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In this study we investigate the propagation of extremely short optical pulses in a thin film formed by
a graphene grown on a boron nitride substrate. Conduction electrons of the system are described on the
basis of the long-wavelength effective Hamiltonian in the case of low temperatures; the electromagnetic
field being taken into account within the framework of the classical Maxwell equations. The time
evolution of the pulse’s shape for different speeds and maximum amplitudes of an extremely short pulse
is analyzed.

 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently there has been an increase in the number of studies of
graphene grown on a substrate of hexagonal boron nitride [1–10].
This is due to the unusual properties of graphene in this case [11].
More specifically, this is due to the similarity of the crystal struc-
ture of graphene and h-BN, and also to the fact that the ionic
character of the interatomic bonds in the h-BN leads to an absence
of the “dangling” covalent bonds and charge traps on its surface
[12]. In Ref. [12], it was found that the roughness of graphene on
h-BN is much smaller than that of graphene on SiO2, and that
the charge fluctuations are smaller by two orders of magnitude.
In general, the electronic characteristics of graphene on h-BN are
essentially the same as that of a free graphene, but it is much eas-
ier and more convenient to explore (and use) a graphene on this
substrate [12].

In this Letter we investigate the dynamics of an extremely short
optical pulse passing through a two-layer structure of graphene–
boron nitride.

2. Basic formalism

Let us consider a thin film of graphene on a boron nitride sub-
strate. In the long-wavelength approximation we choose the basis
{φg1,φg2,φnb1,φnb2}, where the wave functions correspond to the
electrons localized on two different sublattices of graphene, and
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the two different sublattices of boron nitride, respectively. The
Hamiltonian in this case can be written in the block matrix form
[13]:

H(k) =





0 k∗ 0 t
k 0 0 0
0 0 " f ∗

t 0 f −"



 ≡
(

H11 H12
H11 H12

)
, (1)

where t is the electron hopping integral between layers of
graphene and boron nitride, " is the energy gap for boron nitride,
k = v f g(kx + iky), v f g is the Fermi velocity in graphene, kx and ky
stand for the electron momentum components, f = vnb(kx + iky),
and vnb is the Fermi velocity in boron nitride. When the energy
gap, ", in boron nitride is large in comparison with the electron
energy—still in the long-wavelength approximation—the effective
Hamiltonian can be written analogously to the bigraphene case
[14], namely

Heff ≡ H11 − H12 H−1
22 H21 = −1

t

(
" − 1

t f ∗k∗

− 1
t f k − 1

t2 |k|2"

)

. (2)

This approximation represents a constraint to the value of electron
momentum [14], which allows us to use the long-wave approx-
imation. The Hamiltonian (2) is easily diagonalized and gives us
the energy spectrum for the electrons

ε(k) = 1
2

(
"

(
1 − v2

f g

(
k2

x + k2
y
))

+

√

"2
(
1 − v2

f g

(
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y
))2 +

4v2
f g v2

f nb

t2

(
k2
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y
)2

)
. (3)
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We now consider the application of an external electric field,
E(x, t) = (0, E(x, t),0), which is, to be specific, directed along the
y axis. In this study we use the gauge E = − 1

c
∂A
∂t . Following the

general quantum mechanics rule, we have to replace the momen-
tum by the generalized momentum, namely p → p − e A/c, where
e is the electron charge. In this case, the effective Hamiltonian (2)
can be rewritten as

Heff =
∑

pσ

ε

(
p − e

c
A(t)

)
a†

pσ apσ ,

where a†
pσ and apσ are the creation and annihilation operators for

electrons with quasi-momentum p and spin σ .
Maxwell equations with account for the dielectric and magnetic

properties of a topological insulator in a quasi-1D approximation
can be written as [15]

∂2A
∂x2 − 1

c2

∂2A
∂t2 + 4π

c
j = 0, (4)

where we neglect the diffraction spreading of the optical pulse in
the direction perpendicular to the axis of propagation. The vector
potential A is considered to have the form A = (0, A(x, t),0), and
the current is j = (0, j(x, t),0). Let us write the standard expres-
sion for the current density:

j = e
∑

p

v y

(
p − e

c
A(x, t)

)〈
a†

pap
〉
, (5)

where v y(p) = ∂ε(px, p y)/∂ p y , and the angle brackets denote av-
eraging with the non-equilibrium density matrix ρ(t), i.e. 〈L〉 =
Sp(L(0)ρ(t)) for an arbitrary physical quantity L. Keeping in mind
that [a†

pap, H] = 0, the equations of motion for the density matrix

give us the relation 〈a†
pap〉 = 〈a†

pap〉0, where 〈L〉0 = Sp(L(0)ρ(0)).
Thus, in the expression for the current density we can use a num-
ber of particles, which follows from the Fermi–Dirac distribution.

