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Abstract—In this paper, we consider the problem of collec-
tively exploring unknown and dynamic environments with a
decentralized heterogeneous multi-robot system consisting of
multiple units of two variants of a miniature robot. The first
variant—a wheeled ground unit—is at the core of a swarm
of floor-mapping robots exhibiting scalability, robustness and
flexibility. These properties are systematically tested and quan-
titatively evaluated in unstructured and dynamic environments,
in the absence of any supporting infrastructure. The results of
repeated sets of experiments show a consistent performance for
all three features, as well as the possibility to inject units into
the system while it is operating. Several units of the second
variant—a wheg-based wall-climbing unit—are used to support
the swarm of mapping robots when simultaneously exploring
multiple floors by expanding the distributed communication
channel necessary for the coordinated behavior among plat-
forms. Although the occupancy-grid maps obtained can be large,
they are fully distributed. Not a single robotic unit possesses the
overall map, which is not required by our cooperative path-
planning strategy.

Index Terms—Swarm robotics, coordinated behavior, decen-
tralized multi-robot exploration.

I. INTRODUCTION

Autonomous robots are good contestants for intelligent

surveillance and reconnaissance (ISR) operations in remote

or hazardous environments preventing direct human inter-

vention. One central challenge in ISR operations, however,

is the ability to perform effective exploration of dynamic

environments. Single-robot autonomous exploration is un-

questionably ill-suited for such tasks. Coordinated multi-

robot exploration represents, theoretically at least, a viable

alternative [1].

Biological multi-agent systems—e.g. bird flocks, schools

of fish, ant colonies—are capable of performing a wide

range of collective behaviors in a fully decentralized man-

ner [2]. These swarming systems present valuable insights

into the development of decentralized, scalable and fault-

tolerant multi-robot systems (MRS) that are required to

operate in dynamic environments. Swarm-based designs of

MRS therefore appear to be a promising strategy for ISR

operations in dynamic and unknown environments. However,

as highlighted in [3], the transition from a robot-centric

design to a system-centric one requires to consider critical
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elements beyond the electromechanical aspects at the robotic

unit level.

Decentralized MRS provide the greatest flexibility in both

design and operations, while being afforded with some of the

highest levels of fault tolerance. However, these very desir-

able features come at the cost of an overall increase in the

system’s complexity. Specifically, for a decentralized MRS

to effectively operate in unstructured dynamic environments,

the robotic system requires: (i) a distributed communication

channel to share state variables and sensed data through an in-

teraction network of a particular topology [4], possibly time-

varying [5], (ii) a collective decentralized computing frame-

work processing in real-time, data shared among units [6],

and (iii) motion planning or collaborative control strategies,

which are key to the effective coordination and division of

labor among units having possibly different capabilities [1].

In practice, the divisions between these three key elements are

not as clear-cut as it seems. On the contrary, MRS network

architecture, distributed computing, and collective motion

planning are profoundly intertwined, which is one of the

reasons behind our incomplete understanding of biological

swarming [2].

Once a communication channel is autonomously estab-

lished without any external supporting infrastructure, the

MRS requires situational awareness as it starts charting its

unknown surrounding environment. This classically takes the

form of a map, which has to be constructed and updated

while a coordinated exploration strategy drives the system

based on the current map information and new sensor data

harvested by the various mobile units. Among the many

different types of maps, the most common and intuitive are

occupancy-grid maps (OGM), which are particularly befitting

to MRS operations [7]. Other types of maps include feature-

based maps (e.g. line maps) and topological maps, which

are significantly more computationally and memory efficient

than OGM, yet require advanced sensor-data processing to

generate an accurate and reliable map [3].

As its name implies, OGM reduces a two-dimensional (2D)

surface area into a grid of cells, which are characterized

by several possible states—obstacle, unexplored, explored—

identified through a probabilistic treatment of the noisy and

uncertain sensor data. Range-sensors are particularly well-

suited to the generation of OGM. For our purposes, given

that we consider a swarm of miniature robots mapping

dynamic environments, OGM constitute the optimal solu-

tion for three fundamental reasons. First, the smallness of
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our individual units requires effective obstacle sensing that

can be miniaturized accordingly. Ultrasonic sensors have

achieved small footprints, but their range is too short and are

hardly as accurate as optical sensors. As is detailed below,

our custom-made miniature LiDAR apparatus provides an

effective-range sensing capability [8]. Second, OGM being

based on probabilistic estimations, they are intrinsically more

tolerant to the presence of temporal changes in localized

features, and thus lend themselves naturally to the mapping

of dynamic environments. Third, the map building/updating

process is almost identical when considering a single robot or

a MRS, thereby conserving decentralization of the system’s

operations without compromising its scalability. The key

challenge with OGM is its relatively high computational

requirements when maintaining large grids [3]. However,

this identified limitation can largely be alleviated when

considering a decentralized computing framework as well as

a distributed storage of the map. With a truly decentralized

MRS—swarm robotics ones being one such particular type,

individual units need only store and process a small subset

of the sensed data and OGM. Effectively, not a single unit

possesses the overall map, which should not be required for

path-planning purposes.

