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Abstract The emergence of collective decision in
swarming systems underscores the central role played
by information transmission. Using network-control-
and information-theoretic elements applied to a group
of topologically interacting agents seeking consensus
under switching topologies, the effects of constraints in
the information capacity of the communication chan-
nel are investigated. This particular system requires
us to contend with constantly reconfigurable and spa-
tially embedded interaction networks. We find a suffi-
cient condition on the information data rate guarantee-
ing the stability of the consensus process in the noise-
less case. This result highlights the profound connec-
tion with the topological structure of the underlying
interaction network, thus having far-reaching impli-
cations in the nascent field of swarm robotics. Fur-
thermore, we analyze the more complex case of com-
bined effect of noise and limited data rate. We find
that the consensus process is degraded when decreas-
ing the data rate. Moreover, the relationship between
critical noise and data rate is found to be in good agree-
ment with information-theoretic predictions. Lastly,
we prove that with not-too-large time-delays, our sys-
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tem of topologically interacting agents is stable, pro-
vided the underlying interaction network is strongly
connected. Using Lyapunov techniques, the maximum
allowed time-delay is determined in terms of linear-
matrix inequalities.
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1 Introduction

Information is a crucial currency in swarming systems.
This has important consequences when considering
collective behaviors of interacting agents [5]. Infor-
mation exchanges are paramount to the seamless exe-
cution of swarming behaviors such as fish schooling,
birds flocking, amoebae aggregating, locusts marching
or more generally agents swarming [14,31]. In prac-
tice, multiagent systems evolve in dynamic environ-
ments, therefore encountering unexpected changes in
their surroundings, and their effective operation crit-
ically hinges on their prompt collective response in
adapting to evolving circumstances. The problem of
swarm stability with high-order linear time-invariant
(LTT) systems and in the absence of communication
constraints has been previously studied [7]. Still with
high-order LTI swarming systems, a novel method for
clustering has recently been introduced, which is based
on quasi-consensus in dynamical systems, yet still in
the absence of any communication constraints [6].
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Swarms of mobile robots evolving in unknown envi-
ronments, however, are bound to face unpredictable
obstacles or hurdles, and that in the presence of inter-
agent connections that may change dynamically, e.g.,
due to limited communication range. It is now widely
believed that the benefits of swarming in natural sys-
tems are directly related to their enhanced adaptiv-
ity to dynamic environments [5,18]. Over the past
decade, collective information transmission has been
recognized to be central to the surprising respon-
siveness of swarms [10,18]. There is mounting evi-
dence that swarm intelligence, in terms of collec-
tive response—a.k.a. flexibility, critically depends on
ensuring an appropriate flow of behavioral information
among agents, both in terms of quantity and accuracy
of the informational exchanges.

Networked control systems (NCSs) and multia-
gent adaptive systems are engineering embodiments
of natural swarms. A key problem with these sys-
tems is the design of control algorithms achieving
specific collective behaviors with reduced or unreli-
able data exchanges and switching topologies [1,11].
In the past two decades, significant advances have
been achieved paving the way to emerging engineer-
ing applications such as the control of distributed
sensor networks, the coordination of autonomous—
air, surface and underwater—yvehicles, robotic swarm-
ing, etc. [23]. Information and communication con-
straints are now recognized as being critical to large-
scale NCSs, whose performance and effective oper-
ation require appropriate and sufficient information
exchanges among the different parts constituting the
system [1,11]. Over the past decade, some bridges
between control theory and information theory have
been established, thereby leading to new insights into
the interplay between concepts borrowed from both
fields and related to NCSs, along with a host of new
theoretical results focusing on fundamental trade-offs
between information flow constraints and effective col-
lective dynamics [1,11,19-21,23,32,34,35,38].

All transmission of information—in the broadest
possible sense—is associated with a communication
channel limited by its structure and capacity. The sta-
bility and stabilizability of networked control sys-
tems have attracted a significant attention owing to
their importance for large-scale networked infrastruc-
ture systems. A wide range of results about formal
conditions—in the form of necessary and/or sufficient
conditions—have been reported for: (a) the informa-
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tion datarate [20,21,32,34,35], but also (b) the channel
topology [11,19,23,38].

With the advent of large swarms of mobile robots
and cooperative sensory networks [27,41], the prob-
lem of maintaining consensus or cooperation under
dynamic topologies and with limited communication
exchanges has become apparent [8]. The successful
design of this new class of engineering systems hinges
on the triadic relationship between: (i) required mini-
mum information flow, (ii) topology of the interaction
network, and (iii) stability or stabilizability of the col-
lective operation. A clear understanding of this intri-
cate triadic relationship is still lacking. The vast major-
ity of studies have been focused on improving our
understanding of the effects of changes in the network
topology on collective behaviors [15,23,26,31]. These
works were primarily motivated by two factors: (a)
our limited grasp of some fine details associated with
the functional relevance of swarms, and (b) the rapid
progress in the field of design of swarm robotics sys-
tems. It is worth stressing that the issue of limited infor-
mation fluxes—often corresponding to reduced infor-
mation data rates—is not just paramount to the effec-
tiveness of engineering systems, but is also central to
the effectiveness of biological and social systems. For
instance, scientists have yet to report a functional expla-
nation for the thwarting of the collective dynamics of
networked neuronal cells in spinal ganglions follow-
ing the injection of a drug that lowers the frequency of
firing of cells [28].

