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In this paper, we consider propagation of a monochromatic laser beam in an array
of semiconductor carbon nanotubes. Initial distribution of the beam intensity is taken
in the form of a Gaussian profile in the plane perpendicular to the wave vector. The
electromagnetic field in an array of nanotubes is described by Maxwell equations, reduced
to a multidimensional wave equation. With an approximation of the slowly varying
amplitudes and phases, we derive the effective equation describing the time-averaged
field intensity distribution of the laser beam in a medium. Numerical solution of the
derived equations allows us to analyze the dependence of the diffractive spreading of the
beam on its frequency and initial amplitude. Furthermore, the influence of the nanotube

radius on the diffractive spreading of the laser beam is investigated.
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1. Introduction

Carbon nanotubes are promising objects for the use in creating a modern basis

for nanoelectronics.1 Nonlinearity of the electron dispersion of nanotubes leads

to a wide range of properties, which can be observed in the fields of moderate

intensity in the range between ∼ 103 and 105 V/cm (see Refs. 2–7 and references

therein). This fact, as well as the success of laser physics in the formation of

powerful electromagnetic radiation with given parameters, became the impetus for
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comprehensive studies of electronic and optical properties of nanotubes with the

presence of electromagnetic fields.8–10 In particular, recent papers11–15 have been

devoted to the study of the propagation of extremely short electromagnetic pulses

in arrays of nanotubes. In Ref. 11, the possibility of solitary electromagnetic waves

propagation in the array of nanotubes has been demonstrated. The propagation

of extremely short electromagnetic pulses in an array of nanotubes placed in a

dispersive nonmagnetic dielectric medium was considered in Ref. 12, as well as

the dependence of the pulse shape on the constants of the dispersion medium.

References 13 and 14 were devoted to a study of the dynamics of two-dimensional

electromagnetic waves and so-called “light bullets” in arrays of nanotubes with

metal inhomogeneities. The questions related to a stabilization of extremely short

electromagnetic pulses in arrays of nanotubes are considered in Ref. 16. The areas of

potential applicability of the results of these studies include, among others, optical

information processing systems.

The above works were related to the propagation of electromagnetic pulses

in nanotubes arrays, whose duration is comparable to a period of oscillation of

the field within an optical range, that is several orders of magnitude smaller than

the relaxation time in the system. However, there is still an open question about

the propagation of quasi-stationary laser beams, the length of which substantially

exceeds the period of field oscillation in the optical and infrared ranges, but still less

than the relaxation time. The interest in studying this problem is evident, as this

is one of the most promising tasks of modern optics, which consists in the creation

of all-optical devices implementing the control of light by light. Such devices can

be constructed based on media whose strongly nonlinear properties can effectively

change the parameters of light beams, as well as their propagation with the least

distortion and attenuation. Therefore, it seems timely to study the peculiarities of

propagation of monochromatic laser beams and the influence of medium properties

on time-averaged parameters of the beam field in an array of semiconducting carbon

nanotubes. The latter is the actual scope of the present work. The rest of the article

is organized as follows. In Sec. 2, we describe the basic formalism for the solution of

the problem, Sec. 3 is devoted to the derivation of the effective equation describing

the propagation of a monochromatic laser beams in an array of semiconducting

carbon nanotubes. The results of our numerical simulations, as well as their analysis,

are given in Sec. 4. Conclusions are given in Sec. 5.

2. Basic Relations and the Wave Equation

We consider the propagation of the laser beam in a bulk semiconductor array of

single-walled carbon nanotubes of the zigzag-type (m, 0), where the integer m (not

a multiple of three) defines the nanotube radius through R = bm
2π

√
3. b is the

distance between adjacent carbon atoms.2 We assume that the nanotubes are placed

into a homogeneous dielectric medium, nanotube axes are parallel to a common

axis Ox, and the distance between neighboring nanotubes is large compared to
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Fig. 1. Geometry of the problem.

their diameter. While applications exist where this may not be the case,17–21 the

latter assumption allows us to neglect the interaction between nanotubes. Given

the geometry, the dispersion law of conduction electrons in the nanotube has the

form

∆(px, s) = γ0

{
1 + 4 cos

(
px
dx
�

)
cos

(
π
s

m

)
+ 4 cos2

(
π
s

m

)}1/2

, (1)

where the quasi-momentum is represented as p = {px, s}, s = 1, 2, . . . ,m is the

number characterizing the quantization of momentum along the perimeter of the

nanotube, γ0 is the overlap integral, and dx = 3b/2.2

Propagation of monochromatic laser beam in an array of carbon nanotubes

will be considered here in a direction perpendicular to the axes of nanotubes,

i.e. along the axis Oz. We assume that the electric field of the laser beam, E =

{E(y, z, t), 0, 0}, is oriented along the axis Ox, and the frequency of the beam field

satisfies the inequality 2π/τ � ω < 2γ0d/3�R, where τ is the electron relaxation

time (roughly, the time in which electrons fall to the bottom of the conduction

band). The left part of the above inequality allows us to use the collisionless

approximation, while the right part means that we neglect the interband transitions

in semiconductor nanotubes.2,22 The geometry of the problem is transparently

illustrated on Fig. 1.