The network architecture in MRS can either be centralized

or decentralized. In the former, computation and control are

performed by a single central entity, while in the latter,

they are performed locally by the robots with minimal

communication among the modules. The decentralized ar-

chitecture is thus less prone to being affected by a single

point of failure [3]. For this reason, and owing to recent

technological developments, decentralized MRS architectures

are getting prominence. For example in [9], a decentralized

algorithm was used to localize a flock of robotic sensor

networks. Environmental monitoring tasks were performed

by a decentralized swarm of robots in [10]–[12], including

with heterogeneous swarms [13]. Decentralized exploration

and mapping of unknown indoor entity was demonstrated

with a pair of autonomous quadcopters in [14].

Despite the number of works on decentralized MRS with

certain capabilities, it was found that existing MRS/swarm

systems lack supporting experiments and performance data

[15], for example on how well they behave under varying

number of robots (scalability), against the failure of the

individuals (robustness), as well as in response to unknown

and dynamic environments (flexibility), which are the key

properties of swarm robotics [2]. It was also observed in [3]

and [16] that existing MRS were mostly applied to static

environments and very few works have been done in the

presence of dynamic circumstances. In terms of exploring

unknown domains, it was noted in [17] that while map-

ping of individual floors of an entity has been considered,

simultaneous mapping of multi-floor territory has not been

much addressed. This capability can add value to the overall

mapping task.

The ISR of modern urban environments, whose dense

population navigate vertically as much as horizontally, re-

quires of multistory exploration and monitoring [18]. There

is no doubt that both tasks are extremely challenging, and

particular so for fully autonomous and decentralized MRS.

Beyond the dynamic nature of urban environments, there

are three broad types of challenges associated with their

autonomous exploration and surveillance: (1) intermittent

accessibility to some spaces due to closed doors, (2) floor-

to-floor transitions through staircases and/or elevators, and

(3) ability to establish a communication channel in order

to achieve inter-agent information transfer across wireless-

hindering physical obstacles such as walls and floors. At-

tempts have been made to address these challenges sepa-

rately: e.g. autonomous multi-floor exploration by a single

robot [19], [20], semi-autonomous exploration of multi-floor

buildings with a legged robot [21], navigation for service

robots in the elevator environment [22], autonomous multi-

floor navigation by micro-aerial vehicles [23]. However,

to the best of our knowledge, the autonomous exploration

and monitoring of an unknown indoor space consisting of

multiple floors with dynamic features by a fully decentralized

MRS remains an open challenge.

In this paper, a decentralized and heterogeneous system

of custom-built miniature robots for autonomous exploration

and mapping is developed in-house and evaluated to address

those challenges facing current MRS. The performance of

this swarming system in terms of its scalability, robust-

ness, and flexibility is extensively tested and quantitatively

evaluated. The system is also then tested to simultaneously

map two different storeys of considerable size within a

campus environment, during normal operating hours and

in the presence of students and staff. For the multi-floor

mapping experiments, the large gap between the rooms/floors

and the concrete walls/ceiling poses an operational chal-

lenge in terms of maintaining distributed communications

required for our MRS to operate with robots on different

floors. Intermediate communication relays located between

the floors are necessary to ensure that a communication

link is maintained between the swarms evolving on each

floors. Indeed, having humans entering the area to physically

place static nodes on the walls—especially in the case of

hazardous environments—is neither desirable nor practical.

This issue is overcome by having a heterogeneous MRS

consisting of swarms of land robots teaming with multiple

wall-climbing units. The wall-climbing units and ground-

mapping ones share the same core architecture in terms of

hardware and software; both variants have different sensory

suites and mobility apparatuses.

II. SYSTEM ARCHITECTURE

A. Individual robotic unit: O-climb and O-map

Our MRS system is called ORION, and multiple gener-

ations and variants of ORION base units have been devel-

oped [8], [24]–[27]. Although this paper focuses on ORION’s

system-level design, features, and performance, we nonethe-

less provide in this section critical unit-level information and

details about the two key variants: the ground-mapping (O-

map) and the wall-climbing (O-climb) units, shown in Fig. 1.

Specifically, we report on the novel design of ORION’s
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to 160 meters and is reported in [12]. This communication

network is used by the robots to continuously broadcast their

states—their estimated positions, sensor readings and current

navigation waypoint—at a rate of 5 Hz. The maximum

expected communication range is about 310 m in line of sight

and the modules are capable of relaying messages through

multiple hops in the network.

