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Large-eddy simulations of the turbulent flow in a lid-driven cubical cavity have been carried out at
a Reynolds number of 12000 using spectral element methods. Two distinct subgrid-scales models,
namely a dynamic Smagorinsky model and a dynamic mixed model, have been both implemented
and used to perform long-lasting simulations required by the relevant time scales of the flow. All
filtering levels make use of explicit filters applied in the physical space �on an element-by-element
approach� and spectral �modal� spaces. The two subgrid-scales models are validated and compared
to available experimental and numerical reference results, showing very good agreement. Specific
features of lid-driven cavity flow in the turbulent regime, such as inhomogeneity of turbulence,
turbulence production near the downstream corner eddy, small-scales localization and helical
properties are investigated and discussed in the large-eddy simulation framework. Time histories of
quantities such as the total energy, total turbulent kinetic energy or helicity exhibit different
evolutions but only after a relatively long transient period. However, the average values remain
extremely close. © 2007 American Institute of Physics. �DOI: 10.1063/1.2723153�

I. INTRODUCTION

The study of a lid-driven flow of a Newtonian fluid in a
rectangular three-dimensional cavity is of particular interest
in view not only of the simplicity of the flow geometry but
also the richness of the fluid flow physics manifested by
multiple counter-rotating recirculating regions at the corners
of the cavity depending on the Reynolds number, Taylor-
Görtler-type �TGL� vortices, flow bifurcations, and transition
to turbulence. This flow structure is now well documented
thanks to a relatively rich literature reporting both computa-
tional and experimental studies. A comprehensive review of
the fluid mechanics of driven cavities is provided by Shankar
and Deshpande in Ref. 1.

In the present paper, our focus resides in relatively high-
Reynolds-number and three-dimensional lid-driven cubical
cavity flows. At Reynolds number higher than a critical value
comprised between 2000 and 3000, an instability appears in
the vicinity of the downstream corner eddy.2–4 As the Rey-
nolds number further increases, turbulence develops near the
cavity walls, and at Reynolds number higher than 10000, the
flow near the downstream corner eddy becomes fully turbu-
lent. The highest Reynolds number attained was 12000 by
direct numerical simulation �DNS� performed by Leriche and
Gavrilakis5 and 10000 experimentally by Koseff and Street6

and Prasad and Koseff.7 In the literature, papers using the
lid-driven cavity problem as a benchmark test case to evalu-
ate the performance of numerical algorithms are proliferat-
ing, but are often limited to two space dimensions or to Rey-
nolds numbers below 10000. More recently, one may

however notice the important developments of novel and
more physical numerical methods applied to the lid-driven
cavity flow such as molecular dynamics by Chen and Lin in
Ref. 8 and also the lattice-Boltzmann model applied by He et
al. in Ref. 9.

The results reported herein correspond to the numerical
simulation of the flow in a lid-driven cubical cavity at the
Reynolds number of 12000 placing us in the locally turbulent
regime. The spatial discretization relies on spectral element
methods �SEM� which have been mainly applied to the DNS
of fluid flow problems at low and moderate Reynolds num-
bers. With the advent of more powerful computers, espe-
cially through cluster technology, higher Re values seem to
fall within the realm of feasibility. However, despite their
high accuracy, spectral element methods are still far from
reaching industrial applications that involve developed tur-
bulence at Re values of the order of 106–107. The reason for
that dismal performance is that a resolved DNS including all
scales from the largest structures to Kolmogorov scales,
needs a number of degrees of freedom that grows like Re9/4.
Therefore with increasing Re, one has to increase the number
of elements, E, and the degree, N, of the polynomial spaces.
This places the computational load far out of the reach of
present day computers. Large-eddy simulation �LES� repre-
sents an alternative to DNS insofar that it involves less de-
grees of freedom because the behavior of the small scales are
modeled. The numerical simulations presented in this paper
encompass two different LES based on two distinct subgrid-
scales modeling both using an eddy-viscosity assumption,
and one using in addition a mixed model relying on the
scale-similarity hypothesis, similarly to Zang et al. in Refs.
10 and 11 for Re=10000. Compared to the previous works of
Zang et al., the two LES reported here offer simulation
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length ten times larger therefore increasing the accuracy of
the ensemble averaging and more importantly allowing us to
capture intermittent turbulent production. These events lead
to the determination of large eddies suggested to be mainly
responsible for the turbulence production near the down-
stream corner eddy.

Unlike low-order methods such as finite volumes or fi-
nite differences, spectral and spectral element methods allow
a complete decoupling between the mathematical formula-
tion, the subgrid modeling, the numerical technique and the
filtering technique, which are introduced successively in Sec.
II. Specifically, we are first seeking to validate the two
subgrid-scale models introduced in Sec. II which rely on
explicit filtering techniques specific to spectral element spa-
tial discretization. Section III presents a short, but compre-
hensive validation procedure. In Sec. IV emphasis is put on
characterizing the turbulent flow in its locally turbulent re-
gime. Fundamental features are qualitatively and quantita-
tively investigated such as the inhomogeneity of the turbu-
lence, the turbulence production in the downstream-corner-
eddy region, the small-scales turbulent structures in the
cavity flow, and finally the peculiar helical properties.

II. THE MODEL AND NUMERICAL TECHNIQUE

A. Mathematical modeling

The fluid enclosed in the cavity is assumed to be incom-
pressible, Newtonian with uniform density and temperature.
The flow is governed by the Navier-Stokes equations inside
the fluid domain denoted by V= �−h , +h�3 with no-slip
boundary conditions on every cavity wall, except on the top,
see Fig. 1. The flow is driven by imposing a prescribed ve-
locity distribution with nonzero mean on the “top” wall—
named lid in the sequel—with the velocity field maintained
everywhere parallel to a given direction. The details regard-
ing the imposition of this Dirichlet boundary condition for
the velocity field at the lid is discussed in Sec. II C 3. As the
flow presents turbulent zones coexisting with laminar re-
gions, the numerical simulation incorporates the mathemati-
cal models involved by the large-eddy simulation method in
order to resolve the complex dynamics of the flow. As a
consequence, the governing equations of the large-eddy
simulations are the filtered Navier-Stokes equations. Large-
scale quantities, designated in the sequel by an “overbar,” are

obtained by a filtering procedure on the computational do-

main V̂= �−1, +1�3 using h for the nondimensionalization of
lengths. The application of a low-pass inhomogeneous and
anisotropic spatial filter to the Navier-Stokes equations in the
Eulerian velocity-pressure formulation and in convective
form for the nonlinear term yields

�ū

�t
+ ū · �ū = − �p̄ + ��ū − � · � , �1�

� · ū = 0, �2�

in which ū is the filtered velocity field, t denotes the time,

p̄= P̄ /� is the filtered static pressure, and � the assuredly
constant, uniform kinematic viscosity. The symbols � and �

represent the nabla and Laplacian operators, respectively.
The subgrid-scale �SGS� stress tensor � is given by

� = uu − ūū , �3�

and accounts for the effects of the unresolved—or small-
scales on the dynamics of the resolved—or large-scales.12

B. Subgrid-scale models

1. Under-resolved direct numerical simulation

In the same framework as it prevails among the practi-
tioners, one can resort to the DNS computations without any
LES model, but with the nodal filtering technique described
in Sec. II D 1 to let the numerical method dissipate locally
the high-wave-number modes introduced by the insufficient
space discretization. Such an approach corresponds to an
under-resolved DNS �UDNS�.

2. Smagorinsky model

The SGS Smagorinsky model �SM� �Ref. 13� uses the
concept of turbulent viscosity and assumes that the small
scales are in equilibrium, balancing energy production and
dissipation. This yields the following expression for the eddy
viscosity:

�sgs = �CS�̄�2�S̄� , �4�

where �S̄�= �2S̄ijS̄ij�
1/2 is the magnitude of the filtered strain-

rate-tensor with S̄ij =1/2��ūi /�x j +�ū j /�xi�, CS is the Smago-

rinsky constant, and �̄ is the filter width. The Smagorinsky
model has several drawbacks. The most severe one is the
constant value of CS during the computation which produces
too much dissipation. Furthermore the SM does not provide
the modeler with backscattering where kinetic energy is
transferred from small scales to larger scales in an inverse-
cascading process.

