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In this paper, we study the behavior of three-dimensional extremely-short optical pulses
propagating in a system made of carbon nanotubes in the presence of an external mag-

netic field applied perpendicular both to the nanotube axis and to the direction of

propagation of the pulse. The evolution of the electromagnetic field is classically derived
on the basis of the Maxwell’s equations. The electronic system of carbon nanotubes is

considered in the low-temperature approximation. Our analysis reveals the novel and

unique ability of controlling the shape of propagating short optical pulses by tuning
the intensity of the applied magnetic field. This effect paves the way for the possible

development of innovative applications in optoelectronics.
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1. Introduction

Since the discovery of carbon nanotubes (CNTs),1 this material has attracted the

attention of many researchers studying the related structures both theoretically and

experimentally. Due to the stable structure and unique electrical properties, CNTs

have been the object of attention in the field of nonlinear optics, as well as among

the developers of various electronic nanodevices.2 It should be noted that the scope
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of nanoelectronic devices based on CNTs can be quite broad, for example, nano-

engineering, medical diagnostic and medical practice, biomedical laser technology,

just to name a few.

Despite the significant number of studies on the dynamics of both one-

dimensional and two-dimensional electromagnetic waves in systems of carbon

nanostructures (see, for example, Refs. 3–5 and references therein), to this day

there remain many unexplored issues related to the influence of external electrical

and magnetic fields on the propagation of three-dimensional extremely-short pulses

in the system of CNTs.

It should be noted that the effect from static magnetic field may be even more

significant than the effect of static electric field due to the fact that a constant

magnetic field, as shown in Ref. 6, can greatly change the single electron spectrum.

In this paper, an attempt is made to consider the effect of such a constant magnetic

field on the dynamics of three-dimensional extremely-short optical pulses propagat-

ing through an array of CNTs. Specifically, it is interesting solving the problem of

propagation of ultrashort pulses in the case when the constant magnetic field is

perpendicular to the axis of the carbon nanotubes.

All of the above circumstances provide the impetus for this study. Specifically,

we demonstrate that by varying the external constant magnetic field, one can tune

the dispersion law of free electrons in the CNTs, and in turn, indirectly control

the propagation of femtosecond optical pulses in the environment. The latter is of

paramount importance in both technology and medical applications.7

2. Formulation of the Problem and Governing Equations

A study of the electronic structure of carbon nanotubes was carried out in the

framework of the analysis of the dynamics of π-electrons in the strong-coupling

approximation. For the CNTs of zigzag type (m, 0), the electron dispersion law in

the presence of a magnetic field H parallel to the nanotube axis is given by6

εs(kx, kz, H) = ±γ

{
1 + 4 cos

(√
3akx
2

)
cos

(
3akz

2

)
+ 4 cos2

(√
3akx
2

)}1/2

, (1)

where a = 1.4 Å, γ ≈ 2.7 eV, kz is the wave vector along the nanotube axis, while

kx is the wave vector along the x-direction, which is dependent on the intensity H

of the magnetic field according to

kx(H) =
2π√
3am

(
s+

Φ(H)

Φ0

)
,

where Φ(H) is the magnetic flux through the cross-section of the tube, Φ0 = ~c/e
and s = 1, 2, . . . ,m.

In this paper, we consider the propagation of ultrashort electromagnetic pulses

in a system of CNTs in the geometry depicted in Fig. 1, where the external magnetic

field is applied perpendicular to the axis of nanotubes. In this case, it is natural to
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z

Fig. 1. Schematic diagram of the geometry of the studied problem with the axis of CNTs oriented
parallel to the z-direction.

use the classical Peierls substitution.8 In this case, the vector potential reads

A0 =

(
−Hy

2
,
Hx

2
, 0

)
,

and is fully determined by the constant magnetic field H. The vector potential must

be included into the phase factor of the Hamiltonian for electrons hopping between

neighboring nodes of the hexagonal nanotube structure. Hence, the Hamiltonian

reads

H =
1

2

∑
n,m

γnma
†
nam + c.c., (2)

where

γnm = γ exp

(
i
Φeff

Φ0

)
, Φeff =

∫ rm

rn

A0dr .

Here rn and rm stand for the point vectors of the corresponding neighboring atoms

of CNT, and the integration is carried out along the bond between the atoms; a†n
and am are the electron creation and annihilation operators, respectively.

