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a b s t r a c t

Heat removal from a crystalline material at its critical temperature results in phase
transitions which are associated with spontaneous symmetry breaking whereby the
final state exhibits infinite degenerate states. Calculations of entropy changes in such
systems are not addressed in classical thermodynamics as the system is driven away
from equilibrium due to the asymmetric energy landscape of the system. Here, we
present a novel mathematical formulation that allows us to calculate entropy changes
in such systems while arguing that heat applied to such a system results in an increase
in entropy along with the excitation of Goldstone modes. These ideas offer a novel
theoretical framework towards understanding the phenomenon of entropy changes in
systems driven away from equilibrium.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Entropy changes in thermodynamics are defined while assuming the condition of equilibrium associated with the
nitial and final states of a thermodynamic process [1]. The concept can also be applied, in principle, while calculating
ntropy changes during phase transitions where each of the successive states are assumed to be in equilibrium during
eat transfer [2]. However, phase transition is an irreversible process involving non-equilibrium thermodynamics [3].
ntropy change calculations in non-equilibrium thermodynamics incorporate the rate of change of dissipation energy,
ntropy production [4] and the nature of the dissipative system [5,6]. Such formulations cannot be applied in calculating
ntropy changes during a phase transition as it is a non-dissipative process for which the energy landscape of the
ystem undergoes symmetry breaking. Hence, calculation of entropy changes under such conditions would greatly benefit
rom a mathematical formulation associated with the physics of phase transitions. It must incorporate the role which
lectromagnetic potentials play at different locations within a crystal and which are physically connected through
ymmetry relations. The corresponding symmetry of these potentials is defined by the space-group symmetry of the
rystal [7] which is transformed or broken under phase transitions and changes in crystal structure [8].
In ferromagnetic materials, there is no finite value of magnetism at room temperature, but below the Curie temper-

ture, there is spontaneous symmetry breaking where the ground state has an infinite number of degenerate states and
he system adopts one of the many possible states leading to finite magnetization [9,10]. In a related form of symmetry
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reaking called explicit symmetry breaking, the dynamic equations of the system contain terms which inherently break
he symmetry of the system and the final state is uniquely defined by the constraints imposed on the system [11].
agnetization induced in a certain direction under strong magnetic field is an instance of explicit symmetry breaking

n which the final state is uniquely defined by the constraints imposed on the degrees of freedom associated with the
inal state. As all phase transitions under thermodynamic changes are associated with symmetry transformations, entropy
hanges should naturally incorporate the nature of symmetry breaking.
The classical notion of phase transition is centered on equilibrium systems and quasistatic processes. In order to

apture the physical nature of phase transitions, the concept of dynamical phase transitions was introduced where the
ntropy production has a non-zero value. Currently, a widely accepted model of dynamic phase transition in quantum
ystems, argues that the system relaxation time diverges around the critical temperature [12,13]. Another key aspect of
ynamical phase transition is that the fluctuations generate small domains creating inhomogeneous orientation of the
rder parameter [14].

. Entropy changes under symmetry breaking in ferromagnetic systems

In a ferromagnetic system at high temperature, the microscopic atomic magnets do not have any global orientation
ue to thermal fluctuations [9]. It can be considered a closed system in thermodynamic equilibrium whose physical state
s invariant and has continuous symmetry. Considering a small quantity of heat applied to the system (δQ ) or removed
rom it, such that the existing symmetry remains intact, we can calculate the infinitesimal entropy change, dS using the
lausius’ form of the second law of thermodynamics, dS = δQ/T , where T is temperature.
When the temperature is lowered below the Curie temperature, the role of thermal interactions subside and interac-