3. Dynamic Smagorinsky model

The dynamic Smagorinsky model �DSM� proposed by
Germano et al.14 overcomes the difficulty of constant CS, by
allowing it to become dependent of space and time. Now we
have a dynamic parameter Cd=Cd�x , t�. Let us introduce a

test-filter length scale �̂ that is larger than the grid length

scale �̄ �e.g., �̂=2�̄�. Using the information provided by

FIG. 1. Sketch of the geometry of the lid-driven cubical cavity.
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those two filters and assuming that in the inertial range of the
turbulence energy spectrum, the statistical self-similarity ap-
plies, we can better determine the features of the SGS stress.
As detailed in Ref. 15 with the test filter, the former LES
equation �1� yields a dynamic parameter having the
expression

Cd =
�� − �̂�:Ld

�� − �̂�:�� − �̂�
, �5�

where

L = ūû̄ − û̄û̄ , �6�

� = − 2�̄
ˆ 2�S̄

ˆ
�S̄
ˆ

, �7�

� = − 2�̄2�S̄�S̄ . �8�

The notation “:” in Eq. �5� is used for inner tensor product
�double contraction�, and the upper index d denotes the de-
viatoric part of the tensor.

4. Dynamic mixed model

The dynamic mixed model11 introduced to tackle cavity
flows is a blend of the mixed model of Bardina et al.16 and
the former dynamic Smagorinsky model. We notice that Bar-
dina’s scale similarity model is not an eddy-viscosity based
model. Instead it belongs to the class of structural models12

and relies on the scale-similarity principle. It produces al-
most no dissipation and for that reason needs to be used
jointly with dissipative models such as the Smagorinsky
model—Bardina’s mixed model—or with the dynamic Sma-
gorinsky model. The approach of Zang et al.11 was extended
by Liu et al.17 who proposed a new similarity subgrid-scale
model for incompressible flows, in which the subgrid stress
tensor is assumed to be proportional to the resolved stress
tensor. Vreman et al.18 later modified the DMM formulation
to remove a mathematical inconsistency by expressing the
scale-similarity part of the subtest-scale stress T �see Ref.

15� using only û̄. Salvetti and Banerjee19 and Horiuti20 ex-
tended the DMM to two distinct dynamic two-parameter
models. Morinishi and Vasilyev21 recommended a modifica-
tion to the dynamic two-parameter mixed model of Salvetti
and Banerjee19 for large-eddy simulation of wall bounded
turbulent flow. The works of Vreman et al.22 and Winckel-
mans et al.23 also closely relate to the DMM approach. As
mentioned by Morinishi and Vasilyev21 and Ghosal,24 the
reliability of the results of large-eddy simulation is strongly
affected by both the effectiveness of the subgrid scale model
and the accuracy of the numerical method, particularly in the
approximation of the nonlinear convective term. As men-
tioned in Sec. I, the SEM is decoupled from the subgrid
modeling and offers a high accuracy characteristics of spec-
tral methods. Therefore, the present work focuses on the one-
parameter type of dynamic mixed model DMM as intro-
duced by Zang et al.11 for the lid-driven cavity flow. The
modification suggested by Vreman et al.18 was not imple-
mented; a priori tests with their modified DMM using

samples from the DNS results by Leriche and Gavrilakis5

showed no noticeable improvement over the DMM of Zang
et al. in the subgrid stress correlations. Therefore increasing
the computational expense by adding an additional filtering
level operation as required by the modification of Vreman et
al.,18 seemed unjustified.

By decomposing the velocity field as

u = ū + u�, �9�

where u� represents the subgrid-scale velocity field and by
inserting in Eq. �3�, we can redefine the SGS stress as pro-
posed by Germano25

� = L + C + R , �10�

where

L = ūū − u� u� ,

C = ūu� + u�ū − �u� ū� + ū�u� � , �11�

R = u�u� − ū�ū�,

are designated as the modified Leonard stress, the SGS cross
term, and the modified SGS Reynolds stress, respectively.
The modified Leonard term can be calculated by resolved
quantities and corresponds essentially to the mixed model.
The two other terms are unresolved residual stresses and are
treated through the Smagorinsky model, see Ref. 11 for
greater details. Following the same dynamic procedure as in
Ref. 15 and Sec. II B 3, and with the same notations, one
obtains a dynamic coefficient which reads

Cd =
�� − �̂�:�Gd − L

d�

�� − �̂�:�� − �̂�
, �12�

where

G = u� u�̂ − u�̂ u�̂ . �13�

The expression of the dynamic coefficient given in Eq. �12�
for the dynamic mixed model is similar to the one for the
dynamic model �see Eq. �5��, the tensor L

d being replaced by
Gd−L

d.

C. Numerical technique

1. Space discretization

The numerical method treats Eqs. �1�–�3� within the
weak Galerkin formulation framework. The spatial discreti-
zation uses Lagrange-Legendre polynomial interpolants. The
reader is referred to the monograph by Deville et al.26 for full
details. The velocity and pressure are expressed in the PN

−PN−2 functional spaces where PN is the set of polynomials
of degree lower than N in each space direction. This spectral
element method avoids the presence of spurious pressure
modes as it was proved by Maday and Patera.27,28 The
quadrature rules are based on a Gauss-Lobatto-Legendre
�GLL� grid for the velocity nodes and a Gauss-Legendre grid
�GL� for the pressure nodes.
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Borrowing the notation from Ref. 26, the semidiscrete
filtered Navier-Stokes equations resulting from space dis-
cretization are

M
dū�

dt
+ Cū� + �Kū� − D

Tp̄� + D�� = 0, �14�

− Dū� = 0. �15�

The diagonal mass matrix M is composed of three blocks,
namely the mass matrices M. The global vector ū� contains
all the nodal velocity components while p̄� is made of all
nodal pressures. The matrices K, D

T, D are the discrete La-
placian, gradient, and divergence operators, respectively. The
matrix operator C represents the action of the nonlinear term
written in convective form ū� ·�, on the velocity field and
depends on ū� itself. The semidiscrete equations constitute a
set of nonlinear ordinary differential equations �14� subject
to the incompressibility condition �15�.

2. Time integration

The state-of-the-art time integrators in spectral methods
handle the viscous linear term and the pressure implicitly by
a backward differentiation formula of order 2 to avoid sta-
bility restrictions such that

��t � C/N4, �16�

while all nonlinearities are computed explicitly, e.g., by a
second order extrapolation method, under the CFL restriction
ūmax�t�C /N2. Nonetheless, as the LES viscosity is not con-
stant, we modify the standard time scheme in such a way that
this space varying viscosity be handled explicitly as this was
done, e.g., in Refs. 15, 29, and 30. Let us define the effective
viscosity as

�eff = � + �sgs = �cst + ��eff − �cst� , �17�

where �cst is the sum of the physical viscosity � and the
average of �sgs over the computational domain. The filtered
semidiscrete Navier-Stokes equations become

M
dū�

dt
+ �cstKū� − D

Tp̄� = − Cū� + 2D��eff − �cst�S̄� , �18�

− Dū� = 0, �19�

and the previous time splitting still applies. The viscous
explicit term on the right-hand side does not harm stability

as the magnitude of the term 2D��eff−�cst�S̄� is less than that
of Cū� .

The implicit part is solved by a generalized block LU
decomposition with a pressure correction algorithm.26,31

3. The lid-filtered velocity distribution

As already mentioned by Leriche and Gavrilakis in Ref.
5 imposing a given velocity distribution on the lid of a cavity
is neither an easy task experimentally nor numerically. In-
deed imposing a constant lid velocity profile leads to a sin-
gularity �discontinuous behavior in the velocity boundary
conditions� at the edges and at the corners of the lid, see Fig.

1. Without adequate treatment, this discontinuous behavior
will undermine the convergence and the accuracy of any nu-
merical method in the vicinity of the lid. For the two-
dimensional case, a well known solution �but with no physi-
cal relevance� is to subtract the most singular terms of the
analytical expression of the local stream-function expansion
near the lid corners. The extension of such procedure to
three-dimensional cases is still missing even though several
recent attempts are reported, see Refs. 2 and 32. In order to
explicitly filter the discontinuous behavior, the constant lid
velocity profile is regularized by the use of a high-order
polynomial expansion which vanishes along its first deriva-
tives at the lid edges and corners

u�x,y = h,z,t� = U0�1 − �x/h�18�2�1 − �z/h�18�2,

�20�
v�x,y = h,z,t� = w�x,y = h,z,t� = 0.

This profile flattens very quickly near the lid edges and cor-
ners while away from them, it grows rapidly to a constant
value over a short distance. The exact form and the polyno-
mial order of the profile is discussed in Refs. 4 and 5. The
highest polynomial order of this distribution in both the x
and z direction is 36. Such high-order polynomial expansions
lead to steep velocity gradients in the vicinity of the edges of
the lid. The grid refinement, in terms of spectral element
distribution near the lid will be presented in greater details in
Sec. III. One of the constraint in the grid design is to ensure
the proper resolution of the lid velocity distribution by the
spectral element decomposition.