The decentralized swarming design principles and the

cooperative control strategies are such that the successful

collective operation of this system does not require a reliable

global communication network between all the robots. The

motion of each platform at a given time is determined solely

by its own state and the current state of the neighboring

robots. Therefore, only short-range and intermittent local

communications are required.

III. COLLECTIVE MAPPING APPROACH

The decentralized ORION system of ground robots is

designed to perform collective mapping operation in the

absence of a central command. This bars the possibility

of system-level algorithms of coordination, global path-

planning, or workload distribution among the individual

units. Instead, the collective mapping operation arises as

emergent behavior from unit-level algorithms fed with in-

formation from neighboring agents.

Since our focus is on cooperative-control strategies for

collective mapping, we do not consider the full problem

of Cooperative Simultaneous Localization and Mapping

(CoSLAM). We assume that all individual units know their

initial poses in a common, global reference frame, and that

a localization based on the unit’s Inertia Measurement Unit

(IMU) and the wheel encoder provides a sufficiently accurate

positioning for the duration of the mapping task [8]. If higher

accuracy is required, probabilistic localization algorithms

such as unscented Kálmán filter can be implemented as

reported in [29].

A. Map Representation

ORION senses its surroundings by means of LiDAR

readings that provide a point cloud of nearby obstacles. This

point cloud is then incorporated to a 2D OGM representation

of the environment (see [8] for more details).

The 2D environment is divided into a regular grid of cells

with an associated state representing the posterior probability

of occupancy. Each square cell has a size of 1/15 m and for

simplicity all of them start with a prior occupancy probability

of 0.5. With each LiDAR sensing, the probability of all

the cells in the line-of-sight associated with the sensing

are updated according to a Bayesian approach [30]. This

classical OGM approach naturally lends itself to the mapping

of dynamic environments since the state of a given cell can

vary over time following the displacement of obstacles or the

opening of a door.

Similar to the approach reported in [6], we consider

Markovian processes whereby the robots only share their

current LiDARs data—i.e. locally sensed information, not

their entire local map. Formally, the local (individual) map

m of robot i at time t is obtained by computing the posterior

probability p(m|Si
t) for a collection of sensory data Si

t—

its own sensed data and the sensed data from its connected

neighbors identified through the interaction network adja-

cency aij matrix—such that

Si
t =

t⋃

t′=1

{sj(t′); j|aij(t′) = 1}, (1)

with sj(t
′) the sensed data of agent j at instant t′, aii(t) =

1, ∀t, and aij(t
′) = 1 if unit i is connected with agent j

at instant t′, and aij = 0 otherwise. It is worth stressing that

this approach was designed to be compatible with temporal

interaction networks, which have recently been found to

be necessary to achieve effective collective responses by

MRS [5].

B. Communication Network

The collective mapping operation requires the robots to

exchange some key information with nearby neighbors such

as the robot’s pose, and LiDAR sensings. As mentioned

earlier, the onboard XBee modules form a wireless ad-hoc

network, whose dynamic topology can be tuned to achieve

optimal collective performance [5]. Given the physical indoor

environment that ORION operates in—i.e. no line-of-sight,

presence of walls, low battery, latency and low-bandwidth

constraints—it is expected that not all units are always

connected.

In a system with units A, B and C, if information from

A could not be sent to C, this does not suggests that C will

not have access to that information. Now, if B gets access

to the information from A and includes it for its decision-

making process, then the decision made by B, when observed

by C, will have information from A “embedded” in it. This

indirect propagation of behavioral information through the

network is crucial for the collective mapping operation as it

dictates how information will flow within the system. The

work in [5] reported the optimal network topologies for

collective behaviors subjected to local perturbations, which,

in the present framework, can be associated with moving

obstacles/features.

C. Exploration Strategy

The swarm dynamics is based on a collective and dis-

tributed Frontier-Based Exploration strategy [31]. To decide

where to move next, a robot computes at each instant a field

of ”preference potential” V (�r) representing a non-normalized

probability of choosing a point �r as the next waypoint. The

field V is meant to prioritize the exploration of points that

are: (i) near the frontier of the explored area, (ii) near the

robot, and (iii) far away from the other units. To account for

this three factors, we have defined the field as

Vi(�r) = VF (�r)× 1

min(‖�r − �ri‖, R0)
×

∏

j∼i

‖�r − �rj‖2 , (2)

where R0 > 0 is an arbitrary cut-off distance, VF is a term

characterizing the frontier between the explored free space

and the unexplored space, and j ∼ i represents the set of

neighbors j of unit i. This frontier is obtained by applying
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