tions between atomic magnets dominate, thereby leading to an orientation of the neighboring entities parallel to each
other which propagates and yields a net global ordering of the system and a macroscopic finite magnetization [9]. Below
the critical temperature, the system undergoes a phase transition with the appearance of an ordered phase. We say that
the existing symmetry is spontaneously broken and there is a degenerate ground state associated with the presence of
massless modes having continuous symmetry. In other words, the symmetry of the system is reduced and the new state
has an infinite number of equivalent symmetric states. A macroscopic order parameter describes the physical nature and
degree of broken symmetry. An important underlying assumption is that for a specific value of order parameter, the
energy function, which is dependent on order parameter is analytic [10]. In the context of ferromagnetic material, the
total average spin or the magnetization is the order parameter as the Hamiltonian is invariant to a change in direction
of spin. For a non-interacting superfluid material, the Hamiltonian is invariant to a change in phase of the wavefunction.
Hence, the order parameter is the particle wavefunction associated with the particle of the Bose Einstein condensate. For
a nematic liquid crystal, a tensor characterizing the anisotropy of the system is the order parameter. The value of order
parameter changes continuously up to the critical temperature. In this analysis, the fluctuations are neglected and this
approximation is called mean value theory.

The symmetry of the ferromagnetic system above the Curie temperature is illustrated in Fig. 1a using a thermodynamic
potential function V , which acquires a minimum value with zero magnetization in the absence of an applied magnetic
field above the critical temperature. Below the Curie temperature, the magnetization develops along the minimum values
of the thermodynamic potential which illustrate the degenerate ground states as shown in Fig. 1b.

Entropy change calculations in such a system should also incorporate the nature of changes in the system’s internal
energy where, for instance, heat applied to the given ferromagnetic material can cause oscillations in the magnetization
and the resulting modes can propagate along the radial as well as axial direction of the potential energy surface. The
curvature of the potential is inverse of the magnetic susceptibility, χ and is a determinant of the energy associated with
fluctuations of infinite wavelength which are associated with generation of massive modes. The value of the inverse
magnetic susceptibility is zero along the transverse direction of the order parameter, which is magnetization in the current
case. Thus, the transverse susceptibility is associated with massless modes which are also called the Goldstone modes and
appear under spontaneous symmetry breaking [15,16]. These are also called spin waves or magnons.

According to Landau theory, the Gibbs free energy can be expressed as a power series of the order parameter [17,18]. It
incorporates mean-field approximation, where the magnetization is treated as a uniform physical entity in space and the
fluctuations are assumed to be negligible. It is assumed that the value of magnetization lies within a narrow range around
its equilibrium such that the free energy is minimum. Thus, it offers a framework towards understanding the existence
of a critical point and in calculating critical exponents.

It is argued that the derivative of free energy is non-analytic during phase transition, hence, the free energy cannot be
truly expressed as a sum of power series at the phase transition [10]. The non-analyticity at phase transition emerges as
the partition function involves the sum of all the value of order parameter. However, as the actual free energy is equivalent
to some minimum value of the free energy function, hence, Landau’s theory of phase transition can still be applied. If the
order parameter is fixed, the free energy is analytic. The approximation fails under lower dimensions, renormalization is
needed to get correct results.

In a ferromagnetic system, the order parameter is magnetization and the total energy can be expressed as [18]
2 4 6
V = a(T − TC )m + bm + O(m ), (1)

2



D. Sinha and R. Bouffanais Physica A 588 (2022) 126525

w
t
T

p
λ

Fig. 1. Magnetization under spontaneous symmetry breaking. a. Relationship between effective thermodynamic potential V and magnetization M
above Curie temperature. There is no net magnetization around the minimum value of V . b. For temperatures below the Curie temperature, the
minimum values of thermodynamic potential yields magnetization even in the absence of an external magnetic field under spontaneous symmetry
breaking. Modes propagating along the direction of the arrow lead to development of an energy gap.

where m is magnetization, a and b are constants, TC is critical temperature and O(m6) is a function of higher order terms
hich can be neglected. The magnetization can be expressed as, m = φxx + φyy, where φx and φy describe the angle of
he atomic magnets and, m2

= φ2
x + φ2

y . For T > TC , the system has one minimum potential energy state (Fig. 1a), for
< TC , the minimum is divided into two minimum energy degenerate states (Fig. 1b).
We can also use a single complex function, φ = (φx + iφy)/