Although numerous studies have been dedicated to
the effects of reduced data rate [20,21,32,34,35], net-
work topology [11,19,23,38], and time-delays [11,23]
in multiagent systems, no report has been made about
the combined effect of limited communication band-
width and noise in the communication channel. In addi-
tion, no relationship between the consensus reaching
dynamics and the minimum required bandwidth—in
terms of eigenvalues of the graph Laplacian of the inter-
action network—can be found. Moreover, an analysis
of these particular issues for a swarm of topologically
interacting agents is still lacking, as well as the effect of
time-delays on its stability. This paper addresses some
of these gaps in the literature of multiagent systems
dynamics.

Specifically, this paper investigates the above-
mentioned triadic relationship associated with limited
information flows owing to a reduced capacity of the
communication channel in the particular case of collec-
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tive behaviors originating from topological interactions
and for which information flows through a directed and
temporally adaptive interaction network. First, using
our prior knowledge of such switching adaptive inter-
action networks and by invoking the min-flow max-cut
theorem, we identify and formalize the different pos-
sible origins of information flow bottlenecks. We then
focus on the problem of ensuring a coherent swarm-
ing behavior and establish mathematically a sufficient
condition on the information data rate guaranteeing
the emergence of a collective response in the noise-
less case. This condition highlights the profound con-
nection between information flow and topology of the
interaction network and can serve as design principle
for novel swarming systems. We also provide the first
investigation of the combined effect of limited data rate
and limited signal-to-noise ratio on the achievement
of an effective swarming behavior—of the consensus
reaching type—associated with a switching interaction
topology. As the last step, we quantify the impact of
communication delay on the consensus stability and
derive the maximum allowed time-delay below which
the system remains stable.

2 Problem statement

In this section, we first study the information bottle-
necks in swarms and then present a prototypical model
used in the paper to formally investigate the studied
bottlenecks.

2.1 Informational bottlenecks in collective multiagent
dynamics

The mechanistic quest initiated with the self-propelled
particles model—SPP in the sequel and originally pro-
posed in the seminal paper by Vicsek and collaborators
[33]—has recently focused on gaining a better com-
prehension of the information transfer within swarms,
with the ultimate goal of achieving functional predic-
tions about collective behavior. Here, we use a proto-
typical model of swarming, which is a refinement to
the original model by Vicsek et al. [33] albeit based on
a topological interaction distance. In these simplified
models of swarming, the collective decision-making
process is the outcome of an emergent phenomenon
that follows localized interactions among agents yield-

ing a global information flow. As a consequence, to
investigate the dynamics of these multiagent systems,
one needs to identify the information exchanges and
the underlying communication channel. Regardless of
the actual structure of the communication channel and
nature of the information exchange, there is a finite
amount of information able to flow. This defines the
capacity, which is known to be limited by both noise
and bandwidth of the communication channel.

Recently, borrowing concepts from network theory
and focusing on the specificities of the interaction net-
work, a novel approach toward the dynamics of mul-
tiagent systems has emerged [9,16,29,31]. This new
approach paves the way for the development of an inte-
grated approach toward distributed communication in
multiagent systems. For instance, this approach can
be well understood using the prototypical swarming
behavior of predator avoidance in which the detection
of an incoming predator triggers a fright response in
the form of a swift directional change in a limited set
of agents. These evasive maneuvers are triggered by a
limited number of informed agents detecting the threat
and locally responding to it. These changes in behav-
ior of the informed agents form a signal transmitted
through the interaction network (IN). Specifically, the
behavioral change propagates between nodes of the
network (see schematics diagram in Fig. 1), thereby
finding a path that depends on the connectivity of the
IN. Our prior works have shown that the connected-
ness of the IN critically depends on the interaction
distance—being a metric one, a topological one, or
even a hybrid metric/topological distance [30]—as well
as the density of interacting units. Moreover, the IN
topology critically affects the consensus reaching pro-
cess at the core of swarming [31]. Specifically, when
considering agents interacting by means of a topologi-
cal interaction—similarly to flocking starlings, we have
established that the IN is a small-world network with
a homogeneous degree distribution yielding clustering
coefficients of the order of 0.6 [16]. It worth adding that
these INs are temporal networks [12], whose dynam-
ics on the network drives the network dynamics as a
consequence of the spatial embedding of the swarm-
ing agents. Hence, the dynamical laws governing the
agents’ behavior can be used at the system level to
develop a MIMO analysis of such NCSs [1].

Beyond the control-theoretic aspects of this prob-
lem, a complete analysis of the process of infor-
mation propagation within a multiagent systems fur-
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Fig. 1 Schematic of a swarm of networked mobile platforms.
The interaction network (IN) is represented with the topologi-
cally interacting agents (nodes are shown as red dots) connected
by means of network edges (blue links). (Color figure online)

ther requires resorting to information-theoretic con-
cepts. Through the careful integration of concepts
belonging to both of these theoretical frameworks,
researchers have established a number of fundamen-
tal results for NCSs and multiagent systems [1,11,19—
21,23,32,34,35,38]. As is well known, the Shannon—
Hartley (SH) theorem gives the maximum capacity of
any communication channel in terms of its noisiness
and bandwidth. Mathematically, this theorem reads as

C = Blog,(1+9), (1)

where C is the channel capacity, B its bandwidth, and
S the signal-to-noise ratio [17].

