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Study of the indirect exchange interaction in a strained graphene nanoribbon
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a b s t r a c t

In this paper we study the indirect exchange interaction in a strained graphene ribbon of finite width
within a frame of the s–d model. Our calculations show that magnetic ordering of the spins of impurities
varies periodically with increasing distance between atoms and asymptotically tends to zero. We analyze
the dependence of the exchange interaction on the directions of deformation in the film, as well as on the
external magnetic field.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Numerous studies show the growing interest of researchers for
the effects arising in graphene subjected to a magnetic field.
Perspectives of different applications of spintronics are confirmed,
both theoretically and experimentally [1–3]. Many studies show
that graphene is also a material with unique adsorptive properties
[4–9].

Recently, scientists have investigated graphene sheets defor-
mation, spurring a significantly renewed interest in this field. One
of the reasons for this is the remarkable ability to create giant
pseudo-magnetic fields by applying mechanical stress to a sheet of
graphene [10].

All of the above brought us to the idea of considering the
complex collective effects associated with the interaction of
electrons with impurities of a deformed crystal lattice of graphene
[11–16]. The objective of the present study is to gain insight into
the properties of these interactions responsible for the intriguing
emergent behavior of giant pseudo-magnetic fields generation.
Note that the magnetic fields considered in the framework of our
study can easily be mapped to the pseudo-magnetic ones, given
the mathematical equivalence between both quantities.

2. Dispersion relation for strained graphene

We examine a layer of graphene, consisting of two sublattices a
and b in the Hückel approximation [18], solely considering the
dynamics of π!electrons. More specifically, in the framework of
our model we take into account the kinetic energy of the electrons

combined with the energy of the impurity electrons, while
neglecting: (i) the energy of the electrons from the inner shells
of atoms; and (ii) electrons involved in the formation of s-type
chemical bonds; (iii) vibrational energy of the crystal lattice. The
Hamiltonian of the system takes the common form for the s–d
exchange models [12,13,19]

H¼H0 þHint; ð1Þ

where

H0 ¼∑
k;s

ϵka
†
ksaks þ ω0∑

R
SzR;

is the Hamiltonian of noninteracting conduction electrons and
impurities, and

Hint ¼ ∑
p;p′

JðqÞ∑
s;s′

Sqsss′a
†
psap′s′;

is the term responsible for the indirect exchange interaction. Here
Sq ¼∑R expðiqRÞSR (SR being the spin vector of an impurity
localized at the point R), q¼ p−p′, JðqÞ is the Fourier transform
of the interaction potential between d-impurity with the conduc-
tion electrons, sss′ are the Pauli matrices, ω0 ¼ −μB=ℏ is the
Zeeman frequency (μ is the total magnetic moment of an impur-
ity), which will be used here to quantify the influence of an
external constant magnetic field B applied along the z-axis; a†ks
and aks are respectively the creation and annihilation operators of
electrons in the conduction band with spin s and wave vector k
with the dispersion ϵðkÞ ¼ ϵk.

Here, we use the following dispersion relation for the long-
itudinal component, k∥, of the wave vector in a graphene nanor-
ibbon [17]:

Emðk∥Þ ¼ 7ℏvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2∥ þ
ðmþ αÞ2π2

W2

s

; ð2Þ
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where vF is the Fermi velocity. For a nanoribbon of width W, the
transverse component of the wave vector can take discrete values
according to the relation k⊥W ¼ πm, wherem¼ 0; 71; 72… is the
integer for a ribbon sub-band. In the dispersion relation (2), the
quantity α depends on the crystallographic orientation of the
graphene nanoribbon and is related to the forbidden gap
Δ¼ 2δEjαj, where δE¼ ℏvFπ=W is the energy difference between
the sub-bands. Note that in graphene nanoribbons, the wave
function must vanish at the ribbon edge, in contrast to the periodic
boundary conditions commonly used in carbon nanotubes (CNTs).
This leads to a drastically different quantization condition com-
pared to the CNTs case. For instance, with CNTs, the relation
k⊥WCNT ¼ 2πm holds, resulting in a twice larger energy gap
between the sub-bands for the same length of circumference W.

In order to introduce the effects of mechanical stress into our
graphene model, we base our analysis on the gauge theory. Under
the constraint of external mechanical stress, an internal stress field
will appear within the graphene, thus counterbalancing the initial
deformation effects. The induced external stress field can con-
veniently be represented and characterized by an effective vector
potential, A′, which acts as a gauge field and imparts changes to
the momentum of the electrons in the graphene [20,21]. In a
deformed and strained graphene, all the interatomic bonds are not
equivalent, so that the three hopping integrals, γi (i¼ 1;2;3), can
have different values. Correspondingly, we introduce the gauge
vector potential A′¼ ðA′x;A′yÞ, solely generated by the applied
mechanical stress. Taking into account the non-equivalence of
hopping integrals, one can write an effective vector potential in
the form [22]

A′x ¼
ffiffi
3

p

2 ðγ3−γ2Þ;