D. Filtering techniques

As spectral elements offer high spatial accuracy, we con-
struct explicitly the filters using two spectral techniques. The
first one is a nodal filter acting in physical space on the nodal
velocity components �and pressure� to render the computa-
tions stable in the long range integration. The second method
is designed as a modal filter and is carried out in spectral
space in an element by element fashion. That filter corre-
sponds specifically to the convolution kernel of the low-pass
LES filtering.

1. Nodal filter

The nodal filter due to Fischer and Mullen33 is ad-
equately suited to parallel spectral element computation. In-
troducing hN,j , j=0, . . . ,N the set of Lagrange-Legendre in-
terpolant polynomials of degree N based on the GLL grid
nodes �N,k ,k=0, . . . ,N, the rectangular matrix operator IN

M of
size �M +1�� �N+1� is such that

�IN
M�ij = hN,j��M,i� . �21�

Therefore, the matrix operator of order N−1

	N−1 = IN−1
N IN

N−1, �22�

interpolates on the GLL grid of degree N−1 a function de-
fined on the GLL grid of degree N and transfers the data back
to the original grid. This process eliminates the highest
modes of the polynomial representation. The one-
dimensional �1D� filter is given by the relation
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ū = ��	N−1 + �1 − ��IN
N�u . �23�

The LES version of the filter sets �=1 and is given by

ū = IM
N IN

Mu , �24�

where M is equal to N−2 or N−3. The three-dimensional
�3D� extension results easily from the matrix tensor product
properties of the filter. It is worth noting that by construction
such nodal filter constitutes a projective filter, i.e., u� = ū.

2. Modal filter

Here, the variable u is approximated by a modal basis
first proposed in the p version of the finite elements and used
by Boyd34 as a filter technique. It is built up on the reference
parent element as


0 =
1 − �

2
, 
1 =

1 + �

2
,

�25�

k = Lk��� − Lk−2���, 2 � k � N .

Conversely to the Lagrange-Legendre nodal basis used in
our spectral element calculations, this modal basis �25� forms
a hierarchical set of polynomials allowing us to define in an
explicit and straightforward manner a low-pass filtering pro-
cedure. The one-to-one correspondence between the nodal
Lagrangian basis and the p representation yields

u��i� = �
k=0

N

ûk
k��i� , �26�

which in matrix notation reads

u = �û . �27�

The low-pass filtering operation is performed in spectral
space through a diagonal matrix T with components such
that

T0 = T1 = 1 and Tk =
1

�1 + �k/kc�
2�

2 � k � N , �28�

where the cut-off value kc corresponds to Tk=1/2. The entire
filtering process for a one-dimensional problem is given by

ū = G�u = �T�
−1

u . �29�

The three-dimensional extension is again trivial by the ma-
trix tensor product properties.

As noted in Ref. 29 the effect of such modal filter onto a
given field expanded in the modal basis �25� presents the
interesting feature of maintaining the interelement C0 conti-
nuity. More rigorously, such C0 continuity is enforced if and
only if both 
0 and 
1 are not at all affected by the low-pass
filtering, in other words if and only if T0=T1=1. Neverthe-
less, it has been observed that such C0 breakage does not
constitute a major issue for our simulations as it only affects
the eddy viscosity field and other terms present into the mod-
eling of the effect of the SGS tensor �3�, and which are not
used directly for constructing a solution retaining the C0 con-
tinuity feature.

Such modal filter is invertible and consequently is not
projective, i.e., u� � ū.

3. The filter length

The decomposition of the computational domain into
spectral elements of given sizes, within which a GLL
distribution of grid points based on the polynomial degree is
chosen, requires a specific definition of the filter length �.
In order to account for both the size of each spectral
element and its value of the polynomial order, and following
Ref. 35, the filter length for a 1D spectral element method is
chosen as

� =
s

p
, �30�

where s is the element size and p is the highest polynomial
degree in the spectral decomposition, Eq. �26�, that is the
closest to the cutoff frequency kc. In the particular context of
the modal filter previously introduced, p is such that

p = k, such that inf
k

�Tk� � Tkc
= 1/2, k = 0, . . . ,N .

�31�

We notice that the filter length decreases when the element is
refined. The straightforward extension of Eq. �30� to our 3D
problem using rectilinear elements leads to

��x,y,z� = ��1�x��2�y��3�z��1/3 = � s1

p1

s2

p2

s3

p3
�1/3

. �32�

III. PHYSICAL AND COMPUTATIONAL
PARAMETERS

The different large-eddy simulations presented here refer
to the same geometry �see Fig. 1� and physical parameters as
the direct numerical simulation �DNS� performed by Leriche
and Gavrilakis.5 The details relative to these parameters are
gathered in Table I. The Reynolds number based on the
maximum velocity on the lid was chosen to be Re
=U02h /�=12000.

The kinetic energy is provided to the flow by the shear
stress at the top lid through viscous diffusion. The amplitude
of the Reynolds stress below the lid is negligible indicating
that the flow under the lid is mainly laminar but transient.

TABLE I. Numerical and physical parameters of the simulations.

Domain size �x ,y ,z� �2h ,2h ,2h�

Wall positions x, y, z= ±h

Reynolds number Re=U02h /� 12 000

No. of spectral elements �Ex ,Ey ,Ez� �8, 8, 8�

Polynomial orders �Nx ,Ny ,Nz� �8, 8, 8�

Time step 0.002 h /U0

No. of time iterations 387 000

Dynamic range 774h /U0

Nodal filtering—DSM and DMM M =N−2=6

Modal filtering—DSM and DMM �first level� kc=N−2=6

Modal filtering—DSM and DMM �second level� kc�=N−3=5
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The momentum transfer from the lid induces a region of
strong pressure in the upper corner of the downstream wall
as the flow, mainly horizontal prior the corner, has to change
direction and moves vertically downwards. This sharp turn
dissipates energy in that region. Along the downstream wall
the plunging flow behaves like a wall jet with a variable
thickness. Near the symmetry plane the jet thickness is re-
duced while it increases away from this plane. This jet, lami-
nar and unsteady at the very beginning, separates from the
cavity wall at midheight and grows as two elliptical jets on
both sides of the symmetry plane. They hit the bottom wall
where they produce turbulence. This turbulence is convected
away by the main central vortex towards the upstream wall
where the flow slows down and relaminarizes during the
fluid rise.

In order to resolve the boundary layers along the lid and
the downstream wall, the spectral elements are unevenly dis-
tributed as can be seen in Fig. 2. The spatial discretization
has Ex=Ey =Ez=8 elements in the three space directions with
Nx=Ny =Nz=8 polynomial degree, equivalent to 653 grid
points in total. The spectral element calculation has two
times less points per space direction than the DNS of Leriche
and Gavrilakis5 who employed a 1293 Chebyshev discretiza-
tion. Both nodal and modal filters were used in our LES
computations based on DSM and DMM; the former with
M =N−2 to stabilize the velocity field at each time step and
the latter with kc=N−2 �respectively, kc�=N−3� to filter the
highest modes in the modal Legendre space at the first level
�respectively, second level� of explicit filtering. These filter-
ing levels refer to the overbar and the test filtering, respec-
tively. It is noteworthy recalling here that the modal filter
introduced in Sec. II D is not projective. The computations
are particularly sensitive to the values of M and kc; smaller
values will affect spectral convergence whereas higher val-
ues will have very little effect on the smallest scales of the
problem. The reference results are the DNS data of Leriche4,5

and the experimental ones from Koseff and Street,6 corre-
sponding to 1000 and 145.5 time units, respectively. In the
cavity flow, the average is obtained by time averaging.

The LES-DSM and LES-DMM both started from the
same initial condition, namely the velocity field obtained

from the DNS by Leriche and Gavrilakis and reinterpolated
from the Chebyshev grid onto the spectral-element GLL grid.

Nondimensionalization is performed using h as the
length scale, h /U0 as the time scale, and U0 as the velocity
scale. All the results and data presented in the sequel will be
based on this nondimensionalization.