In the case of dynamic multiagent systems, one has
to consider the information capacities C. and C,, associ-
ated with edges and nodes of the network, respectively.
We remark that C. is due to inter-agent informational
signaling through the medium. Correspondingly, C,, is
associated with the information capacity of the com-
bined sensory, control, and mobility apparatus internal
to each agent (node) which serves as router for the state
information (see Fig. 1).

Bottlenecks in the propagation of information
through a networked dynamical system can readily be
identified using the max-flow min-cut (MFMC) theo-
rem [24] applied to the IN. Specifically, the MFMC
states that the maximum flow rate through the IN is
obtained when the capacity of edges or nodes is mini-
mum. In our particular framework, this important result
takes on a particular significance: the process of infor-
mation propagation within a swarm can be hindered by
a reduced flow in the IN edges—it can be the environ-
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ment for natural swarms or electromagnetic waves for
artificial ones, or by the IN node routing capacity—
cognitive capabilities of the swarming agents for a nat-
ural swarm or data processing capabilities of the units
making a swarm robotics system.

The SH theorem (1) therefore reveals that informa-
tion propagation in a swarm is either limited by B, or by
S. By coupling this result to the what has just been said
based on the MFMC theorem, one can conclude to the
existence of four possible sources of jam in information
flow:

(a) reduced S, typically due to the noisiness of the
environment in which the agents are evolving;

(b) reduced S,, at the swarming unit level;

(¢) reduced B. of the inter-unit transmission medium;

(d) reduced B, of the data processing unit at the node
level.

In what follows, we disregard options (a) and (c) above,
as they are mostly related to environmental conditions,
while we center our attention on options (b) and (d)—
the most probable for engineered multiagent systems.
Our ultimate goal is to investigate collapses in informa-
tion flow originating from reduced levels of B,, while
also being affected by possibly high node-level noises
", Or equivalently low S;,.

2.2 Swarming model

We consider a minimalist model for the swarming
system, which consists of N locally interacting self-
propelled particles (SPPs) [16,31,33], moving at con-
stant speed vg through a ¢ x £ domain having periodic
boundaries. Each unit i is fully represented by the state
variable 0; corresponding to its travel direction, and
a canonical swarming behavior of the consensus type
is examined. Specifically, when individual units of a
multiagent system reach an agreement on the value of
a certain state variable—in our case the agent’s head-
ing 6;—a consensus is said to have been attained. Such
a consensus ensures that units involved in collective
information transfer over a given IN have a group-level
knowledge of the information required to reach some
form of collective action. This is achieved through a
consensus algorithm, which imposes identical dynam-
ics on the consensus variable of each vehicle.
Mathematically, consensus is attained when all state
variables converge to a single value in the asymptotic
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sense ] = 0y = --- = Oy [23]. When considering col-
lective motion, canonical consensus algorithms simply
amount to first-order angular alignment rules generi-
cally expressed as

0 (1) =

1
T 2 @i = o). o)
"jeN;

N; representing the set of neighboring agents of i in the
network sense, with |N;| the number of neighboring
agents, and w;; the weight of the undirected edge i — j
with unit value if i is in direct interaction with j, and 0
otherwise. It is worth noting that more general weights
can readily be considered [5].

The dynamics of any swarming system is the out-
come of repeated local interactions among units. There
is a vast range of possible interaction rules; each rule
being fully characterized by an interaction distance and
its associated neighborhood (see Fig. 2). The most clas-
sical interaction distance is the metric one [33], for
which information transfers occur only among agents
located at a fixed distance (R in Fig. 2). For simplic-
ity, the radius R is often considered to be identical for
all agents. Recent empirical evidence in flocks of star-
ling and human crowds have revealed the existence of
metric-free interactions in those systems. Specifically,
agents interact topologically with a fixed number of
neighbors (see radius r in Fig. 2a, b). Fundamentally,
each interaction type is related to a particular short-
coming at the agent level. In the metric case, the value
of R can be traced to the range of the sensory suite of
the swarming units. In the topological case, the fixed
number of interacting agents is often said to be associ-
ated with the limited data processing capability of each
unit.

Here, given our focus on the effects of limited infor-
mation capacity, we consider a topological neighbor-
hood for primarily two reasons: (1) it affords all agents
with exactly the same communication capabilities, i.e.,
each agent can establish a fixed number of links with
its k-nearest neighbors, and (2) it is more appropriate
for agents limited by information-processing capabili-
ties rather than sensory capabilities. However, qualita-
tively similar results were obtained with the exact same
model with metric interactions, which is consistent with
the recent proof of a unique universality class in the
noise-induced criticality of multiagent SPPs, regard-
less of the metric or topological nature of interactions

[2].