Next we consider the case of low temperatures, when only a
small area in momentum space around the Fermi level contributes
to the sum in (5). Accordingly, we write the formula (5) in the
form

j = e

"∫

−"

dpx

"∫

−"

dp y v y

(
p − e

c
A(x, t)

)
. (6)

The domain of integration in momentum in Eq. (6), measured
by ", is determined by the conservation of number of particles:

"∫

−"

dpx

"∫

−"

dp y =
"∫

−"

dpx

"∫

−"

dp y
〈
a†

px,pyapx,py
〉
.

Finally the equation for the propagation of an ultrashort pulse can
be written as

∂2 A
∂x2 − 1

c2

∂2 A
∂t2 + 4π

c
Φ(A) = 0, (7)

where the function Φ(A) is determined by integration of Eq. (6).
Typical dependence of the nonlinearity present in Eq. (7) on the
value of the field A is shown in Fig. 1.

3. Results of the numerical analysis

For the numerical solution of Eq. (7), we have implemented an
explicit difference scheme of hyperbolic equations [16]. Difference
scheme steps in both time and coordinates where iteratively de-
creased twice until the solution became unchanged in the eighth

Fig. 1. The dependence of the current on the vector potential. All quantities are in
dimensionless units.

Fig. 2. The dependence of the pulse shape on the time for different points in space:
(solid) x = 10−5 m; (dashed) x = 1.5 · 10−5 m; (dotted) x = 2.5 · 10−5 m. The insert
shows a close up for the early stage corresponding to t in the range 40 to 90 time
units.

decimal place. The initial condition is chosen in the form of ex-
tremely short pulse consisting of a single oscillation, namely

A(x, t) = Q exp
(
−(x − vt)2/γ

)
, (8)

γ =
(
1 − v2)1/2

, (9)

where Q is the amplitude, and v is the initial velocity of the pulse.
This initial condition corresponds to the fact that the sample is
irradiated with an extremely short pulse consisting of a single os-
cillation of the electric field. The energy parameters are expressed
in units of ". The resulting evolution of the electromagnetic field
propagating through the sample is shown in Fig. 2.

From Fig. 2, it appears clearly that the initial pulse splits into
two parts. Moreover the smaller portion propagates in a direction
opposite to the direction of the major one. The simplest model
for this is that the pulse of the alternating electric field induces
an alternating current in the system, which, in turn, induces an
electric field interfering with the parental pulse. As a result of this
interference, the initial pulse shape is not stable, and radiation of
some energy occurs in the opposite direction. In other words, using
an analogy with the theory of solitons [17], there is a decay of



Author's personal copy

566 A.V. Zhukov et al. / Physics Letters A 377 (2013) 564–566

Fig. 3. Dependence of the pulse shape on the time for different values of the pulse
amplitude: (solid) Q = 3; (dashed) Q = 5; (dotted) Q = 7.

Fig. 4. Dependence of the pulse shape on the time for different values initial pulse
speed: (solid) v = 0.9; (dashed) v = 0.93; (dotted) v = 0.96.

initially unstable pulse into two, each of which are stable due to a
balance between dispersion and nonlinearity.

Such an interesting behavior is the outcome of two distinct ef-
fects at play in Eq. (7): (i) the linear part of Eq. (7), leading to a
broadening of the optical pulse, as well as, (ii) the nonlinear term
responsible for the narrowing of the pulse. The competition be-
tween these two effects leads to a deformation of the initial shape
of the pulse and to the stabilization of its form. The effect of
nonlinearity is even more pronounced when considering the de-
pendence of the pulse shape on the initial amplitude, which is

shown in Fig. 3. The pulse shape is extremely stable, which makes
our system potentially useful in variety of applications.

The effects associated with nonlinearity manifest particularly
strongly on the front of the pulse and lead, in particular, to the
broadening of the pulse, that can be explained by an imbalance
between the dispersion and nonlinearity in the system. Also note
that the evolution of ultrashort pulses, in general, slightly depends
on the speed of the initial pulse, which is shown in Fig. 4. This can
be attributed to the Lorentz invariance of Eq. (7) and the effect
of “squeezing” of the pulse when passing to a moving coordinate
system.

4. Conclusions

The results obtained in this study show that the steady prop-
agation of ultrashort optical pulses is possible in graphene grown
on a substrate of hexagonal boron nitride. When the amplitude of
the initial pulse increases, a weak broadening of the wave front
takes place while a second pulse of lower intensity appears. This
can certainly be useful in the development of hybrid devices based
on the interaction of light with electrons in graphene.
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