A′y ¼ 1
2ðγ2 þ γ3−2γ1Þ: ð3Þ

In the case of a weakly deformed crystal lattice, and further
assuming that the atomic displacement is small compared with
the lattice constant a, the hopping integrals can be expanded in a
series, which at the leading order in the relative atom displace-
ment reads [23]

γi ¼ γ þ
βγ
a2

ρiðui−u0Þ; ð4Þ

where γ is the unperturbed hopping integral, ρi the radius vector of
the nearest-neighbors, ui the displacement vector of the ith atom,
u0 the displacement vector of the central atom, and β the
electronic Grüneisen parameter given by

β¼ − ∂ ln γ
∂ ln a

≃2: ð5Þ

In the continuum limit and at the leading order, the displacement
of each carbon atom can be expanded as

ui−u0∝ðρi∇ÞuðrÞ; ð6Þ

where uðrÞ is the deformation field, assumed here to be small
ρi∥∇u∥≪u0. Substituting Eq. (4) in Eq. (3), while accounting for
Eq. (6), we can finally obtain the components of the effective
gauge field

A′x ¼
cβγ
a

ðuxx−uyyÞ;

A′y ¼−2cβγ
a

uxy; ð7Þ

where c is a numerical factor depending on the detailed model of
chemical bonding, which generally can be fairly well estimated by
taking the value c≈1 [22]. Taking into account the corrections
related to the introduction of the gauge field, the momentum in
the effective dispersion should be replaced by the generalized

momentum

k-kþ A′:

Depending on the direction in which the ribbon is deformed, the
dispersion relation will take two different forms

Emðk∥Þ ¼ 7ℏvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k∥ þ
π
3a

C∥

" #2
þ

ðmþ αÞ2π2

W2

s

ðlongitudinal deformationÞ;

Emðk∥Þ ¼ 7ℏvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2∥ þ
ðmþ C⊥ þ αÞ2π2

W2

s

ðtransverse deformationÞ;

ð8Þ

where C⊥ and C∥ are the parameters associated with the introduc-
tion of the generalized momentum in the effective dispersion,
which characterize the deformation of graphene nanoribbon via
the corresponding gauge field. The quantities C∥;⊥ correspond to a
momentum, normalized in a way that 2π corresponds to the
Brillouin zone edge.

3. Indirect exchange interaction

The Fröhlich method of calculation for the indirect exchange
interactions [24] is based on the assumption that the matrix
elements satisfy the inequality jHintj≪jH0j. Essentially, it consists
in two stages. First, a transition from the representation (1) to a
new representation is carried out using a unitary transformation,
U ¼ expð−LÞ, where L is the anti-Hermitian operator satisfying the
relation

Hint þ ½H0;L' ¼ 0: ð9Þ

With this new representation, the Hamiltonian takes the modified
form

H- ~H ¼H0 þ 1
2½Hint;L' þ OðH3

intÞ: ð10Þ

A formal solution of the operator Eq. (9) reads

L¼
1
iℏ

lim
ε-0

Z 0

−∞
eεtHintðtÞ dt;

HintðtÞ ¼ exp
iH0t
ℏ

$ %
Hint exp − iH0t

ℏ

$ %
:

The second step is to average expression (10) for the transformed
Hamiltonian, ~H, over the states of the interaction field, i.e. average
using the equilibrium density matrix for the electron subsystem.
This, particularly, means that the second term in the perturbation
theory applied to Eq. (10), namely Hs ¼ 1

2 〈½Hint;L'〉, ceases to depend
on the electron's creation and annihilation operators, but still
depends on the spin operators of different impurity atoms. Therefore,
this term actually represents the operator of the indirect interaction.
After some straightforward algebra, the operator L takes the form

L¼ ∑
p;p′

JðpÞ
ðSxq−iS

y
qÞa

†
p;sap′;−s

ϵp′−ϵp þ ℏω0
þ
ðSxq þ iSyqÞa

†
p;−sap′;s

ϵp′−ϵp−ℏω0

(

þ
Szqa

†
p;sap′;s

ϵp′−ϵp
þ

Szqa
†
p;−sap′;−s
ϵp′−ϵp

)

: ð11Þ

Substituting Eq. (11) into Eq. (10), and using the thermodynamic
averaging yields

Hs ¼ ∑
p1;2R1;2

M1fS
−
R1
S−R2

expfiðp1−p2ÞðR1−R2Þg

þ S−R1
SþR2

expfiðp2−p1ÞðR1−R2Þgg

þ ∑
p1;2R1;2

M3fS
þ
R1
SþR2

expfiðp1−p2ÞðR1−R2Þg

þ SþR1
S−R2

expfiðp2−p1ÞðR1−R2Þgg

þ ∑
p1;2R

M2S
z
R; ð12Þ
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where the following notations for the exchange interaction constants
are introduced:

M1 ¼
1
2
Jp1−p2 Jp2−p1

expð−βϵp1 Þ−expð−βϵp2 Þ
ϵp1−ϵp2 þ ℏω0

;

M2 ¼ 2Jp1−p2 Jp2−p1
ℏω0 expð−βϵp1 Þð1−expð−βϵp2 ÞÞ

ðℏω0Þ2−ðϵp2−ϵp1 Þ
2 ;

M3 ¼
1
2
Jp1−p2 Jp2−p1

expð−βϵp1 Þ−expð−βϵp2 Þ
ϵp1−ϵp2−ℏω0

:

The last term in Eq. (12), namely ∑p1;2RM2S
z
R, describes the Knight

shift, well-known in the theory of magnetic resonance [20], while the
other terms are responsible for the indirect exchange interaction.