To account for the finiteness of the bandwidth, we
consider synchronous information exchanges occur-
ring every

1

Th=—, 3
"= 3B 3)

where T, is the interval of time between changes in a
signal transmitted over a given communication chan-
nel, a.k.a. unit interval [17]. The agents move syn-
chronously at discrete time steps 7, by a fixed dis-
tance § = voT, upon receiving informational signals
from their neighbors as per the linear update rule each
agent i

T,
O:+T) =00+ D {0,000 Hm&i o),
JeNi (@)

)

with N;(¢) representing its set of neighboring agents,
k = |N;:(t)] is cardinal number of this set, which is the
fixed—given the considered topological nature of the
interaction between agents, and n,&; (¢) is a §-correlated
Gaussian noise taken in the (—m, ) interval. Equa-
tion (4) is a sampled-data system, which is an archety-
pal model: (a) consistent with a host of empirical evi-
dence gathered for biological swarms, and (b) yield-
ing group-level ordering of the multiagent system—the
order here refers to the degree of homogeneity, through-
out the collective, of the state variables involved in the
consensus reaching process—throughout entire flocks
37].
: %he time-dependent adjacency matrix represents the

switching interaction network and is classically repre-
sented by the matrix A(¢) defined by

. |1 in the presence of an edge from vertex i to j,

a;; (1) = .
0 otherwise.

We remark that since temporary adaptive and directed
graphs are considered here, the matrix A(¢) is nonsym-
metric and time-varying. The outdegree graph Lapla-
cian of the IN fully embodies the topology of the com-
munication channel at the group level:

L) =D(@) — A@),

with D(#) the switching degree matrix defined as
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(a)

Fig. 2 Comparison of two common interaction distances in
swarms: metric and topological interaction distances. a, b show
two possible scenarios depending on the density of agents: R is
the neighborhood radius in a metric sense, while r represents the

D(t) = diag(dy, ..., dy), with

di=Zaij,i=1,...,N.
J#L

We further introduce a reduced graph Laplacian
|
L@ = L@, ®)

with k being the number of established topological
links. It is worth noting that although the number of
neighbors k remains constant the actual set of neigh-
bors changes over time; see Sect. 2.2. The dynamical
system (4) can conveniently be recast in matrix form:

O +Th) =Pu()O) + mE(1), (6)

with @(r) = [6:(1),....08nO1T, E() = [&1, ...,
gn]T and

P.(1) = (I - T,L(1)),

are time-varying Perron matrices [23]. It is worth high-
lighting their critical dependence on the bandwidth B,
through 7, [see Eq. (3)].

System (6) fully embodies the complex dynamic
interplay between the network topology on the one
hand and the information flow on the other hand. One
of the aims of this study is to characterize the band-
width B, or equivalently unit interval 7; sufficient to
guarantee the stability of consensus dynamic (6) in the
presence of various levels of noise 7, in the communi-
cation channel.

@ Springer

(b)

distance between the central agent (dark filled arrow) and its far-
thest topological neighbor. This diagram assumes a topological
interaction with 7 closest agents

3 Minimum bandwidth ensuring stability in the
absence of noise

We now specifically consider the informational bot-
tleneck corresponding to scenario (d) in Sect. 2.1. To
this aim, we study the consequence of increasing Ty,
which by Nyquist’s theorem amounts to reducing B,
(see Eq. (3)) It is worth adding that the analysis below
remains valid when replacing a IN nodal value of the
bandwidth B, by its edge counterpart as in scenario (c)
in Sect. 2.1.

As mentioned in Sect. 2.2, our agents perform
a swarming behavior corresponding to a heading
consensus. The state of this multiagent system is
represented by the time-dependent vector ®(f) =
[01(1), 62(1), ---, On(1)]T, which is updated accord-
ing to the time update rule (4) at the agent level, and (6)
at the system level. The presence of noise in Eq. (4)
(rightmost term in the RHS term) is a clear impedi-
ment to an exact analysis of the dynamics of this col-
lective. As a starting point, we consider the noiseless
case (n, = 0), and we denote by @y, the initial state at
t = 0. With this simplifying assumption, the temporal
evolution of the system can be obtained from

O +mTy) = [Pu((m — DT)Py((m —2)T,) . ...
P,(0)] O. )

As already mentioned, the time dependence of P, is a
signature of the dynamic interplay between network
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structure and information flow at the center of this
study.

At this stage, it is worth discussing the well-studied
static case corresponding to fixed network structure.
With a constant P, = Py, the system’s stability can
easily be derived from the graph spectral properties of
P [23]. Unfortunately, these well-known static results
are of no help in the general dynamic case. In the pres-
ence of temporal and adaptive INs, new results for the
stability with decreasing B, are required.

Theorem 1 Consider the time-dependent system for
heading consensus in swarms

O +T,)=A-T,L1))OW) =P,nO1), (8

a necessary and sufficient condition for the stability (in
the finite or asymptotic sense) of (8), is that its stability
at every instant t; = jT, is guaranteed.

To this aim, we use the notion of joint spectral radius
p defined as [3]

1/j
0 :=lim sup ( max P (1) - - ~Pn(t;-)||>

j=oo \ffo i€l tm)
©

to assess the convergence of an infinite product of
Pn(t}) as per Eq. (7). Note that p is actually inde-
pendent of the choice of a matrix norm (i.e., this is
true for any norm but particularly easy to see if the
norm is sub-multiplicative). Moreover, we mention that
Theorem 1 deals with stability, which is stronger than
consensus reaching. Stability means convergence to an
equilibrium, but consensus only requires the difference
between any two individual states tends to zero.