√
2 and obtain the following expression for the energy

landscape while neglecting higher order terms,

V = β2φ∗φ +
1
2
λ(φ∗φ)2, (2)

where β = a(T −Tc) and λ is a dimensionless quantity with a positive value. The quartic term, λ(φ∗φ)2/2 preserves global
hase symmetry of the potential function. The potential is bounded from below for a positive value of λ. However, when
< 0, the minimum energy state corresponds to a value of φ = φ , where the potential is associated with the following
0

3
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E

Fig. 2. Mexican hat potential and magnetization. a. Three dimensional Mexican potential hat represents the thermodynamic potential and
magnetization. Each point in the valley represents the same value of total magnetization. Fluctuations of magnetization along the vertical arrows
lead to massive modes while fluctuation along horizontal arrows lead to Goldstone modes b. The magnetic moments get aligned along a specific
direction under spontaneous symmetry breaking.

condition (Fig. 2a),

φ∗

0φ0 = β2/λ. (3)

q. (3) represents a circle in the complex φ plane, with a radius r , where, φ0 = βeiθ/
√

λ = reiθ .
The system has an infinite number of ground states having the same energy for different values of θ , which indicates

the phase of the given field. It corresponds to a physical situation where the system was in a state of symmetry initially
as represented by a ball at the peak of the Mexican hat potential (Fig. 2a) which drops to the trough spontaneously and
rolls along its sides without any additional energy. The dynamics of the system in the initial phase is symmetrical with
regard to rotations along the vertical axis. However, the final minimum energy state does not have a symmetry. Thus, the
initial symmetry is spontaneously broken which is illustrated by the alignment of magnetic dipole moments in Fig. 2b.
The movement of the particle in the potential well does not need any energy and it corresponds to propagation of low
energy Goldstone modes.
4
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We need to precisely fix the value of θ and study the dynamics of the ferromagnetic system under variations of the
field φ in order to evaluate the role of quartic potential in symmetry breaking. When λ → ∞, the condition of Goldstone–
ombreao potential occurs and the Lagrangian adopts the least value [19]. The action integral is symmetrical with a change
f phase. Here, θ corresponds to exciting the Nambu–Goldstone boson and symmetry transformation results in a phase
hift. It does not preserve the ground state. In other words, the transformation, does not annihilate the ground state which
as a degeneracy and is not invariant under the condition of spontaneous symmetry breaking.
Heat applied to a ferromagnetic material below its Curie temperature increases the amplitude of fluctuation of the

agnetic moments. This would eventually result in an increase in the amplitude of the axial modes or Goldstone modes,
nevitably, leading to an increase in entropy. However, there are additional effects which need to be considered in order
o calculate the net value of entropy. A part of the input thermal energy would also be absorbed by the radial modes along
he direction of increasing potential indicated by the vertical arrows in Fig. 2b. In order to model this mathematically, we
efine, φ0 = β/

√
λ and substitute φ = φ0 + χ , to represent the impact of a dynamical field χ generated as a result of

thermal energy which momentary excites the magnetization resulting in fluctuations. Thus, we can write the potential
energy as,

U = U(φ0) +
1
2
λ[φ0(χ∗

+ χ ) + χ∗χ ]
2. (4)

hile using λφ2
0 = β2 and the relation, χ = (χ1 + iχ2)/

√
(2), we get

U = U(φ0) + β2χ2
1 + O(χ3), (5)

where O(χ3) is a function representing the higher order terms. When φ = 0, the system’s state is at a vacuum state
which is unstable and possesses symmetry along the radial directions. As the system adopts a specific value of φ = φ0,
the symmetry is lost, or in other words, explicitly broken and there is variation of β/

