of surface points along a
radial line has been extracted and interpolated using a stan-
dard quadratic spline interpolation procedure. All the inter-
polated lines have then been averaged to lead to the average
free-surface profile. This procedure has the advantage of be-
ing straightforward and global �by opposition to the local
nature of the spectral element method� but leads to an over-
smoothing of the data. The second procedure concerns the
internal flow field and uses a high-order remeshing proce-
dure developed by Bouffanais and Deville6 to transfer the
flow fields from their deformed grid at instant t onto the
initial grid at t=0 which is shown in Fig. 2 and has a flat free
surface. Such procedure has the advantages of being high
order and local and has proved to conserve the spectral
accuracy,6 except here close to the free surface because of its
flattening. It is important to bear in mind that this “flatten-
ing” effect appears only in the postprocessing and averaging
procedure, the DNS being carried out with a moving nonflat
free surface.

IV. NUMERICAL RESULTS

The present study is primarily intended to shed a new
light on the open swirling cylinder problem in unsteady and
nonaxisymmetric configurations. Indeed, much attention has
been paid to the steady and/or axisymmetric flow states. The
experimental studies of deep systems—corresponding to �
�1—performed independently and successively by Young
et al.,54 Hirsa et al.,20 and Miraghaie et al.34 revealed that the
instability mode is concentrated in the vicinity of the wall jet
along the tubular side wall. This wall jet is generated by the
rotation of the bottom end wall and is turned upwards by the
presence of the tubular side wall. As mentioned by Piva and
Meiburg:39 “this instability mode does not lead to a surface
deflection, so that it can be captured in numerical simulations
assuming a flat, stress-free surface.” Conversely, the instabil-
ity modes for shallow systems—corresponding to
��1—are concentrated in the interfacial region denoted by
 in Ref. 8 and where the surface radial jet of angular mo-
mentum impinges onto the inner cylindrical core in a state of

quasi-solid-body rotation. As it is shown in the sequel, these
unstable modes yield free-surface deflection, which becomes
nonaxisymmetric at sufficiently large Reynolds number. For
those shallow cases, the flat and stress-free modeling of the
free surface is no longer an acceptable hypothesis.

For sufficiently small Reynolds number and irrespective
of �, the basic flow state is stable. As noted by Lopez
et al.,31 when Re is increased, the basic flow state loses sta-
bility via a variety of Hopf bifurcations. It is worth noting
that when Re tends to infinity, the stream surfaces and vortex
surfaces—giving the streamlines and vortex lines by inter-
section with a meridional plane—must coincide. At this
point, the presence of a flat free surface poses problem be-
cause of the constraint of having orthogonal streamlines and
vortex lines on it. This apparent paradox is unraveled by
simply letting the free surface move, which is exactly what is
done in the present numerical framework. Nevertheless, ex-
periments carried out by Spohn et al.47,48 showed that even at
Re=6000 the tangential flow is extremely intense compared
to the normal one, leading to small free-surface deforma-
tions. It is very likely that these small amplitude deforma-
tions are not sufficient to solve our apparent paradox. At low
Reynolds number, like those of cases �a� and �b�, the viscos-
ity acts on the velocity field to allow the latter condition of
orthogonality to be fulfilled. But when the Reynolds number
is increased, the action of viscosity and the limited deforma-
tion of the free surface are not sufficient to bring back the
orthogonality of the two sets of lines. Therefore, the flow
must either lose its axisymmetry or become unsteady in or-
der to allow to drop the orthogonality condition. The experi-
ments by Spohn et al.48 suggest that the open swirling flow
first go through the unsteady path.

A. Free-surface profiles

Considering the nonflat free-surface case, it appears
natural to primarily focus on the determination of the free-
surface elevation 	. Figure 3 �left� displays the relative sur-
face elevation 	 /H in any meridional plane for both steady
cases �a� and �b�. 3D views of these two cases are available
in Fig. 4. One clearly distinguishes two regions correspond-
ing to surface elevations of opposite signs. In the inner-core
region of the flow, say, r /R�0.4, the algebraic surface el-
evation is the largest in absolute value and a large trough
forms. This internal trough is surrounded by an outer region
of strictly positive surface elevation all the way to the circu-
lar contact line along the tubular side wall. The radial posi-
tion of this ring crest is located around r /R=0.9 and its am-
plitude is much smaller than the one of the trough measured
on the cylinder axis. The outer ring of positive 	 is generated
by the impingement of the tubular wall jet, consequence of
the pumping effect of the Ekman layer above the rotating
disk. The inner trough is itself another consequence of this
Ekman layer but through its sucking effect which completes
the large meridional circulation generated by the motion of
the disk. It also corresponds to the region of the flow in a
state of quasi-solid-body rotation. The sharp drop to 	 /H
=0 observed when approaching the tubular side wall is jus-
tified by the absence of dynamics of the contact line between
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the three phases: fluid, gas, and solid. Indeed, surface tension
is neglected and a no-slip condition is imposed to the fluid on
the tubular side wall, while the top surface is free to move,
see Sec. II C. Nonetheless, the rapid variations of 	 /H do
not cause any problem given the very high resolution of the
mesh near the tubular side wall, see Fig. 2.