Proof Letus consider p(-) to be the spectral radius of a

given matrix. By taking | = --- = t; = tinEq.(9)and

invoking Gelfand’s spectral radius formula, we have

p = lim [Pu)/[I' = p(Pu(r)). (10)
Jj—00

foranyt € {t1, t2, ..., t}. Therefore, if p(P,(¢)) > 1,
forany 7, then o > 1. On the other hand, for any ¢ > 0,
there exists a matrix norm || - || such that (e.g., [13,
Lemma 5.6.10])

et €ttt

ALY
A, max R
[l,-u,lje{l],tZ,---stm}

p < lim ( max ||Pn(r1)||”f>~~
t

= max [[Pa(0)]l
eostm}

teftytn, ...,
}{P(Pn(t)) + ¢} (11)

< max
te{t] 1, tm
Therefore, if p(P,(t)) < 1 for all ¢, we can choose &
small enough so that p < 1. Recall that the system (8)
is stable if and only if p < 1 [3,15]. O

Remark 1 Theorem 3.10 by Ren and Beard [26]
(directly) investigates the graph theoretical conditions
guaranteeing the consensus of time-dependent systems
under some assumptions, while our result (indirectly)
relates the stability condition for the time-dependent
systems to that of the static systems at each switching
point. This result has far-reaching consequences for the
actual stability of the system, in terms of heading con-
sensus for the swarm depending on the value of B, as
presented in the next Corollary.

Corollary 1 Forthe NCS (8) to be stable, the following
sufficient condition must be met in the form of an upper
bound for the unit interval T,:

2
T, < for all ¢, (12)

max <<y | (L(1))|

and this, at each instant in time t; = jT,. The set
{Ai (I:(t))} consists of all eigenvalues of the time-

dependent reduced graph Laplacian L(t) of the net-
work connectivity [see Eq. (5)].

Proof From (12), it follows that for all i and #, 0 <
Ai(Tnﬂ(t)) < 2 and hence —1 < A;(P,(1)) < 1.
Note that we are unable to sharpen the upper bound to
Ai Py (1)) < 1 (hence, we cannot conclude the stability
immediately) since 0 is always an eigenvalue of 7,L(z)
for any 7,, > 0. However, we know that as 7;, — 0
the corresponding continuous system is stable. There-
fore, when T;, becomes small enough (as specified by
(12)), our system (8) is also stable and p < 1 follows.
The above Theorem therefore allows us to conclude the
proof of this Corollary. O

Using the upper-bound constraint (12) on 7, =
1/(2B,), one can readily establish a sufficient condi-
tion on the node bandwidth B, , which takes the form
of the following lower-bond constraint

1 ~
B, > BY = — max |x;(L(r))| Vr. (13)
4 1<i<N

In other words, the convergence to consensus of the
multiagent system is assured by having the sufficient
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condition (13) be met. At this stage, it is worth high-
lighting two important facts: (1) the lower-bound value
Bl? in Eq. (13) is obtained under the noiseless approx-
imation, and (2) its value is not known a priori.

4 Combined effect of reduced data rate and noise
on consensus reaching

As a next step, we study the more realistic case where
the system’s dynamics is affected by both reduced
bandwidth and various noise levels in the communica-
tion channel. As far as we know, the combined effect of
noise and limited bandwidth on consensus dynamic has
never been investigated. Given the stiff nature of this
problem, it is unlikely that analytical results equivalent
to (13) for the minimum channel capacity C,, can be
established. We therefore resort to a systematic numer-
ical analysis based on simulations of a system of N
agents whose dynamics is dictated by the discrete-time
update rule (4). Specifically, we consider the combined
influence of increasing 7;, and 7, on the dynamics of
this system, which is strictly equivalent to reducing the
bandwidth [see Eq. (3)] in the presence of noise. The
convergence in multiagent coordination is quantified
by the polarization

1 N
- i0, (1)
@) = N Elep ,
p:

a.k.a order parameter, and which is a good metric for the
collective agreement—in this case of collective motion,
agreement in the direction of travel—within the multi-
agent system. Essentially, a value ¢ = 1 corresponds to
perfect consensus among agents, while ¢ = 0 denotes
complete disagreement or disorder.

For large bandwidths, B, > BY, systems of vastly
different sizes systematically achieve stability with
high levels of global order, regardless of the noisiness
of the node (see Fig. 3). When decreasing B, below Br(l),
the swarm systematically undergoes a transition toward
a globally disordered state—associated with a lack of
consensus between agents—regardless of the popula-
tion size N, and noisiness of nodes n, (see Fig. 3).

As can clearly be observed in Fig. 3, the vanish-
ing of consensus is a gradual process when reducing
the information capacity (low B, and/or high 7,). This
continuous transition from a consensus reaching sys-
tem to non-stabilizable one is better fathomed using the
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concept of phase transition borrowed from statistical
physics. It is interesting to note that from the control
theory standpoint, the system undergoes a transition
from a stable collective state to an unstable one. How-
ever, effectively this transition process is continuous.