A. Statistical ensemble averaging

For any variable, the Reynolds statistical splitting intro-
duces the average value denoted by a capital letter into
brackets “	·
” whereas a lower case letter will be used to
denote its fluctuating part. It is noteworthy to be reminded
here that the filter splitting introduced in Eq. �9� uses the
overbar and prime notations to denote, respectively, the re-
solved and subgrid scales. To simplify the notations, and
unless otherwise stated, the overbar will be omitted in the
sequel as most of the fields considered are resolved fields
derived from solutions of the filtered Navier-Stokes equa-
tions �1�–�3�. More precisely considering any variable X can
be decomposed as follows:

X = 	X
 + x = �	X̄
 + x̄� + �	X�
 + x�� , �33�

where 	X̄
 �respectively, 	X�
� is the average resolved �re-
spectively, subgrid� part of X and x̄ �respectively, x�� is the
fluctuating resolved �respectively, subgrid� part of X. The
subgrid scales being unknown, the term 	X�
+x� cannot be
directly computed from the simulation. All the results pre-
sented in this article refer to resolved quantities that are av-

erage 	X̄
 or fluctuating x̄. For the sake of simplicity, these
quantities are directly and respectively compared to 	X
 and
x, obtained from reference results, see Sec. III C.

We assume that a statistically steady state is attained and
time averaging will be taken as ensemble averaging. The
whole dynamic range, cf. Table I, corresponding to 1290
equally spaced samples has been considered when averaging.
As the starting point of all LES is the same DNS sample
taken from a statistically steady state, it is reasonable to also
assume that these simulations will reach a statistically steady
state very quickly. These assumptions can be verified in sev-
eral number of ways. First, we present in Fig. 3 the time
histories of the volume integral of the total kinetic energy
K�t� and the volume integral of the fluctuating energy ��t�
for the DNS and both the LES-DSM and LES-DMM. In this
figure, one can observe that after approximately 80h /U0 time

FIG. 2. Spectral element grid in the midplane z /h=0.

FIG. 3. The histories of K�t� graphs �a� and of ��t� graphs �b� for the DNS
�green lines�, the LES-DSM �red lines�, and the LES-DMM �blue lines�.

055108-6 Bouffanais, Deville, and Leriche Phys. Fluids 19, 055108 �2007�



units, the two LES models DSM and DMM start being ef-
fective and providing different macroscopic results. Both
K�t� and ��t� have different time evolutions but within the
same range of fluctuations and with very close average val-
ues, see Table II.

A second way to assess the accuracy of the ensemble
averaging is done by testing the property of symmetry �re-
spectively, antisymmetry� with respect to the midplane z /h
=0, of some first- and second-order statistics of the resolved
velocity and pressure fields. For each grid point, the relative
difference between the nodal value at this point and the cor-
responding nodal value at the symmetric grid point is calcu-
lated. In the antisymmetric case, the opposite nodal value is
considered at the symmetric grid point. The z component of
the average resolved velocity field 	W
 is the only field pre-
sented being antisymmetric with respect to the midplane
z /h=0. The results of the maximum errors on the grid are
gathered in Table III and are shown to be of the order of the
error introduced by the space and time discretizations.

B. Under-resolved DNS and Smagorinsky model

Before providing the reader with a comprehensive re-
view of results obtained for the two models LES-DSM and
LES-DMM, partial results for the UDNS and the LES-SM
are presented in this section. These results correspond to the
same parameters as the one in Table I, except that the num-
ber of iterations is 33000 corresponding to a simulation
length of 66h /U0, approximately one tenth of the total simu-
lation time of the LES-DSM and LES-DMM. Moreover, for
the LES-SM the value of the Smagorinsky constant CS de-

fined in Eq. �4� was taken to be equal to its theoretical value
of 0.18 �see Ref. 12 for greater details�, and no wall-damping
procedure was implemented for these preliminary simula-
tions. The reference result is the DNS by Leriche and
Gavrilakis5 and is represented by the solid line in the profiles
in Figs. 4 and 5, whereas dashed �respectively, dotted� lines
refer to the UDNS �respectively, LES-SM�. The results in
Figs. 4 and 5 are one-dimensional profiles of the average
velocity field and its rms fluctuations in the midplane z /h
=0. General conclusions can be drawn from all these figures.
First, UDNS is totally inoperative in the particular context of
this simulation. Even first-order statistics such as 	U
 and 	V


TABLE II. Average values of K and � for the DNS, LES-DSM, and LES-
DMM.

Average integral terms Magnitude in U0
2 units

	K�t�
DNS 0.055527

	K�t�
DSM 0.056296

	K�t�
DMM 0.056194

	��t�
DNS 0.004529

	��t�
DSM 0.004960

	��t�
DMM 0.004864

TABLE III. Quantitative assessment of the symmetry and antisymmetry
properties of some resolved average fields in the cavity; “Rel. diff.” stands
for maximum relative difference.

Variable Rel. diff. DSM Rel. diff. DMM Anti-/Symmetry

	U
 4.807e−04 6.696e−05 S

	V
 4.591e−04 3.014e−04 S

	W
 6.966e−05 4.129e−04 A

	P
 1.120e−04 7.333e−05 S

�	u2
 8.758e−05 8.899e−05 S

�	v2
 1.696e−03 7.764e−04 S

�	w2
 4.501e−04 8.447e−05 S

	uv
 1.107e−04 2.236e−04 S

FIG. 4. In the midplane z /h=0: 	U
 on the horizontal centerline y /h=0 �a�,
	V
 on the vertical centerline x /h=0 �b�: DNS �solid line�, UDNS �dashed
line�, and LES-SM �dotted line�.

FIG. 5. In the midplane z /h=0: �	u2
 on the horizontal centerline y /h=0
�a�, �	v2
 on the vertical centerline x /h=0 �b�: DNS �solid line�, UDNS
�dashed line�, and LES-SM �dotted line�.
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are far from being well predicted, not to mention rms fluc-
tuations. Second, the Smagorinsky model LES-SM results
show a real improvement in predicting the fields compared to
the UDNS but as already known, the simplicity of this model
does not allow us to correctly predict the stiff physics of this
simulation. These results justify the need for a more complex
LES modeling such as LES-DSM and LES-DMM presented
in the sequel.

C. Comparisons with available results

In this section, results of the LES-DSM and the LES-
DMM are compared with the available reference experimen-
tal and numerical results.

1. One-dimensional profiles

Of the previous work available in the literature on the
lid-driven cubical cavity flow, the numerical DNS data from
Leriche and Gavrilakis,5 Leriche36 and the experimental data
of Prasad and Koseff7 constitute the two main references.
This work is an extension of the one by Leriche, it borrows
from5 the values of the main physical parameters, see Table
I. The work from Prasad and Koseff7 includes data from a
flow at Reynolds number similar to that of the present LES.
The measurements that these authors reported were taken in
the midplane z /h=0, which is a statistical symmetry plane of
the flow domain. As it will be shown in the sequel, the flow
near the downstream secondary eddy �see Fig. 1� is not ho-
mogeneous in the z direction. In the “turbulent” part of the
cavity, the midplane is found to cut through surfaces of local
minima in the intensity field with rapid changes occurring on
both sides of it.

The set of experimental data corresponding to a Rey-
nolds number Re=10000 is used for the comparisons of the
one-dimensional average velocity profiles along the vertical
and horizontal symmetry axes. It is important to note that no
experimental error bars were given for any data. The only
information related to the local experimental measurement
error is provided by the two crosses corresponding to two
different measurements in the middle �x /h=0 or y /h=0� of
each centerline—the velocity probing system going back and
forth from this point.37 In addition the experimental data of
Prasad and Koseff7,37 are obtained over a nondimensional
averaging time of 145.5, whereas the DNS �respectively,
LES� results were obtained over an averaging time of 1000
�respectively, 774�. In the absence of local error bars in the
measurements, this may explain the scattering �and possible
nonconvergence� of some experimental data, together with
practical difficulties of accurately measuring fluctuating
fields in region of low or almost constant velocity. A detailed
analysis of the disparity between the numerical results and
some experimental data can be found in Refs. 4 and 5.

For the sets of experimental and DNS data, the total
velocity field is considered whereas in the case of LES, only
its resolved part is presented. The legend for Figs. 6–10 is as
follows: crosses refer to the experimental data of Prasad and
Koseff, the solid lines to the DNS by Leriche and Gavrilakis,
the dashed lines to the LES-DSM, and the dotted lines to the

LES-DMM. All the data related to average and rms-
fluctuations of the velocity field are expressed in terms of the
velocity scale U0 and 	uv
 in terms of U0

2.
A discussion on the comparisons between the DNS ref-

erence results and the experimental ones is available in Ref.
5. In the sequel, we will focus on comparing the LES-DSM
and LES-DMM results with the DNS and experimental ones.
A rapid overview of Figs. 6–10 indicates that both LES mod-
els provide results very close to the DNS references, even for
the rms fluctuations in Figs. 8 and 9 and above all for the
component 	uv
 of the Reynolds stress in Fig. 10. The dif-
ferences between the profiles of the two LES models and the

FIG. 6. In the midplane z /h=0: 	U
 on the horizontal centerline y /h=0 �a�,
	U
 on the vertical centerline x /h=0 �b�; experiment �crosses�, DNS �solid
line�, LES-DSM �dashed line�, LES-DMM �dotted line�.