√
λ. For the field, χ1, massive modes

with the angular frequency, ω =
√
(k2 + 2β2), where, k is the wave number are generated. It results in an overall change

n the magnitude of magnetization as illustrated in Fig. 3a. The associated modes behave like mass which is oscillation
f a field when it is homogeneous and has infinite wavelength. If the wavelength of a particular field is infinite, any
isplacement leads to oscillations of the entire field [20]. The physical situation corresponds to a particle at rest with
nfinitely long wavelength which is expressed through the relationship p = h/λ, where, p is momentum, λ is wavelength
nd h is the Planck’s constant. In other words, mass corresponds to oscillation of a field when it is homogeneous and
as infinite wavelength. A phonon has no mass as the shift in atoms is not homogeneous. Plasmons have a mass as it
orresponds to a homogeneous shift of charges [20]. A massive excitation has a dispersion relation that does not become
ero at k = 0, but has a curvature. Thus, mass is also connected with the curvature of the potential energy surface at the
quilibrium point. As soon as the field is shifted away from the equilibrium point, it starts to oscillate. If ω ̸= 0 at k = 0,
he value of ω at that value of k is the mass. It is worth mentioning that such modes should exist in crystals, however they
ave not been observed until now. A similar phenomenon leads to mass in high energy physics where the mechanism
f generation of an energy gap under explicit symmetry breaking is widely referred to as spontaneously broken gauge
ymmetry [21–23].
For the field χ2, there is no quartic term and it corresponds to the existence of a massless boson called Goldstone Boson

ith the dispersion relationship ω = kv, where v is the velocity (Fig. 3b). It propagates along the path of the minimum
potential surface at the bottom of the potential energy surface. This is an instance of Goldstone’s theorem, which states
that for every spontaneously broken global continuous symmetry, there is a field with massless quanta which is called a
Goldstone field [16]. When the angular frequency, ω is a linear function of wavenumber, k, there is no dispersion e.g. unity
lope of ω−k. It if is not linear, there is dispersion. A massless excitation is the one with a linear dispersion relation. Thus,
pplication of heat causes fluctuations in the magnetization which leads to massless and massive modes which need to
e incorporated in calculations on entropy.

. Goldstone modes under thermal fluctuations

Our current narrative on thermodynamics considers transitions between equilibrium states. The implicit assumption
s that if we waited long enough, the system would eventually return to equilibrium [1]. The way a system evolves during
he intermediate non-equilibrium phases is not described, which is one of the key goals of the current work.

An important objective of this section is to develop a novel formulation on entropy calculation in systems with low
egrees of freedom where fluctuations and non-equilibrium effects dominate the physics. Entropy production under
on equilibrium conditions in systems having conservative force fields has not been explored much until now from a
eterministic framework, although, there are a number of papers on the subject which address the problem from the
erspective stochastic fluctuations. One such example is Crooks fluctuation theorem, which correlates the work done on
system under non-equilibrium transformation to the free energy difference between the two states [24]. It leads to

arzynski equality which establishes a relation between free energy difference between initial and final non-equilibrium
tates and irreversible work along the set of trajectories connecting the two states [25].
Landau’s mean field theory incorporates an approximation which simplifies the impact of interactions. The effect of

eighboring spins on a specific spin is calculated using an averaged physical quantity, called mean field [26]. It does
5
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Fig. 3. Generation of modes in ferromagnetic materials a. The excitations along φx direction represent fluctuation of the magnetization. The
orresponding energy does not vanish when the wavelength becomes infinitely large and are massive modes similar to Higgs modes of high energy
hysics. b. The orientational change of the magnetization do not cost any energy and the corresponding modes can propagate along the valley in
he φy direction. These are Goldstone modes whose energy vanishes as the wavelength becomes infinitely large.

ot express the physics of the system when fluctuations, which become dominant near the critical point are taken into
ccount. The correlation length, which indicates the length up to which the interactions have an influence, increases as the
emperature is lowered [26]. It tends to diverge around the critical point. The entropy increases logarithmically with an
ncrease in system size, so at low temperatures, energy contribution due to fluctuations is dominant. Microscopic systems
re dominated by thermal fluctuations as the system is continuously driven away from equilibrium.
In order to show the role of fluctuations, we consider the statistical interactions defined by the nature of heat bath on

he order parameter. The fluctuations can be investigated by considering the response of the magnetization to an external
erturbation caused by thermal effect and doing the analysis.
Fluctuation is closely related to dissipation and they are caused by interaction of a system with a heat bath, under

hich, there is removal of energy as well as addition of energy. At equilibrium, the two terms cancel out and the average
nergy remains constant. Dissipation is defined as the tendency of systems to move towards equilibrium when different
egrees of freedom are allowed to interact with each other. In the process of dissipation of energy, the object’s kinetic
6
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nergy is redistributed among a huge number of microscopic degrees of freedom, which also generated fluctuations. This
s expressed through the fluctuation–dissipation theorem which is also explained in the current work.

