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a b s t r a c t

In this study we consider the propagation of few-cycle optical pulses in a thin film of a topological
insulator. The electrons are described by means of the long-wavelength effective Hamiltonian at low
temperatures, and the electromagnetic field is classically considered within the framework of Maxwell's
equations. The time evolution of the pulse shape is analyzed for different values of its initial velocity and
amplitude.

& 2014 Elsevier B.V. All rights reserved.

The possible existence of topological insulators has been
realized from studies of the quantum Hall effect in a confined
two-dimensional electron gas [1]. In the case of the quantum Hall
effect, the electrons move in a bounded region of space, staying
away from the boundaries of the system, so that the sample is
nonconductive. Near the boundaries (due to the “reflection” of
electrons on the sample surface), an infinite motion is possible, or
in other words, a current flow appears. This is due to the fact that
in a magnetic field, electrons move along closed orbits, and the
sample is an insulator. However, on the surface, electrons can be
reflected from the boundaries, and a current flow becomes
possible; its direction is determined by the electron spin and the
magnetic field direction. Further investigations of this effect have
entailed a transition from the interaction with an external mag-
netic field to the spin–orbit interaction [2,3], which eventually led
to the discovery of the existence of topological insulators.
Although there is an upsurge of research in this particular area,
the question of the interaction of topological insulators with an
intense external electromagnetic field has been overlooked—for
instance, with the EM field consisting of extremely short optical
pulses.

We consider a thin film of a topological insulator which, in the
long-wave approximation and by taking into account the hexago-
nal warping of the Fermi surface, can be described by the
following Hamiltonian [4,5]:

H¼ p2x þp2y
2m

þvF ðpxsy�pysxÞþλ
2
ðp3þ þp3� Þsz; ð1Þ

where p7 ¼ px7py. The derivation of the effective Hamiltonian
(1) for a thin film based on the Hamiltonian for a bulk sample is
shown in several studies (e.g. Ref. [6]). Eq. (1) contains the
components of the momentum, px and py, with the electron
effective mass m, spin matrices sx, sy, and sz, Fermi velocity vF,
and λ as the parameter related to hexagonal distortions. We use
the typical values of the Hamiltonian parameters for Bi2Te3 [4,5],
namely m�35 eV�1Å�2 and vF �5�10�4 eV Å.

To be more precise in the construction of our model, it is worth
noting that we considered the thin film of a topological insulator
on a dielectric substrate. We neglected the substrate response at
this stage of the investigation to demonstrate the possibility of a
stable pulse propagation. The (linear and nonlinear) substrate
response is beyond the scope of this paper and will be considered
in future studies. The choice of such a simplified model is
primarily dictated by the fact that the possibility of stable pulse
propagation is due to the nonlinear dependence of the current on
the applied field, the latter being determined by the properties at
the surface of a topological insulator.
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After diagonalization, the Hamiltonian (1) gives the electron
spectrum

ϵðpx; pyÞ ¼
p2x þp2y
2m

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2F ðp2x þp2yÞþλ2p2x ðp2x �3p2y Þ2

q
: ð2Þ

Let us consider the electrical field directed along the x-axis using
the canonical gauge cE¼ �∂A=∂t, where E is the electric field, and
A stands for the vector potential. Following the general concepts of
quantum mechanics, in the presence of an external electrical field
we have to replace the momentum with its generalized counter-
part, p-p�eA=c, where e is the elementary charge. In this case,
the Hamiltonian (1) can be recast as

H¼∑
ps
ϵ p�e

c
AðtÞ

� �
a†psaps; ð3Þ

where a†ps and aps are the creation and annihilation operators for
electrons with quasi-momentum p and spin s, respectively. Taking
into account the dielectric and magnetic properties of the topolo-
gical insulator and the gauge, Maxwell's equations in a quasi-1D
approximation can be written as

∂2A
∂x2

� 1
c2

∂2A
∂t2

þ4π
c
j¼ 0;

where we neglect the diffraction spreading of the laser beam in
the directions perpendicular to the axis of propagation. The vector
potential and the current density are represented in the form
A¼ ð0;Aðx; tÞ;0Þ and j¼ ð0; jðx; tÞ;0Þ, respectively. The current den-
sity can be written as

j¼ e∑
p
vy p�e

c
Aðx; tÞ

� �
〈a†pap〉; ð4Þ

where vyðpÞ ¼ ∂ϵðpx;pyÞ=∂py, and the brackets 〈…〉 stand for the
average with the non-equilibrium density matrix ρðtÞ, so that
〈BðtÞ〉¼ SpðBð0ÞρðtÞÞ (Sp denotes the matrix trace). Taking into
account the commutator relation ½a†pap;H� ¼ 0, originating from
the equations of motion for the density matrix, we obtain
〈a†pap〉¼ 〈a†pap〉0, where 〈BðtÞ〉0 ¼ SpðBð0Þρð0ÞÞ.

Thus, in the expression for the current density, we can use the
number of particles, which follows from the Fermi–Dirac distribu-
tion. Next, we consider the case of low temperatures, when the
main contribution to the sum (4) comes only from a small region
near the Fermi level in momentum space. Correspondingly, Eq. (4)
can be recast as

j¼ e
Z Δ

�Δ

Z Δ

�Δ
dpx dpy vy p�e

c
Aðx; tÞ

� �
: ð5Þ

The domain of integration over the momenta in Eq. (5), i.e. Δ, is
determined from the conservation of the number of particles
Z Δ

�Δ

Z Δ

�Δ
dpx dpy ¼∬BZdpx dpy〈a

†
pxpy

apxpy 〉;

where BZ stands for the whole first Brillouin zone. The equation
for the propagation of optical pulses can be written as