FIG. 7. In the midplane z /h=0: 	V
 on the horizontal centerline y /h=0 �a�,
	V
 on the vertical centerline x /h=0 �b�; experiment �crosses�, DNS �solid
line�, LES-DSM �dashed line�, LES-DMM �dotted line�.
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DNS generally coincide with the existence of local extrema;
maxima tend to be slightly overestimated in the LES,
whereas minima are somewhat underestimated. These two
effects can be partly justified by the reduced sampling in the
LES-DSM and LES-DMM compared to the sampling of the
DNS. This phenomenon have already been encountered and
studied by Leriche in Ref. 4. From these results it is not
possible to rank between themselves the performances of the
LES-DSM and the LES-DMM.

2. Two-dimensional profiles

The comparisons with the DNS results started in Sec.
III C 1 are now extended to the whole midplane z /h=0 by
plotting identical series of contour levels of average velocity
components in Fig. 11 and of rms fluctuations of the velocity
in Fig. 12, for the DNS �left column�, the LES-DSM �central
column�, and the LES-DMM �right column�.

As previously noted with the one-dimensional profiles,
the results provided by the LES-DSM and LES-DMM are
both very close to the reference DNS results. Secondary cor-
ner eddies located above the bottom wall and below the lid
next to the upstream wall are correctly captured in the mean
flow. Other finer structures visible in Fig. 12 �bottom�, for
�	v2
 near the upstream wall are also correctly captured by
both LES modelings. The rms fluctuations of the x compo-
nent u of the velocity field is accurately resolved just below
the lid which is a high-gradient region for the mean flow.
Moreover, in the region near the downstream wall where the
wall jet—separated into two elliptical jets—are impinging on
the bottom wall, the high gradients of velocity fluctuations
are well reproduced. As it will be presented in the following
sections, the maximum of turbulence production belongs to
this region of the flow domain which will be indeed of par-
ticular interest in the remaining.

The flow below the lid and near the corner with the
downstream wall presents wiggles in the LES contours for
	V
, see Fig. 11 �bottom�. Although less intense, these
wiggles are also noticeable on the contours for �	v2
 at the
same location, see Fig. 12 �bottom�. More limited effects are
noticeable for the equivalent x component fields. These very
limited defects in both simulations find their origin in a slight
under-resolution of the spectral-element grid in this small
region of the cavity where high gradients are present.

FIG. 8. In the midplane z /h=0: �	u2
 on the horizontal centerline y /h=0
�a�, �	u2
 on the vertical centerline x /h=0 �b�; experiment �crosses�, DNS
�solid line�, LES-DSM �dashed line�, LES-DMM �dotted line�.

FIG. 9. In the midplane z /h=0: �	v2
 on the horizontal centerline y /h=0
�a�, �	v2
 on the vertical centerline x /h=0 �b�; experiment �crosses�, DNS
�solid line�, LES-DSM �dashed line�, LES-DMM �dotted line�.

FIG. 10. In the midplane z /h=0: 	uv
 on the horizontal centerline y /h=0
�a�, 	uv
 on the vertical centerline x /h=0 �b�; experiment �crosses�, DNS
�solid line�, LES-DSM �dashed line�, LES-DMM �dotted line�.
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D. Physical parameters of the LES modeling

The LES modeling for both the LES-DSM and LES-
DMM involves the calculation of two scalar fields, namely,
the dynamic parameter Cd and the eddy viscosity �sgs which
are inter-related. As some values of Cd produced by the two

dynamic procedures �5� and �12� may locally reach relatively
“high values” destabilizing the time-integration procedure
for the filtered Navier-Stokes computations. Hence it is com-
mon to use ad hoc averaging or limiting of the dynamic
parameter Cd to ensure stability. Various procedures are re-

FIG. 11. Contours of average velocity in the midplane z /h=0; DNS �left�, LES-DSM �center�, and LES-DMM �right�—100 contours levels taken between
−0.4 and 1 for 	U
 �top� and between −0.7 and 0.2 for 	V
 �bottom�. Dashed contours lines correspond to negative levels.

FIG. 12. Contours of rms-fluctuations of the velocity in the midplane z /h=0; DNS �left�, LES-DSM �center�, and LES-DMM �right�; 20 contours equally
spaced between 0 and 0.1 for �	u2
 �top� and between 0 and 0.15 for �	v2
 �bottom�.
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ported in the literature: averaging in homogeneous
directions,14,38 temporal smoothing,39 integral constraint,40

Lagrangian averaging,41 and clipping.11,29 In the present
work the latter procedure of clipping is used. First the maxi-
mum admitted value of the dynamic parameter was Cdmax
= �0.18�2, 0.18 corresponding to the theoretical value of the
Smagorinsky constant, see Ref. 12. The negative values of
Cd are also clipped and set to zero for the LES-DSM and
LES-DMM. The amount of grid points clipped is indeed very
limited and correspond to 0.2% and 0.08% of the total num-
ber of grid points for LES-DSM and LES-DMM, respec-
tively. It was found that the clipping of Cd to the interval
comprised between −�0.18�2 and +�0.18�2—therefore allow-
ing for local negative values of the eddy viscosity—was not
affecting at all the stability of the spectral-element filtered
Navier-Stokes computation. The difference between the re-
sults with or without the negative values of Cd was found to
be negligible in the particular context of the lid-driven cubi-
cal cavity flow which is related to the limited amount of
backscattering for this flow at a Reynolds number of 12000.

Figure 13 displays contour lines of the average eddy
viscosity for the LES-DSM in the midplane z /h=0 and in the

plane z /h=0.241 where the maximum of average turbulent
energy dissipation rate was localized �cf. Sec. IV C for
greater details�. First, the C0 continuity breakage in the inter-
element continuity is obvious �see Fig. 2 to compare with the
spectral element grid in the midplane� and is directly related
to the discontinuous nature of the filter length field � defined
in Sec. II D 2, Eq. �32�. The effect of such discontinuity of
the subgrid viscosity has been analyzed and discussed by
Blackburn and Schmidt in Ref. 29 using the same numerical
framework as ours, namely the SEM. They found that the
interelement discontinuity of the subgrid term does not have
a noticeable effect on their physical results which is con-
firmed by the present work. Finally, it appears clearly that the
reasons for resorting to a dynamic procedure are fully justi-
fied by Fig. 13. Indeed, the dynamic procedure automatically
turns on the dynamic parameter Cd which in turn activates
subgrid-scale viscous effects in the regions of the flow where
turbulent dissipation at the small-scales level occurs, see Sec.
IV C.

Similar results are obtained for the eddy viscosity and
the dynamic parameter in the case of the dynamic mixed
model LES-DMM. The same clipping procedure, with the
same clipping values as described earlier for LES-DSM was
implemented.

IV. CHARACTERIZATION OF TURBULENCE
IN THE FLOW

This section is devoted to a thorough analysis of some
specific features of the flow in the region of the cavity where
turbulence occurs. The aims are to ensure that the LES-DSM
and LES-DMM are both capable of reproducing the fine
physics observed in these regions and also to gain insights in
the turbulent mechanisms involved.

A. Inhomogeneity of turbulence

It is easily predictable that such a confined flow will
produce an inhomogeneous turbulence but it is worth deter-
mining in greater details the turbulent inhomogeneous zones
in the cavity. In order to access this information we use the
average turbulent energy dissipation rate 	
 defined by

	
 =
1

2
��� �ui

�x j
+

�u j

�xi
�� �ui

�x j
+

�u j

�xi
� = 2�	SijSij
 . �34�

Here and in the sequel, we use index notation and the sum-
mation convention, where repeated indices imply summa-
tion. The velocity fluctuations being divergence-free, one can
rewrite

	
 = �� �ui

�x j

�ui

�x j
 + �

�2	uiu j


�xi�x j
, �35�

which in turn can be recast in terms of � the fluctuating
vorticity, � being the total resolved vorticity field

FIG. 13. Contours of the average eddy viscosity 	�sgs
 for the LES-DSM in
the midplane z /h=0 �a� and in the plane z /h=0.241 �b�; same series of
contour levels is used in the two planes.
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 = �	�i�i
 + 2�
�2	uiu j


�xi�x j
. �36�

We define the average difference 	�
 by the difference be-
tween the average turbulent energy dissipation rate, divided
by �, and the average fluctuating enstrophy

	�
 = � 

�
 − 	�i�i
 = 2

�2	uiu j


�xi�x j
. �37�

For homogeneous flow, the spatial derivatives of the
Reynolds stress components 	uiu j
 are zero, and subse-
quently 	�
=0. The average difference 	�
 was calculated for
both databases LES-DSM and LES-DMM. Figure 14 dis-
plays a 3D view of the volume of the cavity where the flow
is inhomogeneous according to the following heuristic crite-
rion: �	�
� / �	�
max��1/100, where �	�
max

DSM�=159.8U0
2 /h2 and

�	�
max
DMM�=155.6U0

2 /h2. In other words, it shows the region of
the flow where the inhomogeneity of the turbulence—
measured by 	�
—is above 1% of its maximum absolute
value.