We assume that a given crystalline material is at thermodynamic equilibrium at a temperature T < TC and all the
agnetic moments are perfectly aligned along a given direction. At time, t = 0, a finite amount of heat Q is added to

he system from a heat bath. It would result in the generation of thermal fluctuations, which can induce momentary
hanges in the localized values of magnetic field associated with a given set of magnetic moments. Assuming that in a
iven region, a net magnetic flux density of B has been induced, the net torque generated is Γ = µ × B, where µ is the
agnetic moment. The torque is related to the angular displacement, θ (expressed in radian), by means of, Γ = Id2θ/dt2

and the resonant frequency of the system is ωn =
√

µB/I , where I is the associated moment of inertia. The initial change
in angular orientation of the magnetic moment is regained under a resistive torque and the energy is dissipated, we can
write the expression of the dynamics of the system using the Langevin equation [27,28],

I
d2θ
dt2

= −β
dθ
dt

− ω2
nθ + ξ(t), (6)

where β denotes the coefficient of viscous friction for torsional motion and ξ (t) represents a fluctuating force field with
a net value of zero arising as a consequence of interaction with the heat bath. The correlation function relating the
fluctuating force ξ (t) at two instants of time t and t + τ is expressed as,

2βkBTδ(τ ) =

∫
∞

−∞

ξ (t + τ )ξ (t)dτ . (7)

Its Fourier Transform, which also represents its spectral density is defined as,

Sξ (ω) =
1
2π

∫
∞

−∞

dte−jωt
⟨ξ (t1)ξ (t2)⟩. (8)

Here j =
√

−1 and ω is the angular frequency associated with the force field generated as a consequence of thermal
interactions. From Eqs. (7) and (8), we can write, 2βkBT = 2πSξ (ω) or Sξ (ω) = 2βkBT/π . The spectral density is related
o ξ (ω) through the relationship, ⟨ξ 2

⟩ =
∫
Sξ (ω)dω. Substituting the related values, we get, ξ (ω) =

√
4βkBT∆f over

a bandwidth of ∆f . We have used the framework adopted by Nyquist, who derived the formulation on noise voltage
in conductors while considering the case of two conductors each of resistance R, interacting through a common heat
bath [29].

The Laplace transform and separation of terms in Eq. (6), gives the expression of the angular displacement,

θ (ω) =
ξ (ω)

I(−ω2 + 2jζmωωn + ω2
n)

. (9)

ere ζ = β/(2Iωn), represents the damping ratio associated with the torsional couple. Thus, we get the expression of
ngular displacement over a frequency band of 1 Hz,

θ (ω) =

√
4βkBT

I(−ω2 + 2ζωnω + ω2
n)

. (10)

t is graphically illustrated in Fig. 4 where the response of the system is asymptotic around the resonance modes of the
ystem. We have used the context of Somarium Cobalt (SoCo5) which has an atomic mass of 445.01 with a domain size
n the range of a couple of hundred nanometers [30]. For the calculations, we considered a magnetic domain of radius
85 nm, which has a mass of around 7 picogram and has around 1010 molecules. The spectral frequency varies from 10
Hz to 10 MHz and the resonant modes are assumed to lie between 0.6 MHz to 10 MHz.
We can also represent the angular displacement of the magnetic moment using the Green’s function defined as,

θ (t) =

∫
∞

−∞

dt ′G(t, t ′)
√
2βkBT
I

, (11)

here G(t, t ′) is the Green’s function defined as,

G(t, t ′) =

∫
−∞

−∞

dωe−iω(t−t ′)

−ω2 + 2jζωωn + ω2
n
. (12)

he inverse Fourier Transform of Eq. (10) leads to the time domain representation of the angular displacement,