As far as the comparison between the cases at Re=900
and Re=1500 is concerned, one may globally note a more
pronounced free-surface deformation at higher Re: the deep-
ness of the trough is more important in case �b�, and the crest
of the outer ring is higher in case �b�. On top of those global
remarks, three important specific items are to be pointed out.
First, one could expect the deepest free-surface point to be
located on axis. This is the case at Re=1500 but not at Re
=900, where the presence of the on-axis VB bubble limits
the sucking effect of the Ekman layer. At Re=1500, the re-
circulation bubble becomes off-axis and toroidal, which
therefore allows for a more important sucking effect along
the cylinder axis. The second point is related to the radial
location of the maximum of the ring crest: the radius of this
maximum appears to be shifted toward the cylinder radius
when increasing Re. Bearing in mind that the crest is gener-
ated by the tubular wall jet, one may recall that the thickness
of this wall jet is reduced with increasing Re, which there-
fore explains the observed maximum shift of the crest. The
third item refers to the transition region between the positive

and negative regions of 	. This transition region is in rela-
tionship with the interfacial zone  where the instabilities
are concentrated—see Ref. 8: for Re=900 almost no eleva-
tion of the free surface is observed, while at Re=1500 an
additional small crest is observed followed radially by a sec-
ond small trough before reaching the largest crest ring.

Based on axisymmetric steady state results, Piva and
Meiburg39 extrapolated the leading order free-surface
deflection—denoted by h in their journal article—using the
balance of normal stresses at the free surface. In their study,
Piva and Meiburg focused on the steady axisymmetric open
swirling flow with a partially rotating bottom end wall. It is
important to note that their results shown in Fig. 14 of Ref.
39 are only extrapolated results from numerical data ob-
tained using a flat stress-free modeling for the free surface.
In their Fig. 14, only the case D=1 corresponding to a com-
plete rotation of the bottom wall is of interest to us as it
corresponds exactly to our case �a�. It appears that their very
interesting results for D=1 capture roughly the trends and
variations. However, they are not able to capture the three
important items discussed above.

When increasing the Reynolds number up to Re=6000,
the numerical simulation yields a nonaxisymmetric free-
surface shape as can be seen in two orthogonal meridional
planes in Fig. 3 �center� and in a 3D view in Fig. 4. The
interpolated average �see Sec. III C� of the relative free-
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FIG. 3. Relative free-surface elevation 	 /H measured from the position z=H at rest in a meridional plane. Left: solid line, Re=900; dotted line, Re=1500.
Center: Re=6000 �instantaneous flow sample�; solid line, meridional plane y /R=0; dashed line, meridional plane x /R=0. Right: Re=6000 interpolated
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FIG. 4. 3D views of the free-surface shape 	 /H measured from the position z=H at rest. Left: Re=900; center: Re=1500; right: Re=6000 �instantaneous flow
sample�. The spectral element grid appears in solid white line to enhance the 3D visualization.
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surface elevation is shown in Fig. 3 �right�. The comments
associated with the comparison of cases �a� and �b� remain
valid for this higher-Reynolds-number case. One may, how-
ever, note in Fig. 3 the more complex radial variations of 	
in the larger transition region between the inner trough and
the outer crest ring. In the flat free-surface case by Bouffa-
nais and Lo Jacono,8 the unstable modes were found to be
active in this region comprising the interfacial zone . The
3D view in the bottom row of Fig. 4 reveals a free-surface
shape of “bathtub sink-vortex” type. Compared to the lami-
nar cases �a� and �b�, the free-surface elevation for the un-
steady transitional case at Re=6000 displays extremely rapid
variations in space, and hence a less “soft” aspect. In prac-
tice, the free surface is never perfectly clean of surfactants,
which would inevitably act onto these abrupt spatial varia-
tions and lead to a “softer” free-surface shape.