As expected, one can observe in Fig. 15 that in the re-
gion near the downstream wall where the two primary ellip-
tical jets are impinging on the bottom wall, the flow is highly
inhomogeneous. More specifically, the inhomogeneity is
more important in the zone in between the two elliptical jets
where the flow is ejected and recirculating. Likewise similar
patterns with lower magnitudes are detected in the regions
where the secondary jets and the tertiary jets are impinging.
The secondary jets are impinging on the bottom of the up-
stream wall producing an inhomogeneous turbulence visible
in Fig. 15 for values of x /h close to −1. For the tertiary jets,
impinging on the upstream part of the lid, the inhomogeneity
is only visible in the 3D view in Fig. 14.

B. The turbulence production near the downstream
wall

As mentioned by Leriche and Gavrilakis in Ref. 5 the
largest turbulence production rates in the cavity are to be
found in the primary elliptical jets parallel to the downstream
wall, near the impact points just above the bottom wall. The
budget equations of the resolved second-order moments
	uiu j
 governing the turbulence energetics �see Refs. 42 and
43 for greater details� comprise a term named here Pij, de-
fined by

Pij = − 	uiuk

�	U j


�xk
− 	u juk


�	Ui


�xk
, �38�

and corresponding to the interaction of the resolved mean
flow and the resolved Reynolds stress tensor. Pij can be in-
terpreted as responsible for the production of Reynolds
stresses or in other words for the production of turbulence.

1. Maximum of turbulence production near the
downstream wall

In the specific case of the separated downstream-wall jet,
the term P22 is the largest out of the set of turbulence pro-

FIG. 14. Region of the cavity where the turbulent flow is inhomogeneous
according to the criterion �	�
� / �	�
max��1/100; LES-DMM.

FIG. 15. Contours of 	�
 in the plane y /h=−0.968 just above the bottom
wall �a� and in the midplane z /h=0 �b�; 100 equally spaced contours corre-
sponding to levels between the threshold 0.01�	�
max�; dashed contours cor-
respond to negative levels with a color map ranging from blue to red;
LES-DMM.
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duction terms �Pij�. After probing in the cavity, the maxima
of the resolved field P22 is to be found in the plane y /h
=−0.9388 just at a very short distance above the bottom wall.
The maximum values obtained are P22max

DSM =0.070U0
3 /h and

P22max

DMM=0.064U0
3 /h. The contours of the turbulence produc-

tion term P22 in this plane y /h=−0.9388 are shown in Fig.
16 for both LES models. First, it can be noted that these
contours are qualitatively very close to the ones obtained by
Leriche and Gavrilakis in Ref. 5. For x /h�0.5, the distribu-
tion of contours of the production of turbulence allow us to
clearly visualize the trace of the separated elliptical jets.

2. Time histories and power spectra at the maximum
of turbulence production

In Fig. 16, one can notice that for each LES model, one
grid point—identical for both DSM and DMM—has been
highlighted with a bullet point �. This point denoted by �0

whose coordinates are x /h=0.7874, y /h=−0.9388, z /h
=0.3371, is the closest grid point to the two maxima of P22

for LES-DSM and LES-DMM. The point �0 provides the
optimal search position for probing time histories of various
turbulent fields in the sequel.

First, the values of the x component of the fluctuating
resolved velocity field u, of the fluctuating resolved pressure
p and the resolved turbulent kinetic energy k=uiui /2, have
been extracted of the LES-DSM database for each and every

sample. These time histories are shown in Fig. 17—note that
only the last 1024 samples out of the total of 1290 that con-
stitutes the database are presented.

Based on these results the corresponding power spectra
have been computed by fast Fourier transform, a posteriori
justifying the choice of 1024 samples in the previous time
histories, and are presented in Fig. 18. The scattering of

FIG. 16. Contours of the resolved production of turbulence term P22 in the
plane y /h=−0.9388; LES-DSM �a� and LES-DMM �b�; 20 contour levels
equally spaced between −0.025U0

3 /h and 0.070U0
3 /h; dashed lines refer to

negative contour levels; bullet points � refer to the same grid node of
coordinates �x /h=0.7874, y /h=−0.9388, z /h=0.3371�.

FIG. 17. Time histories of p ��a� shifted of +0.25�, the resolved turbulent
kinetic energy k �b� and u ��c� shifted of −0.25�, at the point of coordinates
�0.7874, −0.9388, 0.3371�; LES-DSM database.

FIG. 18. Power spectra for the fluctuating resolved pressure p �a�, the re-
solved turbulent kinetic energy k �b�, and the fluctuating resolved velocity
field u �c�, obtained from the time histories in Fig. 17; LES-DSM database.
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points in the high-wavenumber �̃ zone is expected for spec-
tra of nonspatially average fields. For such inhomogeneous
flow with highly localized turbulent effects, averaging in
space the fields not only pleasantly reduce the scattering of
points but concurrently strongly modifies the high-
wavenumber scaling which is the main source of information
brought by the spectra. Nevertheless, the spectra offer a
qualitative information regarding the Eulerian time scales of
the spatial structures of turbulence convected past the point
�0. The resolved mean flow depicted in Fig. 19, highlighting
the presence of the core central primary vortex and second-
ary corner vortices, serves merely to convect turbulence at
the bullet-spotted point �0. A careful scrutinizing of the re-
solved mean flow in the vicinity of �0 shows that this point
is exactly positioned at the “interface” between the core cen-
tral vortex and the bottom corner vortex. The power spectra
in Fig. 18 feature the distribution of frequencies, or equiva-
lently of time scales. These frequencies �̃ refer to the con-
vection past �0 of turbulent structures of size of order � at a
velocity of order 	U
��0�, leading to the relation

�̃ =
	U
��0�

�
. �39�

The average resolved velocity field at �0 being given, the
spectra hence instruct us on the distribution of spatial scales

of resolved turbulent structures convected by the mean flow
at this point where the production of turbulence is maximum.
Unfortunately, the relatively low sampling of the LES-DSM
database and the not-long-enough simulation range interval
does not permit to reach the highest frequencies of the order
of 	U
��0� /� where � is the filter length �see Eq. �32��
defining the LES scale separation.

3. Determination of coherent structures responsible
for the peaks of turbulence production

In an attempt to provide a comprehensive and thorough
assessment of the performances of both LES models, the
determination of the coherent structures responsible for the
intense turbulence production at the point �0 has been en-
visaged as an ultimate challenge for both SGS modeling. The
first step towards this goal necessitates to study the instanta-
neous distribution of the resolved term −v

2�	V
 /�y which
was found to be the predominant term in P22, see Ref. 5.
Figure 20 displays the time histories of this term for the
DNS, LES-DSM, and LES-DMM. Both LES present a lim-
ited number of high-value peaks which are assumed to be
engendered by specific coherent vortices or large eddies. The
intensity of the peaks produced by the LES-DMM is lower
than those generated by the LES-DSM. This is supposed to
be due to an overevaluation of the eddy viscosity by the
dynamic procedure of the DMM. In addition, this is consis-
tent with the observation made in Sec. IV B 1 where P22max

DMM

� P22max

DSM was found and with the values of resolved 	K
 and
	�
 in Table II.

In order to finally characterize possible large eddies
which would be responsible for these peaks, database
samples producing a resolved term −v

2�	V
 /�y above the
threshold value 0.15U0

3 /h were put aside to form a subset of
the complete databases. The size of the subset of samples for
LES-DSM �respectively, LES-DMM� is approximately 6%
�respectively, 5%� of the size of the complete database.
Based on these two subsets a conditional averaging of the
streamwise resolved vorticity field �x is performed. Figure
21 displays the contours of this quantity in the vicinity of
�0—the domain represented corresponds to only 4% of the
surface of a normal section of the cavity—for both models.
Two counter-rotating vortices are clearly exhibited by both
models, together with the intense influenced shear layers lay-
ing on the bottom wall at y /h=−1. This vortex pair is iden-
tified as the coherent eddy responsible for the turbulence

FIG. 19. Two-dimensional projected average resolved velocity vectors in
the midplane z /h=0 �a� and in the plane y /h=−0.9388 �b�; bullet point
refers to �0; LES-DSM; bullet points � refer to the same grid node of
coordinates �x /h=0.7874, y /h=−0.9388, z /h=0.3371�.