The electromagnetic field in an array of nanotubes can be described by

Maxwell’s equations,23 which (in a chosen geometry) can be reduced to the equation

∂2A

∂y2
+
∂2A

∂z2
− ε

c2
∂2A

∂t2
= −4π

c
j , (2)

where A(y, z, t) and j(y, z, t) are the projections of the vector potential A =

(A(y, z, t), 0, 0) and the current density j = (j(y, z, t), 0, 0) along the direction of

axis Ox; ε is the permittivity of medium, and c is the speed of light in vacuum. The

electric field of the laser beam is determined by the known relation cE = −∂A/∂t.
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The electric field of the laser beam along the axis Ox is assumed to be uniform.

Note that the field inhomogeneity along the axis Ox can lead to accumulation of

electric charges, and accordingly, we would need to consider the field generated by

this charge, which is a separate problem. This is considered to be out of the scope

of this paper.

We find the conduction current density in an array, following the approach

developed in Ref. 24. Representing the electron energy spectrum (1) as a Fourier

series, we write the expression for the projection of the current density on the axis

following the collisionless approximation:

j = −en0
dx
�
γ0

m∑
s=1

∞∑
α=1

Gα,s sin

(
α
edx
c�

A

)
, (3)

where e is the electron charge, n0 is the concentration of conduction electrons in

an array of nanotubes,

Gα,s = −αδα,s
γ0

∫ π

−π
cos(αζ) exp{−∑∞

α=1 θα,s cos(αζ)dζ}∫ π

−π
exp{−∑∞

α=1 θα,s cos(αζ)dζ}
, (4)

θα,s = δα,s/kBT , and δα,s are the coefficients in the expansion of the spectrum (1)

into a Fourier series.25 The latter are explicitly given by

δα,s =
dx
π�

∫ π�/dx

−π�/dx

∆(px, s) cos

(
α
dx
�
px

)
dpx . (5)

Note that in Eq. (3) the current density is explicitly dependent on the vector

potential A. Therefore, it might be assumed that the change of the vector potential

by a constant (which does not yield any physical consequences) causes changes

in the current density. However, in reality, this does not happen, because while

deriving Eq. (3) it was assumed that the vector potential initially (at t = 0) is

zero, which therefore fixes the gauge choice. Substituting the expression for the

conduction current Eq. (3) into Eq. (2) gives us the wave equation describing the

evolution of the field in an array of nanotubes:

ε
∂2Φ

∂t2
− c2

(
∂2Φ

∂y2
+
∂2Φ

∂z2

)
+ ω2

0

m∑
s=1

∞∑
α=1

Gα,s sin(αΦ) = 0 , (6)

where Φ(y, z, t) = edxA(y, z, t)/c� is the dimensionless projection of the vector

potential onto the axis Ox, ω0 is the characteristic frequency, defined by the formula

ω0 = 2
edx
�

√
πγ0n0 . (7)

3. Effective Equation

We now turn to the description of the field of a monochromatic laser beam using

the dimensionless projection of the vector potential on the axis Ox in the following

way:

Φ(y, z, t) = Φ0(y, z) cos(ωt− kz − ψ) (8)
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where Φ0(y, z) = A0(y, z)edx/c�, A0(y, z) is the envelope of the projection of the

vector potential on the axis Ox, k = ω/v is the absolute value of a wave vector,

v = c/
√
ε is the speed of light in the medium, and ψ is the initial phase. At this

point we substitute Eq. (8) into Eq. (6) and use an approximation of slowly-varying

amplitudes and phases,26 then simplify the obtained equation assuming that the

conditions |∂Φ0/∂z| � k|Φ0| and |Φ0∂ψ/∂z| � |∂Φ0/∂z| apply. Next, we take into
account the relation sin(µ cos(ζ)) = 2

∑∞
l=1(−1)l+1J2l−1(µ) cos[(2l − 1)ζ] (Ref. 25)

and take an average over the period of oscillations of the beam field, 2π/ω. As a

result, using the expansion25

J1(ζ) =
ζ

2

∞∑
l=1

(−1)l

l!Γ(l + 2)

(
ζ

2

)2l

,

we obtain an effective equation for the complex function φ = φ(y, z) =

Φ0(y, z) exp(iψ), which determines the amplitude of the vector potential

∂2φ

∂y2
+ 2ik

∂φ

∂z
− ω2

0

c2
φ

∞∑
α=1

{[
α

∞∑
l=0

(−1)lα2l|φ|2l
l!22lΓ(l + 2)