B. Vortex breakdown bubbles and meridional
flow fields

We consider now the two steady flows for �=1 and
Re=900 and 1500 corresponding to cases �a� and �b�, re-
spectively. Figure 5 �left� displays the streamlines of these
flows into any meridional plane. Both of these flows present
a large axisymmetric VB bubble attached to the free surface,
in agreement with the experimental results from Spohn
et al.48 These recirculation zones are characteristic of these
swirling flows due to the conjugate effects of the centrifugal
force and the overturning flow induced by the presence of
the tubular side wall. The central difference between the low-
Reynolds-number cases �a� and �b� is the shape of the recir-
culation, which becomes toroidal after leaving the axis when
the Reynolds number is increased from 900 up to 1 500. For
both of these flows, the streamlines are extremely close to
those obtained in the flat stress-free model except near the
contact line �r=R ,� ,z=H+	�. A small recirculation bubble
appears near this contact line. It is attached to the free sur-
face and stretched from about half-height of the cavity up to
the free surface. This VB bubble is related to the crest ring
described in Sec. IV A. It is important to note that experi-
mentally this small recirculation bubble may not be present
because of unavoidable dynamics of the contact line, which

is not accounted for in the present simulations. In addition,
the presence of small amounts of surfactants affects the
cleanliness of the surface. This notably modifies the contact
angle and the free-surface shape near the contact line. The
same observation and conclusions apply to the unsteady case
�c� at Re=6000, for which the streamlines at a given instant
are represented in Fig. 5 �right�.

In the second step, the contours of the radial, azimuthal,
and axial velocity components in any meridional plane are
given in Fig. 6. These data are supplemented with the con-
tours of the axial component of the angular momentum �
=ru� still in Fig. 6, extreme right column. Given the small
Reynolds numbers in both cases, it is clear that the structures
of these fields are extremely close to those obtained using the
flat stress-free model. The only notable difference lies in the
contours of the axial velocity component uz. Indeed, the
zero-Froude-number condition imposed in the flat free-
surface modeling in lieu of the KBC led to a vanishing axial
velocity at the free surface. In this study, this condition is
relaxed and the real KBC is imposed allowing to have non-
zero axial velocity at the free surface. Consequently, we ob-
serve now nonzero contours terminating at the free surface,
which was impossible previously. The distribution of con-
tours of uz are to be put together with the surface elevations
depicted in Fig. 3. Given the limited surface deflection of the
free surface, its local unit normal vector n̂ is everywhere
close to the unit vector in the z direction. As the normal
component of the fluid velocity is responsible for free-
surface deformations, in this case it is uz that is mainly re-
sponsible for the observed surface elevation. One may notice
that we recover from the distribution of contours of uz at the
free surface the two regions of positive and negative 	.

The previous analysis is further confirmed by the con-
tours of the three velocity components and of the axial an-
gular momentum for an instantaneous flow sample, pre-
sented in Fig. 7, in two orthogonal meridional planes. The
contours of these four averaged quantities are found to be
extremely close to those obtained in the flat-and-fixed free-
surface case reported by Bouffanais and Lo Jacono,8 and
hence are not reproduced herein. Even at such high Reynolds
number, the presence of a moving free surface does not yield
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FIG. 5. Contours of streamlines in a meridional plane. Left: Re=900; center: Re=1500; right: Re=6000 �average�. The 30 contours are nonuniformly spaced
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a very different flow dynamics on average. Nonetheless, the
instantaneous flow samples display a different set of features
with and without a moving free surface.

A careful analysis of the vortex lines for the instanta-
neous flow sample shows a bending in the whole meridian
plane. This bending is very significant in the region 0.4
�r /R�0.8 and 0.4�z /H�1, which corresponds to the

limit between the primary recirculation of the flow and the
secondary recirculation bubble. The jetlike shear layer along
the tubular side wall is turned into the interior of the flow by
the free surface. Focusing on the axial velocity component
uz, the comparison of the respective contours of uz in Fig. 7
and in the corresponding figure by Bouffanais and Lo
Jacono8 highlights the higher intensity of this shear layer in
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FIG. 6. �Color online� Contours in a meridional plane for the case �=1 with a free surface. Top row: case Re=900; bottom row: case Re=1500. From left
column to right column: radial velocity component ur, axial velocity component w=uz, azimuthal velocity component u�, and axial angular momentum
component �=ru�. The 35 contours are uniformly spaced between �0.06 and 0.145 for ur and between �0.09 and 0.12 for uz. The 50 contours are uniformly
spaced between 0 and 1 for u� and �.