Indeed, we identify only continuous phases transi-
tions as attested by the positive values of the Binder
cumulant [4], U = 1 — (¢*)/3(¢?)?, when varying
the bandwidth B, as is clearly shown in Fig. 4a. Even
for such continuous phase transitions, a critical value
of the control parameter—bandwidth or noise—exists
and can be determined numerically.

Given the expression (1) for the capacity in terms
of bandwidth and S (i.e., noise), we expect the criti-
cal values Bf and n$ of bandwidth and noise, respec-
tively, not to be independent but instead to be related
through the existence of a unique critical capacity
C¢. Here, we observe for the first time the appear-
ance of a critical line characterized by BS = Bf (1),
which is theoretically predicted. Indeed, the variance
of the order parameter gives a sensible measure of
the responsiveness of this multiagent system, which is
related to the susceptibility—mathematically defined
as x = £2((¢*) — (¢)?), whose dependency on the
bandwidth is clearly peaked near criticality (see Fig. 5).

Still using the SH theorem and the dependence of
the maximum capacity C, on both B, and n, arising
from Eq. (1), one can make some notable predictions
about the identification of a critical line and its related
properties. On this critical line B = f(n,), where
f is an unknown monotonic function, we have that
B decreases with decreasing n,. This predicted and
observed trend along the critical line (see Fig. 5) is
in tune with our expectations that more information
exchanges are necessary in the face of higher levels
of noise. Let us assume there exists a critical rate of
data flow D€ such that if C, < D¢, then the self-
organizing process is hampered and no group-level
ordering emerges. At criticality, the MFMC theorem
[24] takes the simple form C,, = D¢, which imposes
that B | when n, | given Eq. (1). Without getting
into the technical challenges associated with the unre-
alistic noiseless case of the SH capacity, we are able to
numerically exhibit the existence of B thanks to the
variations of the Binder cumulant with the bandwidth
for different values of the noise (see Fig. 4b). As s clas-
sically known, the variations of the Binder cumulant
with one control parameter—here B,—for various val-
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Fig.3 Collapse in consensus—measured by (¢)—with decreas-
ing bandwidth By, various system’s sizes and noise levels 7.
aN = 1024;b ny = 1%; ¢ nn = 20%. Values for B,?(N)
are obtained from (13) within the noiseless limit and sam-

pling over 10* INs. The following parameters were used: speed
vo = 0.3, number of topological neighbors k = 7, and density
p=N/t? =100

Fig. 4 Binder cumulant at (a) ‘ (b)
steady state: a extended 0.7
interval of values for By; b :
near criticality
BS =0.286 £+ 0.001. The 0.6 0.664 -
following parameters were
used: speed vy = 0.3, - 0.5 )
number of topological '
neighbors k = 7, and —-1,=0.01
density p = N/£% =100 0.4 0.66 —-n,=0.05']
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Fig. 5 Susceptibility at (a) — \ \ (b) \
steady state for different N=1024 _:_E:;“Zg:gé’ x:g;i;
swarm population sizes: a 0.016 0.016 - -.-(7,,:=0,01:N=128) .
N =20.pN =27 and « (7,=0.05, N=128)
N =2'0_ The following 0.012 | 0.012
parameters were used: — ’ o~ ’
speed vgp = 0.3, number of |
topological neighbors 0.008 0.008
k =7, and density
p =N/ =100 0.004 n 0.004
0 ‘ ’ 0
0.28 0.285 0.29 0.295 0.28 0.285 0.29 0.295
Bll Bn

ues of another control parameter—here n,—intersect
at criticality [4].

Given that our analysis was based on numerical sim-
ulations, it is worth adding that all the above observa-
tions remain unchanged for larger values of N, other
values of the density p = N/¢2, for a wide range of
vo, and for other values of k > 7.

5 Effect of time-delays on consensus dynamics

‘We now turn to the study of the effects of time-delays on
the stability of topologically interacting mobile agents
seeking consensus under time-varying topologies. Like
previously, we assume that each agent is connected to k
topological neighbors via information interaction, and
the dynamical update rule for any agent i without time-
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delay takes the classical form

. 1

0i(t) = % Z {6, —6: (0}, 14
jeNi(®

which is the continuous-time equivalent of (4) in the

absence of noise. Taking a system-level approach based

on the IN, the system’s dynamics takes a compact vec-

tor form

01 = -L1HO®), (15)

with L(r) being the time-dependent reduced graph
Laplacian introduced in Sect. 2.2 as L(#)/ k.

Assuming that communication delays exist between
agents, (14) becomes

. 1

iy =2 2 {0,0-D—6:0}, (16)
JeN; @)

where T > 0 is the constant delay. The matrix formu-

lation for the dynamical system (16) reads as

01 = -10() + %A(t)@(t —1), (17)

where A(r) is the adjacency matrix of the interaction
network, and I € RV*¥ is the identity matrix. Noting
that @(t — ) = O(t) — ftt_r O(s)ds, we can rewrite
(17) as

t
0@ = (—I+ %A(r)) o@) — %A(r)/ O(s)ds,
t—T
(18)

where —1I + %A(t) = —i(t) is the reduced Laplacian
matrix defined above. Since 1 is the all-one eigenvector
related to the zero-eigenvalue of L, we can make a
coordinate transformation @(t) = W(¢)x(¢) such that

B(r) o}

1
U@) (—I + ZA(I)> W) = |: 0 0 (19)

where B(r) € RN =DxWN=D y(r) = (UT (1), UT (1))
= W(r), with Us(r) € R being the last row
of U(#). We first show that the system (18) is readily
written using the new state x(¢) by using the coordinate
transformation @ () = W(#)x ().