θ (t) =

√
4βkBT

ωnI
√
(1 − ζ 2)

e−ζωnt sinωn

√
(1 − ζ 2)t (13)

here, 0 ≤ ζ < 1. It denotes the amplitude of the Goldstone modes generated by thermal fluctuations which decay with
ime leading to an increase in entropy. The angular velocity of propagation of the modes is expressed as,

ω(t) =
dθ
dt

=

√
4βkBT
I

e−ζωnt

[
cosωn

√
(1 − ζ 2)t −

ζωn√
2

sinωn

√
(1 − ζ 2)t

]
. (14)
(1 − ζ )
7
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Fig. 4. The frequency domain representation of Goldstone modes which rise asymptotically around the resonant modes. The spectral frequency is
assumed to vary from 10 KHz to 10 MHz and the resonant modes are assumed to exist between 0.6 MHz to 10 MHz.

Fig. 5. Time dependence of angular velocity. The Goldstone modes propagate with an angular velocity before finally decaying. The wave evolves
from 0 to 10 µs and the resonant modes are assumed to exist between 0.6 MHz to 10 MHz. For the calculations, a sample of around 7 picogram
f Somarium Cobalt (SmCO5) with an atomic mass of 445.01 and a magnetic domain of radius 585, was considered.

t is graphically illustrated in Fig. 5 where the angular frequency appears to be attenuated with time. The frequency is in
he range of THz, which corresponds to measured values of magnons in ferromagnetic materials [31]

When the damping ratio, is, ζ = 1, the angular displacement of the magnetic moment is,

θ (t) =

√
2βkBT

2ωnI
√
(ζ 2 − 1)

[
e−(ζ−

√
ζ2−1)ωnt + e−(ζ+

√
ζ2−1)ωnt

]
. (15)

he corresponding angular velocity is,

ω(t) =
dθ
dt

= −

√
2βkBT

2ωnI
√
(ζ 2 − 1)

[
(ζ −

√
ζ 2 − 1)ωne−(ζ−

√
ζ2−1)ωnt + (ζ +

√
ζ 2 − 1)ωne−(ζ+

√
ζ2−1)ωnt

]
. (16)

This time dependence of angular displacement and angular velocity associated with magnetic moments can be used in
calculating the total entropy change under heat transfer in a ferromagnetic system. The damping coefficient is a constant
for a given system under a given set of physical conditions, which implies that at a certain temperature, the orientation
of the magnetic moments can be calculated using a deterministic framework, which offers a pathway towards calculation
of entropy changes under phase transition, which are associated with non-equilibrium force fields.
8
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. Entropy changes under Goldstone modes

When heat is applied to a system with a state of spontaneous symmetry breaking, the thermal energy excites the
oldstone modes. This can also be interpreted as an increase in entropy of the system.
A process driven away from equilibrium is a process where entropy is produced. The issue of entropy production can

e understood from the perspective of generation and propagation of Goldstone modes in a magnetic material. The energy
tored at a certain instant of time is (1/2)ω2

nIθ
2 and the total energy dissipated over a differential time, dt , is (1/2)βω2dt .

Thus, if an input heat δQ is transferred to a material, the total entropy change is, dS = δQ/T . A part of the input energy
increases the energy of Goldstone modes expressed as, (1/2)ω2

nIθ
2 or (1/2)kθ2, where k is the force constant, and the

other part is dissipated as heat. The rate of heat dissipation is expressed as, (1/2)βω2. Thus, the total entropy change
over a period of time dt can be expressed as,

dS =
βω2dt − kθ2

2T
. (17)

The net change in thermal energy can be correlated to the energy of the Goldstone modes, thus, heat, Q = ∆H , where
H is the total Hamiltonian of the Goldstone modes and it can be written as, ∆H =

∫
Γ dθ , where Γ is the net torque

n the magnetic atoms which are displaced by infinitesimally by an angle dθ . The Goldstone modes are Fourier transform
btained from the torque. The entropy change can be expressed as, ∆S =