x/R

z/
H

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x/R

z/
H

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)(a) x/R

z/
H

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) x/R

z/
H

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d)

y/R

z/
H

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(f)y/R

z/
H

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(e) y/R

z/
H

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(g) y/R

z/
H

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(h)

FIG. 7. �Color online� Contours in two orthogonal meridional planes for the case �=1 and Re=6000 with a free surface. Instantaneous flow sample. Top row:
meridional plane y /R=0; bottom row: meridional plane x /R=0. From left column to right column: radial velocity component ur, axial velocity component uz,
azimuthal velocity component u�, and axial angular momentum �=ru�. The 50 contours are uniformly spaced between �0.13 and 0.16 for ur, between �0.09
and 0.14 for uz, and between 0 and 1 for u�. The 100 contours are uniformly spaced between 0 and 1 for �.

064107-10 R. Bouffanais and D. Lo Jacono Phys. Fluids 21, 064107 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



the moving free-surface case. In the flat case, the axial ve-
locity has monotone decreasing variations in the increasing z
direction, while we observe a local maximum of uz near the
position �r /R=0.9,z /H=0.9�. The structure of the jetlike
shear layer appears therefore modified by the presence of the
free surface.

The distribution of contours of uz at the free surface z
=H+	 again reflects well the calculated free-surface eleva-
tion shown in Fig. 3. For instance, the local positive extrema
of 	 at r /R
0.5 and the local negative extrema at r /R

0.4 and r /R
0.6 are well predicted by the variations of uz

at the free surface.

C. Free-surface flow fields

All the previous results dealing with the transitional case
�c� reveals a complex flow dynamics due to instabilities de-
veloping from a steady stable flow similar to the steady lami-
nar case �b�. The study of the rms fluctuations of the flow
fields at the free surface presented by Bouffanais and Lo
Jacono8 reveals the existence of an annular region with 0.3
�r /R�0.4, where the fluctuations of ur, u�, and � are in-
tense. This region was related to the interfacial zone  and in
the sequel both of these zones will be indifferently denoted
by . The statistical analysis of the flow samples corre-
sponding to case �c� allows the study of the rms fluctuations
of uz at the free surface. It is expected to have intense rms
fluctuations of uz in  given the very clear and unsteady
deformation of the free surface in Fig. 3 for r /R
0.4.

Figure 8 presents the flooded contours of the three cy-
lindrical velocity components and of � on the deformed free
surface. It is noteworthy to focus our comments onto the
axial angular momentum �. Four radial jets �two groups of
two jets� are visible at the free surface. The two groups of
two jets are of different intensity and the most intense one
leads to more important surface deflections in the region .
This observation can be justified as follows: when the radial
free-surface jet of angular momentum impinges on the inner
fluid in quasi-solid-body-rotation, the larger part of momen-
tum is redirected downward, while a non-negligible part of it
is redirected upward, thereby deforming the free surface.

D. Study of some nonlinear convective terms

Before concluding this study of the moving free-surface
swirling flow, we present the variations of some radial and
azimuthal nonlinear terms at the free surface. The magnitude
of the terms NL rk and NL tk, k=1,2 ,3—see Table II for

mathematical expressions—has been calculated along a ra-
dial line �r ,�=0,z=H+	� that follows the shape of the free
surface. These results are compared to those corresponding
to the flat-and-fixed free-surface case reported by Bouffanais
and Lo Jacono8 for cases �a�− �c�. Theses radial variations of
the terms in Table II are reported in Fig. 9 for cases �a� and
�b� and in Fig. 10 for cases �b� and �c�. The goal in this
section is to highlight the differences in those terms when
considering the moving free-surface model as opposed to the
flat-and-fixed one, denoted as “FS” and “SF,” respectively, in
Figs. 9 and 10.

Starting first with the term NL r1=−ur�ur /�r, one
should observe no substantial change in the variations trend,
but for all three Reynolds numbers the FS terms have a re-
duced magnitude compared to their SF counterparts. The
flat-and-fixed free-surface assumption used by Bouffanais
and Lo Jacono8 leads to a systematic overestimation of the
radial nonlinear term NL r1.

Exactly the same analysis and comments can be made
for the radial variations of the centrifugal acceleration
NL r2=u�

2 /r. In addition, the appearance of a local minimum
for the centrifugal acceleration in the interfacial zone  has
been pointed out by Bouffanais and Lo Jacono8 for case �c�.
This local minimum is still observable for the FS term
NL r2, and it is even more pronounced and affects a broader
radial interval 0.05�r /R�0.45.