FIG. 20. Time histories of the resolved term −v
2�	V
 /�y in U0

3 /h units for
the DNS �green�, LES-DSM �red�, and the LES-DMM �blue�; the dotted
lines represent the threshold value 0.15U0

3 /h.
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peaks and production in this region. The characteristic length
scale of this large eddy is of the order of 0.1h. Having iden-
tified this vortex pair we can further analyze the time histo-
ries at �0 of the resolved pressure and the resolved turbulent
kinetic energy depicted on Figs. 17�a� and 17�b�, respec-
tively. One can notice that the intense peaks of the resolved
term −v

2�	V
 /�y on Fig. 20 correspond to intense peaks of
resolved turbulent kinetic energy on Fig. 17�b� and to low-
pressure peaks on Fig. 17�a�. The vortex pairs generated by
this turbulent flow are responsible for the low pressures and
the high turbulent kinetic energy thereby justifying the ob-
served correlations between these three time histories. More-
over the intensity of the vortex pair calculated by the LES-
DSM is again higher than the one from the LES-DMM:
	�x

DSM
camax
=18.6U0 /h and 	�x

DMM
camax
=14.0U0 /h, where

the subscript “ca” stands for conditionally averaged. The in-
tensity, the more regular structure and the localization of the
vortex pair are three features suggesting that the dynamic
Smagorinsky model provides a better SGS modeling than the
dynamic mixed model. Nevertheless, the DMM perfor-
mances in terms of SGS modeling are more than satisfactory.
When considering the complete averaging of the x compo-
nent of the resolved vorticity field in the region where the
vortex pair has been localized by conditional averaging, see
Fig. 21, 	�x
 was found almost constant and of magnitude
approximately 0.9U0 /h.

C. Small-scales turbulent structures

A characteristic of high-Reynolds-number turbulence is
that the vorticity possesses intense small-scale, random
variations in both space and time. The spatial scale for vor-
ticity fluctuations is the smallest in the continuum of turbu-
lent scales, i.e., the Kolmogorov scale. Analogously to the
vorticity fluctuations, for large-Reynolds-number turbulence
velocity gradients �ui /�x j are also dominated by the small
scales of turbulence and the overall energy dissipation rate of
kinetic energy is dominated by the average turbulent energy
dissipation rate 	
 defined in Eq. �34�. In the LES frame-
work, the interest for small scales is twofold. First, small
scales fall into the range of subgrid scales and therefore are
not simulated but wholly modeled to properly reproduce
their interactions with larger resolved scales of the flow. Sec-
ond, the small scales have the crucial role to terminate the
turbulent energy cascade by dissipating the energy originat-
ing from large eddies. An incorrect SGS modeling will pro-
duce either an overdissipation or conversely an underdissipa-
tion of kinetic energy. The time histories of the total kinetic
energy of the cavity flow K�t� and of the total turbulent
fluctuating energy ��t� presented in Fig. 3 are in this frame-
work a precious proof of the correct global prediction of the
energy dissipation by the modeled small scales in volume.

1. Localization of small-scales structures

In this context, it appears relevant to first locate small-
scales turbulent structures in the cavity and afterwards to
check the correlation between the small-scales positioning
and the activation of the SGS modeling represented in Fig.
13. Small scales can be indirectly localized by investigating
the zones of intense average turbulent energy dissipation
rate. Indeed 	
 involves products of fluctuating velocity gra-
dients, see Eq. �34�. First qualitatively, the region of the cav-
ity flow corresponding to values of 	
 above 1% of its maxi-
mum value is shown in Fig. 22 for the LES-DMM. As
foreseen, the wall-jet-impinging regions are subject to in-
tense turbulent energy dissipation at the small-scales level.
The two-dimensional cuts in Fig. 23 offer a more detailed
information regarding the intensity of 	
 in four different
planes of specific interest. It is worth keeping in mind that
the more intense 	
 the more small scales are involved in
the dissipation process. Figure 23 displays with decreasing
intensity, the dissipation due to the impingements of the
separated wall jets on the bottom wall �Fig. 23�c��, on the
upstream wall �Fig. 23�d��, and on the lid-plane �Fig. 23�a��.
It appears that the LES-DSM is not able to properly repro-
duce the same intensity for the two symmetric jets impinging
on the upstream wall �Fig. 23�d��. The same asymmetry in
the intensity of 	
 is observed for the LES-DMM which
could presumably be due to the observed asymmetry—with
respect to the midplane—of the eddy viscosities generated
by the dynamic procedures of both SGS modeling.

In Fig. 23�c�, one can notice that one grid point has been
highlighted with a black rectangle �. This point denoted by
�0 whose coordinates are x /h=0.7685, y /h=−1, z /h
=0.2410, is the closest grid point to the maximum of 	
 for
LES-DSM. The point �0 provides the optimal search posi-

FIG. 21. Contours of the conditionally averaged resolved vorticity field
	�x
ca in the plane x /h=0.7874 for the LES-DSM �a� and the LES-DMM
�b�; dashed lines refer to negative contour levels.
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tion for probing small-scales related fields. The plane-cut
z /h=0.241—passing by �0—of 	
 in Fig. 23�b� exhibits a
qualitative correlation with the same plane-cut for the aver-
age eddy viscosity 	�sgs
 in Fig. 13�b�.

2. Correlation between small-scales localization
and eddy viscosity

Such correlation between the small-scales localization
and the activation of the LES dynamic Smagorinsky model-
ing is important in practice to ensure the effectiveness of the
SGS modeling. Therefore a more quantitative approach is
required, which relies on the calculation of a correlation field
based on the instantaneous values of  and �sgs. The follow-
ing correlation coefficient C, defined by

C = C�,�sgs� =
	�sgs
 − 	
	�sgs


�	�
2
	�sgs�

2 
�1/2 , �40�

where � stands for the fluctuating part of the considered
field, was calculated for the complete set of samples
LES-DSM.

Contours of C in the plane z /h=0.241, passing by �0 are
presented in Fig. 24. The high-correlation zones reproduce in
essence the turbulent-dominated regions of the cavity and
even suggest the mean-flow convective effect of the central

FIG. 22. Visualization of the region of the cavity where the average turbu-
lent energy dissipation rate 	
 is above 1% of its maximum value
3570�U0

2 /h2; LES-DMM.

FIG. 23. Two-dimensional contour
lines of 	
 in the following planes:
lid-plane y /h=1 �a�, plane z /h=0.241
�b�, bottom-plane y /h=−1 �c�,
upstream-plane x /h=−1 �d�; LES-
DSM; black rectangle � refers to the
grid node of coordinates �x /h
=0.7685, y /h=−1, z /h=0.2410�.
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core vortex and other secondary corner vortices on the tur-
bulent pockets. Nevertheless, higher correlations would have
been expected in the vicinity of �0. Such low correlations
are evidences of the limitations of the LES in this region of
the cavity flow. Conversely, the high correlations near the
upstream wall are in good agreement with the small-scales
localization. More precisely the poor correlation in the vicin-
ity of �0 is imputed to the fact that in this region, the term
SijSij in the turbulent energy dissipation rate �see Eq. �34��
varies very rapidly in space likewise the eddy viscosity. At
this point, the information provided by the analysis of the
subgrid-scale activity in the next section is a good comple-
ment to the previous correlation study.

3. Subgrid-scale activity

The filtered kinetic energy can be decomposed into the
kinetic energy of the resolved velocity field and the residual
kinetic energy which is equal to �ii /2. The conservation
equation for the kinetic energy of the resolved velocity field,
see pp. 585–586 in Ref. 43 for greater details, comprises
transport terms as well as source/sink terms which are of

prime interest. First is the sink term ��=2�S̄ijS̄ij =2S̄ijS̄ij /Re
corresponding to the viscous dissipation associated with the

resolved velocity field. The second sink term �sgs=−�ij
d S̄ij

corresponds to the SGS contribution and represents the rate
of transfer of energy from the resolved scales of the flow to
the subgrid scales. This term �sgs is often inappropriately
referred to as the SGS dissipation in the literature. Indeed �sgs

does not correspond to any physical dissipation but finds its
origin in inertial processes. In addition, it is important to note
that locally �sgs can take negative values.