Unfortunately, the Hamiltonian (2) cannot be diagonalized analytically (because

of dependence on the spatial indexes), bit still can be diagonalized numerically,

thereby obtaining the dispersion law. The obtained dispersion law ∆(kz, s) depends

on two variables, kz and s. The quantity kz takes values in the first Brillouin zone,

and it is associated with the electron momentum directed along the nanotube axis.

The index s is due to the quantization of movement along the tube circumference

and takes values as in Eq. (1). Note that the specific form ∆(kz, s) is not important

for our further analysis, but only the coefficients of its expansion in a Fourier series

with respect to kz are.
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Using the standard Coulomb gauge (see Ref. 9) E = − 1
c∂A/∂t, we can write

the Maxwell’s equations as follows10:

ε

c2
∂2A

∂t2
− ∂2A

∂x2
− ∂2A

∂y2
− ∂2A

∂z2
− 4π

c
j = 0 , (3)

where the vector potential is assumed to have the form A = {0, 0, A(x, t)}.
Here, we aim to derive an expression for the conduction-current density j, ap-

plying an approach similar to the one used in Refs. 12 and 13 for semiconductor

superlattices. Expanding the dispersion relation in a Fourier series, one can write

the expression for the projection of the current density on the x-axis within the

collisionless approximation:

j = −ena
~
γ

m∑
s=1

∞∑
r=1

Gr,s sin

{
re
aA

c~

}
, (4)

where e is the electron charge and n is the concentration of the conduction electrons

in the array of carbon nanotubes. Note that the coefficients Gr,s are given by

Gr,s = −r δr,s
γ

∫ π
−π cos(rξ) exp{−

∑∞
r=1 θr,s cos(rξ)}dξ∫ π

−π exp{−
∑∞
r=1 θr,s cos(rξ)}dξ

, (5)

where θr,s = δr,s(kBT )−1, and

δr,s =
a

π~

∫ π~/a

−π~/a
∆(kz, s) cos

(
r
a

~
kz

)
dkz . (6)

It is worth noting that the coefficients Gr,s decrease rapidly with increasing r,

approximately like (1/2)r.

The current density j, given by Eq. (4), explicitly depends on the vector poten-

tial A. Substituting Eq. (4) into Eqs. (2) and (3), we obtain an equation describing

the evolution of the electromagnetic field pulse in the CNTs system:

∂2Ψ

∂τ2
−
(
∂2Ψ

∂ξ2
+
∂2Ψ

∂ν2
+
∂2Ψ

∂ζ2

)
+ η

m∑
s=1

∞∑
r=1

Gr,s sin(rΨ) = 0 . (7)

Here Ψ = Aedx/c~ is the dimensionless projection of the vector potential on the

x-axis, τ = ω0t/
√
ε is the dimensionless time, ξ = ω0x/

√
ε, ν = ω0y/

√
ε and

ζ = ω0z/
√
ε are the dimensionless spatial coordinates.

It is important to note the following point. As a consequence of the field inho-

mogeneity along some axis (e.g. the field is directed and is non-uniform along the

z-axis), the current is also non-uniform. The heterogeneity of the current causes

the accumulation of charges in some areas that can be estimated from the charge

conservation law

dρ

dt
+
dj

dz
= 0 , (8)

ρ ∝ τ j
lz
. (9)
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Here ρ is the charge density, j is the current density along the z-axis, τ is

the pulse duration and lz is the characteristic length on which the electric field

is measured. Equation (9) allows us to conclude that a significant impact on the

accumulated charge comes from a maximum duration of a short pulse. The esti-

mates show that the accumulated charge is about 1–2% of the total charge, which

contributes to the current. The latter allows us to neglect the charge accumulation

effect for femtosecond pulses. This is confirmed by numerical experiments for the

case of carbon nanotubes and a pulse duration of tens of femtoseconds.11,14,15

3. Results of the Numerical Analysis

Equation (7) has been solved numerically using the explicit finite difference cross-

type schemes16 with temporal evolution. Spatial and temporal steps were deter-

mined from the well-known and standard stability conditions.16 Both spatial and

temporal convergences were achieved by successively halving the space and time

steps until the computed solution remains unchanged up to the eighth decimal

place. The constant magnetic field was initially assumed to be zero. The following

initial conditions were selected:

Ψ = Q exp

{
−
(
x− vt
γ∆

)2
}

exp(−β2r2) ,

γ = (1− v2)1/2, r2 = y2 + z2 ,

(10)

where Q is the initial pulse amplitude, ∆ is the half-width of the initial pulse, r

defines the transverse structure of the pulse in space, γ and β are the parameters

determining the pulse widths in the x- and r-directions, respectively, and v is the

initial pulse velocity. The speed of light is taken as being unity in numerical sim-

ulations. It should be noted that in the considered electronic system of CNTs, the

typical characteristic relaxation time is of the order of 10−11 s, while the extremely-

short pulse in our problem has a duration of about 10−15 s. Thus, this approach

may be applicable to the time of the order of 10−12 s, which corresponds to a

short pulse traveling a maximum distance of the order of 10−4 m, that may well be

achieved in the experiment.

The evolutions of the three-dimensional very short pulse in the carbon nano-

tubes system in the absence and presence of an external magnetic field are shown

in Fig. 2. As can be seen from the figures, three-dimensional extremely-short pulses

propagating in the medium made of CNTs under the influence of a magnetic field

experience a change in their spatial structure due to changes in the dispersion

relation. Specifically, the magnetic field applied perpendicular to the axis of CNT

affects the dispersion law, which in turn affects the actual propagation of the three-

dimensional extremely-short pulses, and eventually leads to changes in its shape.
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(a) (b)

Fig. 2. (Color online) Coordinate profiles of the electric field intensity of the three-dimensional

extremely-short optical pulse in the system of carbon nanotubes under the influence of an external

magnetic field at the time T = 6 ps. The electric field intensity is mapped onto a color scale,
the maximum values of the field intensity correspond to red and the minimum ones to purple.

(a) Profile in the absence of any magnetic field and (b) that under an applied magnetic field such

that Φeff/Φ0 = 1.1. Note that v/c = 0.98, and the units on both axes correspond to 3 × 10−8 m.

(a) (b)

Fig. 3. (Color online) Coordinate profiles of the electric field intensity of the three-dimensional

extremely-short optical pulse in the system of carbon nanotubes under the influence of an external
magnetic field at different instances of time. The electric field intensity is mapped onto a color
scale, the maximum values of the field intensity correspond to red and the minimum ones to

purple. (a) Profile at T = 6 ps and (b) the one at T = 18 ps. Here v/c = 0.98 and Φeff/Φ0 = 1.1.

The units on both axes correspond to 3 × 10−8 m.

With an increase in the time of propagation of the pulse we observe the evolu-

tions shown in Fig. 3. From these plots, one can notice that increasing the pulse

propagation time in the presence of an applied magnetic field, changes significantly

the pulse shape. Moreover, the pulse becomes less localized in space and separates

into several daughter pulses, which have substantially different amplitudes.
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(a) (b)

Fig. 4. (Color online) Coordinate profiles of the electric field intensity of the three-dimensional

extremely-short optical pulse in the system of carbon nanotubes for different values of the applied
magnetic field at T = 6 ps. The electric field intensity is mapped onto a color scale, the maximum

values of the field intensity correspond to red and the minimum ones to purple. (a) Profile for

Φeff/Φ0 = 0.55 and (b) the one for Φeff/Φ0 = 1.1. Here v/c = 0.98. The units on both axes
correspond to 3 × 10−8 m.

Also, it should be noted that the three-dimensional extremely-short pulse

changes its configuration not only over time, but also as a result of dispersion

effects. Figure 4 reveals the solutions of Eq. (7) depending on two different values

of the applied constant magnetic field. As one would expect, variations of the ex-

ternal magnetic field lead to changes in the pulse shape. In particular, an increase

in the applied magnetic field increases both the amplitude and the magnitude of

the observed localization in the space of the pulse.

4. Conclusions

In conclusion, we note that all the key effects arising from the introduction of an

external magnetic field directed perpendicular to the axis of carbon nanotubes, are

due to induced changes in the dispersion law of the electrons. This dispersion law is

entirely responsible for the observed vast range of dynamics of the propagation of

ultrashort three-dimensional pulses. Thus, it can be concluded that the dispersion

law of free electrons in the carbon nanotubes, in particular, in the presence of

a constant magnetic field, governs the propagation of the optical pulses in the

environment. And thus, it can be argued that it is possible to control the shape of

three-dimensional extremely-short optical pulse propagating in an environment of

carbon nanotubes by a tuning of the applied constant magnetic field.
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