∫
δQ/T = ∆H/T , where T is the temperature

f the crystal.
Under explicit symmetry breaking, a part of the input thermal energy is annihilated by the generation of Higgs like

odes which propagate in a direction orthogonal to the Goldstone modes. An effective energy gap ∆U is associated with
hese massive modes which can reduce the total amplitude of Goldstone modes. For example, in a crystalline solid at
oom temperature conditions, the Goldstone modes in the solid correspond to phonons [32]. When heat is applied, the
ncrease in entropy eventually appears as an increase in amplitude of the phonons which can be represented by a change
n its Hamiltonian, ∆H . However, the associated massive modes do not result in an increase in entropy. Thus, when a part
f the input thermal energy is transformed into massive modes, it results in a relative decrease in entropy. Considering
his, the net change in the thermal energy can be expressed as, δQ = ∆H − ∆U and the entropy change can be written
s, ∆S =

∫
δQ/T = (∆H − ∆U)/T .

According to statistical thermodynamics, the entropy of a macroscopic system is given by S = kB lnΩ(E) where, Ω(E)
s the total number of accessible states and is a function of energy E and KB is Boltzmann constant [1]. The entropy change
an be expressed using a Taylor expansion,

∆S = kb lnΩ(E + ∆H − ∆U) − kB lnω(E) = kB(
∂ lnΩ

∂E
)(∆H − ∆U) + K

1
2

∂2 lnΩ

∂E2 (∆H − ∆U)2 + · · · . . . . (18)

e substitute ∂ lnΩ(E)/∂E by a constant η, in order to simplify the expression, and obtain,

∆S = kBlnΩ(E + ∆H − ∆U) − kBlnω(E) = kBη(∆H − ∆U) + kB
1
2

∂η

∂E
(∆H − ∆U)2 + · · · . . . . (19)

The source of heat is a large thermal reservoir which indicates that η does not change significantly enough to warrant
nclusion of higher order terms in the equation. Here, the underlying assumption is that it is an isothermal process.
e substitute η by 1/(kBT ), where kB is Boltzmann constant and T is temperature, finally obtaining the expression of

ntropy change at a given temperature as the ratio of change in thermal energy and temperature. Thus, entropy at a
iven instance of time, while incorporating the role of conservative force fields at a temperature T , can be expressed as
S = ∆Q/T = (∆H−∆U)/T . The issue of entropy reduction in a thermodynamic process under conservative force fields

n a classical systems under conservative force field has also been discussed elsewhere [33].
Thus, the net value of entropy change under the impact of thermal energy is determined by the symmetry changes

ssociated with phase transitions. Fig. 1a and b show the potential energy landscapes associated with the phase transitions
bove and below the critical temperature.
If the final energy state has many degenerate states, it would lead to spontaneous symmetry breaking similar to

erromagnetic transitions. The key point of the argument is that the potential energy landscape defines the nature of
ymmetry breaking during phase transitions — whether spontaneous or explicit.
It is worth adding that the ideas on entropy reduction have been discussed in the context of ferromagnetic materials

ut can be applied to all crystalline materials. For example, a piezoelectric crystal has a finite value of polarization below
ritical temperature. Transfer of heat to such a system excites the Goldstone modes which are polarization waves or
olarons. However, the Higgs like massive mode would also be generated leading to a finite vale of entropy reduction.
In non-ferroelectric solids, the electromagnetic potentials at different locations in a crystal are associated through

ymmetry relations which are defined by the space-group symmetry of the crystal [2]. Under the application of heat, the
ymmetry of the potential is transformed or broken under phase transitions and changes in crystal structure. The entropy
alculations should incorporate the generation of Goldstone and Higgs like modes around the broken symmetries of the
otential energy landscape.
9
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Fig. 6. The Goldstone modes can generate specific changes in the energy profile of a material imparting a specific pattern to it at a given instant of
ime generating complex patterns. The wave evolves over a period of 0 to 10 µs and the resonant modes are assumed to exist between 0.6 MHz
to 10 MHz. Each of the resonant mode can impart a specific crest in the resultant pattern.