]
m∑
s=1

Gα,s

}
= 0 , (9)

where Γ(ζ) is the Euler gamma function.25 As is known, the practically measured

physical quantities are the intensity, energy, or power of electromagnetic radiation,

which are proportional to the square of the absolute value of electric field vector.27

Taking into account the expression (8) and the chosen gauge for a vector potential,

the value I =
〈|E|2〉 (the average being taken over the period 2π/ω) takes the form

I =
1

2

(
�ω

edx

)2

|φ|2 . (10)

4. The Results of Numerical Simulation

Propagation of a laser beam in a system of semiconductor carbon nanotubes is

considered here with the typical values of system parameters: γ0 = 2.7 eV, b =

0.142 nm, dx ≈ 0.213 nm, n0 = 2 · 1018 cm−3, T = 77 K, ε = 4, and ω0 ≈ 1014 s−1

[see Eq. (7)]. Note that the collisionless approximation used in the current study is

justified when considering the processes on a time scale not exceeding the relaxation

time τ ≈ 3 · 10−13 s,2 which allows the laser beam to pass a distance z = ct/
√
ε ≈

5 · 10−3 cm.

We further assume that the initial field intensity distribution I(y, 0) of the

incident laser beam (in the plane z = 0) has a Gaussian profile. In view of the

relation (10), the latter is determined by the distribution of φ(y, 0):

Re[φ(y, 0)] = a exp

[
− (y − y0)

2

L2

]
,

Im[φ(y, 0)] = 0 ,

(11)
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where L is the beam half-width, y0 is the coordinate of the maximum field intensity

of the beam along the axis Oy, and a is the dimensionless parameter determined

by the frequency and initial amplitude of the electric field of the incident beam (in

the plane z = 0):

a =
E0edx
�ω

√
2 , (12)

as it follows from Eq. (10) with account of Eq. (11).

The choice of initial conditions in the form of (11) is due to the fact that the

Gaussian intensity distribution is known to be of great interest from a practical

point of view in a wide range of applications. This is due to the fact that the minimal

diffraction spreading is observed for Gaussian beams and such beams are closest

to the reality, being an approximation, most simply and completely describing the

properties of laser radiation.27–31

To our knowledge, Eq. (9) has no exact analytical solutions in a general case. In

the present study it is solved numerically together with the initial condition (11).

For the numerical solution of this equation we apply the implicit difference scheme.

Difference scheme steps in both time and coordinates where iteratively decreased

twice until the solution became unchanged in the eighth decimal place.

Figure 2 represent the typical results of modeling of a monochromatic laser

beam in an array of semiconductor carbon nanotubes.

Figure 2 shows the field intensity distribution in an array of nanotubes during

the propagation of a Gaussian beam with half-width L = 6 ·10−4 cm in a nanotube

array of the (7, 0) type for the above-mentioned values of other parameters of

the system. The field intensity is represented by the ratio I/E2
0 = |φ|2/a2 [see

Eqs. (10)–(12)], different values of which are set in correspondence to the linear

dependence of the shades of gray scale. Most bright areas correspond to high

intensity zones, and the darkest to the low ones. Horizontal and vertical axes on

Fig. 2 correspond to the dimensionless coordinates ν = yω0/c and ζ = zω0/c,

respectively. For the values of the parameters chosen above, units on the axes Oν

and Oξ correspond to distances ∆y = ∆z ≈ 3 · 10−4 cm. Figure 2 highlights

Fig. 2. Propagation of a Gaussian laser beam for different values of E0 and ω. (a) E0 = 103 V/cm,

ω = 2 · 1014 s−1; (b) E0 = 106 V/cm, ω = 1015 s−1. The axes are scaled using dimensionless
coordinates ν = yω0/c and ζ = zω0/c.
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Fig. 3. Behavior of χ(E0) at fixed ω for different values of m: 1 – m = 7; 2 – m = 8; 3 – m = 10.
The values of ω used are: (a) ω = 5 · 1014 s−1; (b) ω = 7 · 1014 s−1. Unit on the horizontal axis
corresponds to a field E1 = 105 V/cm .

that during the propagation of the Gaussian laser beam in an array of nanotubes

diffraction spreading occurs. After the distance ∆z ≈ 9·10−3 cm� λ (λ = 2πc/ω
√
ε

is the wavelength of the beam in the medium), the beam remains visible and

has a peak intensity Ipeak ≈ 0.5 · E2
0 at E0 = 103 V/cm and ω = 3 · 1014 s−1

[λ ≈ 4.7·10−4 cm, Fig. 1(a)]; or Ipeak ≈ 0.8·E2
0 at E0 = 106 V/cm and ω = 1015 s−1

[λ ≈ 9.4 · 10−5 cm, Fig. 1(b)]. Thus, changing the frequency and initial amplitude

of the laser beam can effectively influence the spreading of the beam in an array of

nanotubes.