The SGS activity, denoted by Asgs in the sequel, allows
us to study the local energy fluxes due to the SGS effects.
Following Geurts and Fröhlich in Ref. 44 and Meyers et al.
in Ref. 45, Asgs is defined as

Asgs =
�sgs

�sgs + ��

=
− �ij

d S̄ij

− �ij
d S̄ij + 2�S̄ijS̄ij

. �41�

The SGS activity Asgs measures the importance of the sub-
grid scales in the overall dissipation process of the kinetic
energy of the resolved velocity field. As mentioned by Mey-
ers et al. in Ref. 45, the SGS activity varies between zero and
one where a value of zero corresponds to DNS and Asgs=1 is
associated with LES at infinite Reynolds number. Moreover

the value of Asgs is directly related to the filter width �̄ and
measures the “distance” between a DNS resolving all flow
features at sufficiently high spatial resolution and an actual
LES corresponding to a specific filter width and mesh spac-
ing. In the particular case of the LES-DSM, the SGS sink

term is �sgs=2�sgsS̄ijS̄ij =2Cd�̄2 � S̄ � S̄ijS̄ij, leading to

Asgs
DSM =

�sgs

�sgs + �
=

Cd�̄2�S̄�/�

1 + Cd�̄2�S̄�/�
. �42�

Figure 25 displays the average value 	Asgs
 of the SGS
activity in the plane z /h=0.241 containing �0 and where the
turbulent energy dissipation rate is maximum. First, it ap-
pears that the SGS activity is slightly higher for the LES-
DMM than for the LES-DSM. Moreover, it appears very
clearly that the SGS modeling is activated in the region of
the cavity where the different wall jets are present, with
maxima in the impingement zones. The LES-DMM is more
effective in activating the subgrid scales in these particular
zones. In the zone where the tertiary wall jet is impinging on

FIG. 24. Contours of the correlation coefficient C in the plane z /h=0.241
containing the point �0; LES-DSM.

FIG. 25. Contours of the average SGS activity 	Asgs
 in the plane z /h
=0.241 containing the point �0: LES-DSM �a� and LES-DMM �b�; same
series of contour levels is used for both models.
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the lid, SGS dissipation for the LES-DSM is less than 25%
of the total dissipation, whereas it is above 45% for the
LES-DMM.

D. Helical properties of the cavity flow

The helicity H of the fluid flow confined in the cavity V

at instant t is defined by

H�t� = �
V

u · �dV , �43�

and is a measure of linkages and knots between the vorticity
lines of the flow. The quantity h�x , t�=u ·� is the helicity
density and is a pseudoscalar quantity just like H. The helic-
ity is an important flow quantity because just like the total
energy of the flow K, it is an invariant of three-dimensional
homogeneous turbulence.46 The study of the resolved helic-
ity H and the average resolved helicity density 	h
 in the
particular context of the lid-driven cavity flow in a locally
turbulent regime allows us to gain insights into very impor-
tant features of the turbulence dynamics.46 For instance TGL
vortices and secondary corner eddies are structures encoun-
tered in the lid-driven cavity flow which are well known as
typical helical structures.

Mappings of the average resolved helicity density in Fig.
26 allows us to locate resolved helical coherent structures
�HCS�. These HCS are particularly intense in the secondary-
corner-eddy region and are consistent with the experimen-
tally observed typical HCS, namely streamwise counter-
rotating vortices.47 This pairing of coherent helical structures
correspond to a pairing of coherent vortical structures having
opposite vorticity and consequently opposite helicity. Such
observation justifies the relatively small—but nonzero—
resolved average helicity reached by both LES models:
	HDSM
=0.00764U0

2h2 and 	HDMM
=−0.00572U0
2h2. Smaller

HCS have been identified earlier in Sec. IV B 3, where
streamwise counter-rotating vortices �cf. Fig. 21� near the
bottom wall, have been identified by the conditional averag-
ing as the principal coherent structures responsible for the
high-intensity peaks in the production of turbulence in this
region of the flow. Finally, it is noteworthy to emphasize the
strong link between average resolved helicity density con-
tours and average resolved turbulent kinetic energy dissipa-
tion rate ones in Fig. 23.

As mentioned previously the average resolved helicity of
the flow is nonzero. The time histories of the resolved helic-
ity for the whole simulations are shown in Fig. 27 for both
LES-DSM and LES-DMM. In Sec. III A was mentioned that
both SGS models start being effective and producing differ-
ent global results after a transient period of about 80h /U0

time units, and likewise the helicity as can be seen in Fig. 27.
Moreover, the amplitude of the resolved helicity fluctuations
is not decaying during the simulation and the LES-DMM
qualitatively produces more high-amplitude negative helical
values therefore justifying its negative average value.

Helicity, like energy, is cascaded from large scales down
to the Kolmogorov dissipation scale, where it is destroyed.
Unfortunately, the relatively low Reynolds number of both
LES does not permit the determination of quantitative scal-

ings of energy and helicity spectra which could be compared

to the Kolmogorov scalings in k̂−5/3 in helical three-
dimensional homogeneous isotropic turbulence, as men-
tioned by Borue and Orszag in Ref. 48. In the same paper,
Borue and Orszag conclude that helicity is inherently a large-
scale quantity which behaves similarly to a passive scalar.
Consequently the one-dimensional relative helicity spectrum
defined by

FIG. 26. Contours of the average resolved helicity density 	h
 in the bottom
plane y /h=−1 �a� and in the plane x /h=0.7874 �b� containing �0;
LES-DSM.

FIG. 27. Time histories of resolved H�t� for the LES-DSM �red lines� and
the LES-DMM �blue lines�.
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��k̂� =
Ĥ�k̂�

2k̂K̂�k̂�
, �44�

where Ĥ �respectively, K̂� is the one-dimensional resolved
helicity �respectively, energy� spectrum, decreases at small
scales. Even if in our context, the turbulence is not homoge-
neous nor isotropic, the previous assertion is undeniably
verified by both LES as can be seen only for the LES-DMM

in Fig. 28, for high values of k̂ corresponding to small scales.
Similar relative helicity spectrum is obtained for the LES-
DSM. This suggests that the decreasing trend at small scales
of the relative helicity spectrum is more general and not only
limited to the homogeneous and isotropic turbulence theoret-
ical framework, just like the Kolmogorov scale in the inertial
range.

V. CONCLUSIONS

The long-integration results of two LES of the lid-driven
cubical cavity flow at a Reynolds number of 12000 have
been presented for two dynamic subgrid-scale models,
namely a dynamic Smagorinsky model and a dynamic mixed
model. These simulations were based on an accurate
spectral-element spatial discretization, having two times less
points per space direction than the direct numerical simula-
tion reference result from Leriche and Gavrilakis.5 All filter-
ing levels introduced in both SGS modelings rely on explicit
modal filters in the spectral space, retaining C0 continuity of
the numerical solution of the filtered Navier-Stokes equa-
tions. An additional nodal filter was used to stabilize both
LES. Time-averaging was shown to be equivalent to
ensemble-averaging, with respect to the global precision
level of the numerical integration.

Partial simulation results using the UDNS and the Sma-
gorinsky model as subgrid-scale models, have served to
prove the necessity of a dynamic SGS procedure. Full LES
results for both dynamic models have shown very good
agreement with the DNS reference results. The agreement
with the experimental reference results from Prasad and
Koseff7 is qualitatively good.

At a Reynolds number of 12000, the lid-driven cavity
flow is placed in a locally turbulent regime and such turbu-

lent flows proved to be highly inhomogeneous in the
secondary-corner regions of the cavity where turbulence pro-
duction and dissipation are important. The maximum produc-
tion of turbulence was found to be located in the
downstream-corner-eddy region just above the bottom wall.
An analysis of the spectra of turbulent quantities at this point
allowed us to determine the distribution of the scales of the
turbulent structures convected past this maximum. Moreover,
both LES were able to capture the coherent counter-rotating
pair of vortices which are mainly responsible for the peaks of
turbulence production still at this point. LES-DSM have
shown globally more intense and better results than the LES-
DMM in this matter.

Small-scales turbulent structures were located indirectly
by studying the regions of intense turbulent energy dissipa-
tion rate . The eddy-viscosity field was shown to be
strongly correlated to  in the turbulent areas of the flow, but
the clipping procedure—necessary for stabilizing the
numerics—imposed to the dynamic parameters strongly di-
minishes this correlation in the intense turbulent zones.
Subgrid-scales activity has been analyzed and the higher
SGS activity is associated with the LES-DMM.

Helical properties of the flow were investigated. Typical
helical coherent structures were identified in the secondary-
corner regions. These structures appear to be correlated to
the turbulent energy dissipation rate . The relative helicity
spectra is shown to be decreasing at small scales, which is in
agreement with the theoretical results from Borue and
Orszag48 for the three-dimensional isotropic homogeneous
turbulence.
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