Lemma 1 The system (18) can be rewritten as

x1(1) = —Ix; (1) + B@®) + Dxi (r — 1), (20)
x2(1) = —x2 (1) + X2 — 1), ey

where x(t) = (x1 ()T, x2(t))T withx,(t) € RN~ and
X2 (1) € R.

@ Springer

Proof Substituting ©(¢) = W(#)x(¢) in (18) and mul-
tiplying both sides by U(t) = W~ (¢) results in

x(®) =U®) (—I + %A(r)) W()x(t)

t
- %U(r)A(r)W(t) / X(s)ds. (22)
-t

Using (19) and considering the point that %U(Z)A(t)

W() = [B(tz)—i_ I (1)], we arrive at

xi() | [ B@®OO|[x()
oo |~ 0 o] %o
t
—[B(%“ﬂ/ (s)ds. 23)
-1

Due to the diagonal structure of matrices in (23) and
noting that ftt_r x(s)ds = x(t) — x(t — 1), X;(¢) and
X, (1) are simplifies as

x1(1) =B@Oxi(t) — B@) +D xi1(t) —x1(t — 1))

x2(1) = —x() + %20 — 1)
which lead to (20) and (21) and prove the statement of
the Lemma. O

Clearly, by definition, we have x> (z) = Uy (¢)O(?).
If the interaction network is undirected, then U(z) =
W (¢) and B(¢) can be taken as a diagonal matrix. If
the last column of W(¢) isal, then Uy (¢) = U = #1
is time-invariant.

The following main result characterizes the stability
of consensus affected by time-delay.

Theorem 2 Assume that the interaction network is
always strongly connected. Considering the system
(17) with time-delay t. If there exists T > T such that

(i) 14+ 1x(—B() — I)% # 0 holds for all t > 0,
s € C*, and eigenvalues of —=B(t) — I;
and

(ii) there exist two positive-definite matrices (P, Q), for
which the time-dependent linear matrix inequality
(LMI) below holds:

BT (1)P+PB(1)+7Q BT (1) P(B(r) + 1) ~0
° —-7Q ’
(24)

where e denotes entries that come from symmetry,

then, the system (17) reaches a consensus.
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Proof See Appendix 7.1. O

Note that the above LMI is feasible for each given
t, meaning that for small enough 7, there always exist
positive-definite matrices P and Q so that the dynamic
LMI (24) above holds. In fact, given ¢, for any positive-
definite matrix Q and a small enough 7 > 0, the matri-
ces BT ()P 4+ PB(z) + 7Q and —7Q are negative def-
inite. One can then choose a suitable positive-definite
P (e.g., a diagonal matrix with small but positive diag-
onal elements) to satisfy Eq. (24). For changing ¢, the
above Q and the “minimum” of the above P matrices
suffice. We can use the bound of eigenvalues of B(r)
as indicated in Appendix 7.1. Therefore, no large com-
putations are required even though the LMI is time-
dependent.

Additionally, Theorem 2 has some important practi-
cal implications for the coordination of swarm robotics
systems. Indeed, as recently reported in Refs. [8,
41], swarm robotics systems operating based on dis-
tributed communications through a mesh network will
inevitably be affected by time-delays. Theorem 2
implies that by properly designing the mesh network
(e.g., see Ref. [29]), one can expect to achieve consen-
sus and swarm coordination if time-delays are appro-
priately brought below a certain level.

Lastly, it is interesting to note the similarities
between the present work on consensus reaching sys-
tems of topologically interacting agents and synchro-
nization problems of various neural networks with
sampled-data controller in the presence of time-delays
[25,39,40]

6 Conclusion

Recent empirical studies have highlighted the critical
importance of robust and accurate transfer of informa-
tion among individuals engaged in swarming behav-
iors. These results stress the possible adverse effects
of agents afforded with limited sensory capabilities or
evolving in noisy environments, which combined may
hinder self-organization.

The study of these limiting effects on the consensus
dynamics of a networked multiagent system has been
carried out using two complementary approaches. First,
we neglected the effects of noise in Eq. (6) and modeled
the swarm as a NCS governed by Eq. (8). The study of
the stability and asymptotic stability of the system led

to Eq. (13). A sufficient condition for the node band-
width B, is established in the form of an upper bound,
which brings to light the key interplay between: (a) the
dynamic network topology—by means of the largest
eigenvalue of the reduced graph Laplacian of the inter-
action network I:(t), and (b) the minimum social infor-
mation transfer, which ensures global ordering of the
swarm—by means of the node bandwidth. It is worth
adding that although our study focuses on a particu-
lar type of consensus problem—namely consensus in
the direction of motion of agents traveling at constant
speed while topologically interacting—the obtained
results can be extended to other collective behaviors
of the consensus type. Specifically, the methodology
and approach developed here, with switching topolo-
gies in the presence of communication constraints,
can be extended to any linear distributed decision-
making process of the consensus type, including for-
mation control, rendez-vous in space, aggregation, etc.
However, second-order linear or nonlinear consensus
algorithms—e.g., guaranteed-cost consensus for multi-
agent networks with Lipschitz nonlinear dynamics and
switching topologies [36]—would require completely
different studies to account for the issues of communi-
cation constraints in the presence of switching topolo-
gies.