5. Entropy reduction in dissipative systems

Entropy reduction in thermodynamic systems during a phase transition should reveal itself in the form of generation
of order at some time and length scales under thermodynamic fluctuations induced by heat. However, entropy reduction
and order generation under thermal fluctuations are generally observed in the context of dissipative systems leading to
self-organization [34,35]. Such systems are associated with a potential energy function V (x) whose values change when
heat is applied to the system. Thus, despite the word ‘dissipative systems’, such systems are characterized by conservative
force fields with a continuous potential energy function. According to Prigogine, if a closed system with an entropy S0
is perturbed around its equilibrium, its stability can be described using a Lyapunov function. As all Lyapunov functions
can be expressed in terms of potential energy functions [36], the entropy changes can be associated with an energy
gap generated by the massive modes, which can have a negative values leading to a net order and entropy reduction
around the perturbation leading to the formation of a specific pattern. Fig. 6 depicts a snapshot of a Goldstone mode in
a block of Somarium Cobalt, a ferromagnetic material, under a relatively high damping coefficient which can impart a
specific pattern to a system under a given condition of heat transfer. Although a sinusoidal wave propagation has been
illustrated, in more complex cases, a Gaussian wave packet could be generated under thermal impact while generating
more complex patterns along temporal and spatial dimensions. The kinetic energy of the Goldstone modes has a potential
energy component, which can play a key role in inducing other related modes while generating more complex patterns
in a physical system under heat transfer.

Prigogine highlighted the role of fluctuations in entropy production and irreversibility in the context of systems
driven far away from equilibrium [34]. An important aspect of Prigogine’s work is on the generation of order from non-
equilibrium systems [35]. However, the phenomenological level of entropy production or the rise of order, both remain
unexplained.

In recent years, stochastic formulations have been used to define the nature of entropy changes at the microscopic
level. According to the Fluctuation Theorem, in the context of a system driven away from equilibrium, the ratio between
probability P , that the system results in production of an average positive entropy, S = A, to its probability of production
of negative entropy over a period of time t , is given by P(S = A)/P(S = −A) = eAt [37]. In a related work, Wang et al.
trapped beads in optical tweezers in fluid medium and the system showed entropy reduction over short time scales in
apparent violation of the second law of thermodynamics [38]. Evans et al. in their initial paper, argued that shearing
forces are associated with thermodynamic fluctuations [37] which were empirically verified by Wang et al. through the
optical tweezer experiments, where an optical tweezer generates a potential energy valley which applies a force on the
molecules [5] defined as F grad = −n3

mr
3
p (n

2
c −1)/(n2

c +2)∇E2/2, where nm is medium refractive index, nc is relative index of
he particle, rp is radius of the particle and E is the electric field [37]. During that process, work is transferred to the bead,
eading to entropy reduction. A microparticle being levitated by a laser beam in fluid is a complex example of an interplay
etween conservative and non-conservative force fields where distinction between heat to work transformation gets
lurred. Hence, the physical results, which Evans et al. interpreted as entropy reduction due to fluctuations and violation
f the second law of thermodynamics under fluctuations, could be interpreted as entropy reduction under work transfer
nduced by the potential well of the optical beam. Thus, an alternative explanation is that a part of the input energy is
emporarily absorbed in the massive modes around the potential energy gradient generated by optical tweezers leading
o short-term order which is eventually transformed into the corresponding Goldstone modes leading to an increase in
ntropy.
10
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. Conclusion

Thermal energy applied to a crystalline material with spontaneously broken symmetry results in excitation of the
oldstone modes along with an increase in entropy. The process is associated with generation of Higgs like modes and
n energy gap which reduce the overall entropy of the system. The ideas can be equally applied to general crystalline
olids where phase transitions are associated with symmetry breaking. At an experimental level, generation of order
nder thermal excitation have been observed in dissipative systems, stochastic resonance and particles trapped in optical
weezers where potential energy wells similar to a system having broken symmetries are present. The current work
ffers new perspectives towards understanding the phenomenon of entropy reduction and generation of order in diverse
ystems under the thermodynamic fluctuations generated by heat transfer.
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