Exchange interaction between localized spins of the impurities
is considered in the direct space, so we apply the inverse Fourier
transform

Jeff ¼
Z π=3a

0
dkx1

Z ffiffi
3

p
kx1 =3

0
dky1

Z π=3a

0
dkx2

Z ffiffi
3

p
kx2 =3

0
dky2M1;3ðkx1ky1kx2ky2 Þ

( expfiðkx1−kx2 Þxg expfiðky1−ky2 Þyg: ð13Þ

Note that this quantity implicitly contains an oscillating part. Thus,
when evaluating the integrals by the saddle point method, one can
show an exponential decay in the magnitude of the indirect inter-
action with increasing distance between the impurities. Note that
such a behavior is always observed in the presence of mechanisms of
indirect exchange via conduction electrons; this being due to the
local nature of the interaction between electrons and impurity atoms.

4. Results of the numerical analysis

In view of the rather complex dependence of the indirect exchange
interaction on the parameters of the problem, the obtained quantities
were analyzed numerically. Indirect exchange interaction between
localized spins of impurities has been considered in the direct space.
For this purpose it is necessary to use the inverse Fourier transform
(the integration was carried out over the Brillouin zone in the
reciprocal space). The numerical integration was performed using
the classical trapezoidal quadrature rule. Calculations were carried out
for as long as the relative error does not exceed 1%.

Fig. 1 shows the typical dependence of the exchange interaction
term (see Eq. (13)) between the impurity spin components on
distance, for different magnitudes of the magnetic field. Note that
the different shapes of the curves in Fig. 1 must be due to the strong
dependence of the electron dispersion (2) on the applied magnetic
field via the Zeeman frequency ω0. Furthermore, a reduction in the
intensity of the magnetic field—equivalent to having a reduced value
for ω0—results in a slight increase in the amplitude of the indirect
exchange interaction. Note, the dependence of the distribution of
exchange coupling term on the magnetic field is oscillatory with
attenuation (Fig. 1). The mechanism behind such a behavior is directly
related to the presence of two competing processes: the pairing and
de-pairing of electron spins, which are in the resonant interaction
state. This observation is physically consistent with the results of the
calculations of the exchange interaction in other media [12].

Figs. 2 and 3 show the dependence of the exchange interaction
term, Jeff , on distance for a graphene nanoribbon mechanically
strained in two orthogonal directions, namely transversely and
longitudinally. As can be seen from these two figures, the value of
the exchange interaction term is approximately ten times greater
when considering a longitudinal deformation of the nanoribbon. We
attribute this effect to the unboundedness and non-quantized nature
of the longitudinal component of the wave vector of the electrons,
k∥, in sharp contrast with the quantized nature of k⊥ when the
nanoribbon is deformed transversely. The above dependence shows
have an oscillating form, indicating possible areas of alternating

ferromagnetic and antiferromagnetic ordering. A localized spin
immersed in a conduction electrons cloud, induces a spin polariza-
tion of the cloud, which is essentially oscillatory in space. Indeed,

Fig. 1. The dependence of the indirect interaction constant for the nanoribbon of
20 nm width for C∥ ¼ 0:02 and for two different magnitudes of the magnetic field:
(a) B¼ 1:73( 104 T; (b) B¼ 1:73( 103 T.

Fig. 2. The dependence of the indirect interaction constant for a nanoribbon of
20 nm width for B¼ 1:73( 104 T and C∥ ¼ 0:02 (deformation along kx).

Fig. 3. The dependence of the indirect interaction constant for a nanoribbon of
20 nm width for B¼ 1:73( 104 T and C⊥ ¼ 0:02 (transverse deformation).
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these oscillations are felt by any other spin present in the region of
its spatial localization, thereby resulting in a global oscillating
potential of interaction between the spins. These results reveal
interesting and potentially important applications given the possi-
bility of forming regions with different types of ordering (ferromag-
netic or antiferromagnetic) of impurity atoms. Furthermore, the
formation of these differently ordered zones can be controlled by
varying a combination of two input parameters: namely the external
constant magnetic field and the mechanical stress in either the
longitudinal or the transverse direction.

5. Conclusions

Specific features of the indirect exchange interaction—the interac-
tion of the electron spins in stressed graphene nanoribbons—studied
in the present work, consists in the fact that the exchange interaction
was examined on the basis of the Dirac approach so that dispersion
relation involves electron momenta near the Dirac points. In conclu-
sion we formulate two principal results of our study:

(i) Increase in the deformation constant reduces the energy of
indirect interaction of impurities as a function of the distance.

(ii) When considering indirect interactions in the ribbon, deformed
in the transverse direction, the numerical value of the exchange
coupling constant is reduced by orders of magnitude.
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