This analytical result, obtained in the noiseless case,
is supplemented by simulations of a swarm of self-
propelled particles with increasingly small bandwidth
and for various levels of noise. These simulations are
instrumental in investigating the swarm dynamics near
criticality, i.e., in the vicinity of the continuous phase
transition separating a globally ordered swarm, with a
stable dynamics, from a disordered one corresponding
to an unstable dynamics. To the best of our knowledge,
all prior studies of SPP dynamics were obtained with
bandwidths significantly above the critical level identi-
fied here. In these past simulations, the disappearance
of collective motion always found its source in the high
level of noise and/or low density of agents. In all cases
considered, the breakdown in the self-organization is
observed and consistent with the noiseless analytical
study. Our analysis also uncovers the presence of a
critical line with a particular monotonic relationship
between critical bandwidth and noise that is consistent
with classical results in information theory.

Furthermore, we investigated the influence of com-
munication time-delays on the consensus reaching pro-
cess for multiagent systems whose interactions are gov-
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erned by a topological distance leading to time-varying
network topologies. Specifically, we found the max-
imum allowed time-delay below which consensus is
guaranteed.

Lastly, the analytical results obtained in this paper
are currently being tested with a swarm robotics sys-
tem made of 15 units of a small-size differential-drive
land robot, equipped with a host of sensors, and capable
of moving up to a speed of 20 cm/s. These robots are
interconnected by means of a swarm-enabling unit [8],
which allows us to implement a topological interac-
tion rule and also indirectly tune time-delays between
swarming units.
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7 Appendices
7.1 Proof of Theorem 2

The following Lemma is instrumental to establish the
proof of Theorem 2.

Lemma 2 Consider the following linear system

@) =A%) + A ()x(t — 1),
X(s) = ¢(s),Vs € [—1,0] ’

where x € RY is the state variable, A® is a constant
matrix and ¢ (s) corresponds to the set of initial condi-
tions considered over the interval [—1, 0]. The system
is asymptotically stable for all values t in the interval
[0, T if
(i) 1+1(A (1) 1= # 0 holds forallt > 0, s € C*,
and (A (1)) are the eigenvalues ofA1 (1),
and

(ii) there exist two positive-definite matrices (P, Q)
such that the LMI below holds:

[ A"+ AT )P+ PA° + A (1) +TQ

0 L Al TPAl
(A +1if((t2)) PA ]<0_

@ Springer

Proof It canbe proved as in [22, p. 222] by considering
the following Lyapunov candidate

t
V() = (xT(z)+ / XT(s)dsAl(t)T>P
-t

t
~<X(t)+A1(t)/ X(s)ds)
-7

0 t
+ / / x! (s)Qx(s)dsdr.
—T Jt+r

O

We now prove the statement of Theorem 2. First,
note that all eigenvalues of the matrix B(¢) are located
in the open-right plane given that the interaction net-
work is strongly connected. Therefore B ()P +PB(t)
can be negative definite, and the linear-matrix inequal-
ity (24) is feasible for small enough 7. Next, using
Lemma 1, stability of the systems (17) or (18) is equiv-
alent to the stability of (20) and (21). By exploiting
Lemma 2 with A° = —I and Al(r) = B(t) + 1, it is
observed that the solution of system (20) tends to zero,
ie., lim; o x(t) = 0.

Finally, the Laplace transform of (21) yields

x2(0) + f?r X2 (u)e =Wt dy

a(s) = s+1—e 7S

k]

where s is a complex variable. The stability of (21) is
defined by the denominator of the Laplace transform
(s+1—e" =0).Lettings =0 + jo witho,w € R
and j2 = —1, we have

o+1—e%cos(wr) =0, (25)
o+ e T sin(wt) = 0. (26)

The system (21) is stable for any time-delay 7, i.e., there
exists a x5 such that lim; o, X2(¢) = X3 if solution of
(25) leads to o < 0. We consider the following cases:

(i) 0 = 0 = cos(wt) = e which is impossible since
—1 < cos(wt) < 1.

(i) o > 0 = e %"cos(wr) = 0 + 1 > 1 which
is again impossible since e °" < 1 and —1 <
cos(wt) < 1, then their product cannot be larger
than 1.

Therefore, the value of o obtained from (25) is strictly
negative (0 < 0) which guarantees the stability of sys-
tem (21). This concludes our proof.
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7.2 Remarks about Theorem and Corollary 1 and
Theorem 2

It is worth noting that Theorem 1 and Corollary 1 are
based on the Gelfand spectral radius formula and on
the construction of the joint spectral radius. The special
structure of the matrix L(r) = L(r)/k, originating from
the topologically interacting agents, plays a key role
here. These considerations are very different from the
result in Ref. [26].

The key challenge in proving Theorem 2 mainly
lies in the construction of the LMI and the appropri-
ate application of the Laplace transform. Another key
simplification is obtained by means of the coordina-
tion transformation in Eq. (19), which simplifies our
equation and facilitates the analytical treatment for the
time-delay system.
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