The process of diffraction spreading of the laser beam clearly exhibited in Fig. 2

is quantified here by the dimensionless measure

χ =
∆Ipeak
E2

0∆ξ
=

∆|φpeak|2
a20∆ζ

, (13)

which is a ratio of the relative change of the peak intensity of the beam field and

the dimensionless distance ∆ζ = ω0∆z/c, corresponding to that change.

Figure 3 shows the dependence of the diffraction spreading χ on the initial

amplitude E0 of the field intensity of the beam, incident on an array of nanotubes of

the type (m, 0) at a fixed frequency ω of the field for different values of the index m.

It is clear from the figure that the values of the parameter χ that characterizes the

diffraction spreading of the laser beam decrease in a nonlinear way with increasing

the amplitude of its electric field. We also note the strong dependence of the absolute

value of χ on the frequency ω, which in turn suggests that we can substantially

reduce the diffraction spreading by relatively small variation in the laser frequency.

Figure 4 demonstrates the dependence of χ on the frequency ω of the beam field

at a fixed initial amplitude of the electric field E0 for the cases of beam propagation

in a homogeneous dielectric without nanotubes (curve 1), as well as in an array

of nanotubes with different values of m (curves 2–4). The main conclusion from

Fig. 4 is that the rate of diffraction spreading decreases with increasing frequency.

Dependencies χ(E0) and χ(ω), as shown in Figs. 3 and 4, can be attributed, in our

opinion, to the dependence of the dispersion and nonlinearity (which, in turn, are
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Fig. 4. Behavior of χ(ω) at fixed E0. Curve 1 corresponds to a homogeneous dielectric without
nanotubes (ε = 4); curves 2–4 demonstrate the results for an array of nanotubes in various
cases: 2 – m = 7; 3 – m = 8; 4 – m = 10. The values of E0 used are: (a) E0 = 103 V/cm;
(b) E0 = 106 V/cm.

determined by the quantity 2ik∂φ/∂z and the term containing the sum over α in

Eq. (9), respectively) on the frequency ω and amplitude E0 of the initial field of

the laser beam.

This kind of dependence in Figs. 3 and 4 is connected to the fact that the

nonlinearity results in a focusing effect on the laser beam. Speaking the language of

classical optics, the laser beam changes the effective refractive index of the medium

in which it propagates. The latter leads to the formation of the region, similar to the

optical waveguide; with a high refraction index at the edges. As a result, the laser

beams of greater amplitude are less susceptible to diffraction, which in turn leads

to the dependence on the frequency shown in Fig. 4. This is due to the fact that

the frequency appears in the nonlinear (the last one) term in Eq. (9). This, in turn,

allows for a simple test of the predicted effects either by the measurement of the

radius of the laser beam at the output of a medium containing carbon nanotubes,

or by the threshold effect (see Fig. 2), which leads to the fact that the laser beam

of a small-amplitude just decreases its amplitude due to a diffraction spreading.

Note that the spreading of a laser beam propagating in a nonlinear medium

of the array of nanotubes placed in a dielectric is much less intense than in a

homogeneous dielectric in the absence of nanotubes (see Fig. 4), as nonlinearity

significantly compensates the dispersion spreading. Figures 3 and 4 also show that

the value of the parameterm affects the process of spreading of the laser beam, that

is reflected in change of the shape of the curves χ(E0) and χ(ω) with changingm (see

the curves 2–4 of Figs. 3 and 4). With the growth of the index m, the spreading rate

χ decreases. This relationship can be attributed to the reconstruction of the electron

energy spectrum of nanotubes due to changes in the parameter m. As shown in

Ref. 34, an increase in m leads to an increase in the effective nonlinearity, which

prevents spreading of the electromagnetic wave. Thus, changing the parameters of

the incident radiation, can effectively reduce the intensity of its spreading during

the propagation through an array of nanotubes. This fact, in our opinion, may be
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crucial in the choice of semiconductor arrays of carbon nanotubes as the basis for

the development of optoelectronic devices to control the laser field.

5. Conclusion

The main results of our work can be summarized as follows:

(i) We derived the effective equation describing the propagation of a

monochromatic Gaussian laser beam in an array of semiconducting carbon

nanotubes.

(ii) The numerical simulation revealed that the laser beam in an array

of nanotubes, experiencing diffraction spreading, propagates a significant

distance, conserving the peak intensity at a level acceptable for practical

applications.

(iii) Increasing the frequency and amplitude of the initial field of the laser beam

leads to a weakening of its diffraction spreading in an array of nanotubes.

(iv) Increasing the nanotube structural parameter m leads to a weakening of the

diffraction spreading of the laser beam.
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