FIG. 8. �Color online� Contours on the free surface z=H+	 for the case �=1 and Re=6000. From left to right: ur, uz, u�, and �=ru�. Contour levels are the
same as those in Fig. 7. The spectral element grid appears in solid dark-gray line to enhance the 3D visualization.

TABLE II. Labels of the different nonlinear terms from the momentum
budget equation, similarly to Bouffanais and Lo Jacono �Ref. 8�.

Name Expression

NL r1 − ur

�ur

�r

NL r2 +
u�

2

r

NL r3 − uz

�ur

�z

NL t1 − ur

�u�

�r

NL t2 −
uru�

r

NL t3 − uz

�u�

�z
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By definition, the nonlinear term NL r3=−uz�ur /�z van-
ishes at the free surface when considering the flat-and-fixed
free-surface hypothesis. For cases �a� and �b�, the magnitude
of NL r3 is extremely small compared to NL r1 and NL r2.
Consequently, we can conclude to a very limited influence of
this term in the flow dynamics, even for case �c� at Re
=6000. The low magnitude of the axial velocity at the free
surface seems responsible for this. Again, exactly the same
analysis and comments can be made for the azimuthal term
NL t3=−uz�u� /�z.

Contrary to what have been observed for the radial terms
NL r1 and NL r2, the azimuthal terms NL t1 and NL t2 have
their first local minimum in the interval 0.2�r /R�0.4,
which is underestimated in the flat-and-fixed free-surface
framework. For case �c� at Re=6000, the SF term NL t1
shows a local maximum instead of a high-magnitude local
minimum found for the FS NL t1 term. In addition, the Co-
riolis term NL t2 is globally underestimated in the flat-and-
fixed case.

All the results presented in this section confirm some
deficiencies of the flat-and-fixed free-surface model when
dealing with some nonlinear terms appearing in the govern-
ing equations. These deficiencies are obviously more impor-

tant at the free surface than closer to the rotating disk. Fi-
nally, one should point out that the motion of the free surface
is shown to be not necessary for the instabilities to grow and
for the system to become unsteady and nonaxisymmetric,
though it appears to influence these transitions.

V. CONCLUSIONS

The incompressible flow of a viscous fluid enclosed in a
cylindrical container with a moving free surface and driven
by the constant rotation of the bottom wall has been thor-
oughly investigated in this article. The top surface of the
cylindrical cavity is left open with a clean free surface sub-
ject to KBC and DBC. No-slip conditions are imposed on the
side wall and on the rotating bottom end wall by means of a
regularized angular velocity profile.

New flow states have been investigated based on a fully
3D solution of the Navier–Stokes equations for the free-
surface cylindrical swirling flow using a moving-grid tech-
nique in the ALE framework. The DBC is automatically in-
corporated into the complete weak formulation of the
problem. This automatic imposition of this DBC through the
weak formulation of the problem is one of the most attractive
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FIG. 9. �Color online� Variations at the free surface of nonlinear terms along a radial line that follows the shape of the free surface. Cases �a� and �b�. Left
column: terms NL rk, k=1,2 ,3; right column: terms NL tk, k=1,2 ,3. SF stands for stress-free and refers to the flat stress-free model and FS stands for free
surface. The terminology refers to Table II.
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feature of the newly developed numerical method. Along the
same line, the specific choice of the ALE kinematics allows
to automatically account for the KBC. To our knowledge, the
present study delivers the first results for this free-surface
swirling flow problem.

Three different cases corresponding to three different
values of the Reynolds number have been considered while
fixing �=1. The shape of the free surface leads globally to a
deep trough around the axis generated by the sucking effect
of the Ekman layer above the rotating disk. A small crest ring
appears due to the impingement of the tubular wall jet onto
the free surface. The location of the VB bubble influences
locally the shape of the free surface. At Re=6000, the shape
of the free surface loses its axisymmetry and reveals second-
ary smaller crests and troughs in the interfacial region . For
all Re, a smaller recirculation bubble forms near the contact
line and the axial velocity component is the most affected by
the motion of the free surface. The distribution of axial ve-
locity at the free surface is in good agreement with the free-
surface shapes calculated.

For the highest-Reynolds-number case considered �Re
=6000�, the analysis of the flow at the free surface reveals
the presence of two groups of two radial jets of axial angular
momentum, which are impinging onto the inner core in
quasi-solid-body rotation. On average, the flow dynamics is
very similar to the one obtained in the flat-and-fixed free-
surface case by Bouffanais and Lo Jacono.8 However, instan-
taneous flow samples show distinctive features with and
without a flat free surface. The analysis of some nonlinear
convective terms central to the flow dynamics confirms the
differences when having or not a flat free surface.
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