∂2A
∂x2

� 1
c2

∂2A
∂t2

þ4π
c
jðAÞ ¼ 0; ð6Þ

where jðAÞ should be determined by integration in Eq. (5).
Eq. (6) is solved numerically using the direct difference scheme

of the cross-type [8–10]. The time step and the spatial grid size are
both determined from the standard conditions of stability. Differ-
ence scheme steps are iteratively decreased twice until the
solution is unchanged in the eighth decimal place. The initial
condition is chosen in the form of an extremely short pulse
consisting of a single oscillation, namely

Aðx; tÞ ¼ B expf�ðx�vtÞ=γg sin kx; ð7Þ
where γ ¼ ð1�v2=c2Þ1=2, B is the amplitude, v is the initial speed of
the pulse, and k is the wavevector. This initial condition corre-
sponds to the fact that the sample is irradiated with an extremely
short pulse consisting of a single oscillation of the electric field.
The energy parameters are expressed in units of Δ. The resulting
evolution of the electromagnetic field propagating through the
sample is shown in Fig. 1. Note that this kind of behavior has not
been observed previously. We believe that it is associated with the
type of nonlinearity coming from the last term in Eq. (6). An
asymmetry in the shape of the pulse is observed and is due to the
fact that the front edge of the pulse and its trailing edge are in
different conditions. Indeed, the electric field at the trailing edge of
the pulse interferes with the electric field induced by the current,
which arises during the passage of the front edge of the pulse.

The dependence of the pulse shape on the initial amplitude is
shown in Fig. 2. As expected, low-amplitude pulses propagate almost
without distortion, while still experiencing certain spreading due to
the dispersion. Pulses of large amplitude experience greater distor-
tion due to the interference effects between the leading edge of the
pulse and its trailing edge, and by the characteristics of nonlinearity.
Also, we have to note that the evolution of the extremely short pulse
depends, in general, on the speed of the pulse at the entrance of the
sample, as illustrated in Fig. 3. This behavior can be associated with
the Lorentz-invariance of Eq. (6) and with the effect of “squeezing” of
the pulse when passing to a moving coordinate system [7,11].

Fig. 1. Vector potential versus time for different spatial points. All the quantities
are scaled in relative units (r.u.). Curve (a) corresponds to x¼ 10�5 m, (b) to
x¼ 1:5� 10�5 m, and (c) to x¼ 2� 10�5 m.

Fig. 2. Dependence of the pulse shape on time for different values of the pulse
amplitude. All the quantities are scaled in relative units (r.u.). On curve (b), the
pulse amplitude is 5 times larger than that for curve (a), while on curve (c), the
pulse amplitude is 10 times larger than that for curve (a).
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One may be curious about our interest in the ultrashort pulse
propagation, particularly in topological insulators, while there are lots
of systems with nonlinearity. Indeed, soliton-type of pulse propagation
has been demonstrated in a variety of low-dimensional systems (see,
e.g. Refs. [10,12] and references therein). However, the influence of
spin–orbit interactions is particularly pronounced in systems such as
the one considered in the present study. So, we have demonstrated
that this influence does not modify the dynamics with a proper choice
of specimen parameters.

In conclusion, the results of our study demonstrate the possi-
bility of stable propagation of few-cycle optical pulses in a thin

film of a topological insulator. This effect may be useful in the
development of hybrid devices based on the effects of the inter-
action of light with the electrons of a topological insulator. Note
also that the effect associated with the formation of the “tail” of a
very short pulse could be used to generate the terahertz pulses.

Acknowledgments

A.V. Zhukov and R. Bouffanais are financially supported by the
SUTD-MIT International Design Centre (IDC). M.B. Belonenko and
N.N. Konobeeva acknowledge support from the Russian Founda-
tion for Fundamental Research.

References

[1] X.G. Wen, Adv. Phys. 44 (1995) 405.
[2] S. Murakami, N. Nagaosa, S.-C. Zhang, Phys. Rev. Lett. 93 (2004) 156804.
[3] B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Science 314 (2006) 1757.
[4] L. Fu, Phys. Rev. Lett. 103 (2009) 266801.
[5] S. Basak, H. Lin, L.A. Wray, S.-Y. Xu, L. Fu, M.Z. Hasan, A. Bansil, Phys. Rev. B 84

(2011) 121401(R).
[6] Y. Xing, L. Zhang, J. Wang, Phys. Rev. B 84 (2011) 035110.
[7] L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 4th Ed., Butterworth-

Heinemann, Oxford, 2000.
[8] N.S. Bakhvalov, Numerical Methods, Nauka, Moscow, 1975.
[9] A.V. Zhukov, R. Bouffanais, A.V. Pak, M.B. Belonenko, Phys. Lett. A 377 (2013)

564.
[10] A.V. Zhukov, R. Bouffanais, M.B. Belonenko, E.G. Fedorov, Mod. Phys. Lett. B 27

(2013) 1350045.
[11] L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media,

2nd Ed., Elsevier, Oxford, 2004.
[12] A.V. Zhukov, R. Bouffanais, E.G. Fedorov, M.B. Belonenko, J. Appl. Phys. 114

(2013) 143106.

Fig. 3. Dependence of the pulse on time for different values of the pulse velocity at
the inlet of the specimen. All the quantities are scaled in relative units (r.u.). Curve
(a) corresponds to v¼0.9, (b) to v¼0.95, and (c) to v¼0.99.

A.V. Zhukov et al. / Optics Communications 329 (2014) 151–153 153

http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref1
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref2
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref3
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref4
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref5
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref5
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref6
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref7
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref7
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref9
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref9
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref10
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref10
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref11
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref11
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref12
http://refhub.elsevier.com/S0030-4018(14)00454-4/sbref12

	Few-cycle optical pulses in a thin film of a topological insulator
	Acknowledgments
	References




