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In this paper we study the electron energy spectrum corresponding to Landau levels
in doped graphene when an external magnetic field is applied in the direction normal
to the graphene planar sheet. The derived dispersion relation for the electrons in the
doped graphene allows us to determine the dependence of the electrical conductivity
on the applied magnetic field. This relationship between electrical conductivity and
applied magnetic field is further analyzed for different characteristics of the impurities;
specifically the potential of hybridization and the energy of the adsorbed atom.
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1. Introduction

Graphene is of great scientific interest not only because of the prospects for future

use in microelectronics,1,2 but also because of the wealth of nonclassical, surprising

and unusual effects evidenced experimentally and awaiting to be explained theoret-

ically. The uniqueness of the physical characteristics of graphene is well epitomized

by the Hall effect, caused by an unusual relativistic dispersion of quasiparticles

driving an electric current. For instance, fractional and integer quantum Hall ef-

fects in graphene show different features in comparison with the effects obtained

with a classical two-dimensional electron gas.

It is well known that the application of a magnetic field to conductors forces

the conduction electrons to move — within the semiclassical framework — in a

limited region of space with a discrete and uniformly distributed set of energy

levels. Such quantized orbits are called the Landau levels. In graphene, these levels

§Corresponding author.
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are nonuniformly distributed since the conduction electrons behave as massless

fermions, whose speed does not depend on their energy. Recently, experimental

evidences confirmed the theoretical predictions about the unusual properties of

the Landau levels in graphene.3 One has however to note that in practice, most

likely, a manufactured graphene will contain a certain level of impurities. Moreover,

the inclusion of specific impurities can enrich the number of surprising graphene

properties. Thus, the present study is devoted to shedding some light on the impact

of impurities on the electron energy spectrum of doped graphene layers.

2. Model for the Graphene Layer

The Hamiltonian for graphene in the long-wave approximation reads

H = vF(σxpx + σypy) , (1)

where vF is the Fermi velocity, σx and σy stand for Pauli matrices, px and py the

quasi-momentum components.4 Note that the Hamiltonian (1) is appropriate near

one of the Dirac points K and acts in the space of wave functions ψ = (ψA, ψB)

which correspond to the wave functions of electrons localized on A and B sublat-

tices, respectively. Consider that next to the atoms of the sublattices A and B,

the localized impurities can be present, and the corresponding Hamiltonian in the

space of wave functions can be written as ψ = (ψA, ψB, φA, φB), where φA and φB
correspond to the wave functions of electrons localized on the impurity, which is

located near the graphene atom of A and B sublattices, respectively. In this space,

the Hamiltonian has the form

H =











0 vF(px − ipy) V 0

vF(px + ipy) 0 0 V

V 0 ǫa 0

0 V 0 ǫa











, (2)

where V is the hybridization potential, and ǫa is the energy of the absorbed atom

with respect to the Fermi level. Let us now turn to an external magnetic field B

directed perpendicular to the graphene plane. In this study, we chose the gauge

A = (−By, 0, 0), with B = ∇×A. Note that in the presence of the electromagnetic

field, momentum must be replaced by the generalized momentum, p → p − qA/c,

where q is the electron charge, and c is the speed of light in vacuum. Thereafter we

set c = ~ = 1 unless explicitly stated otherwise, so that pα = i∂α. By making the

substitution

ψ → φ exp(ikx) , (3)

and introducing the dimensionless coordinate y = lmȳ (lm = 1/
√
qB being the

“magnetic length”), we define the operators

a =
1√
2

(

ȳ +
∂

∂ȳ

)

, a† =
1√
2

(

ȳ − ∂

∂ȳ

)

,
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which satisfy the commutation relations [a, a†] = 1. With the above notations, the

Hamiltonian takes the form

H =











0 ωca V 0

ωca
† 0 0 V

V 0 ǫa 0

0 V 0 ǫa











, (4)

where ωc = vF
√
2qB is the cyclotron frequency.5,6 Note that a and a† are the cre-

ation (annihilation) operators, and hence, the Hamiltonian (4) can be diagonalized

in the basis of wave functions φ = (a1|n〉, a2|n−1〉), a3|n〉, a4|n−1〉, where |n〉 is the
eigenfunction of a harmonic oscillator corresponding to the nth energy level, and

a†|n〉 =
√
n+ 1|n + 1〉. With this choice of eigenfunctions, the problem of finding

the energy spectrum, is reduced to finding the eigenvalues of the Hamiltonian

H =











0 ωc

√
n V 0

ωc

√
n 0 0 V

V 0 ǫa 0

0 V 0 ǫa











. (5)

It is easy to prove that the energy spectrum of the problem is given by the following

relations, which correspond to the four Landau levels in a doped graphene

En =





























1

2
ǫa +

1

2
hn +

1

2

√

(ǫa − hn)2 + 4V 2

1

2
ǫa +

1

2
hn − 1

2

√

(ǫa − hn)2 + 4V 2

1

2
ǫa −

1

2
hn +

1

2

√

(ǫa + hn)2 + 4V 2

1

2
ǫa −

1

2
hn − 1

2

√

(ǫa + hn)2 + 4V 2





























, (6)

where hn = ωc

√
n (n = 0, 1, 2 . . .).

Kubo formula for the calculation of the conductivity has the form8

σij =
e2~

Ω

∑

n6=n′

(fpn − fpn′) Im[〈pn|vi|pn′〉〈pn′|vj |pn〉]
(Epn − Epn′)(Epn − Epn′ + iδ+)

, (7)

where δ+ → 0+, Ω is the Berry surface, and fpn is the Dirac distribution function:

fpn =
1

exp[β(Epn − µ) + 1]
, (8)

and µ is the chemical potential. Note that Epn in Eq. (7) refers to any energy level

in the system (not necessarily the Landau level). In the Heisenberg representation

the velocity operator has the form

vj =
1

i~
[rj , H ] , (j = x, y, z) . (9)
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The matrix form of the operators of velocities vx and vy is as follows:

vx =











0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0











, vy = i











0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0











. (10)

3. Results of the Numerical Analysis

The derived expressions for the off-diagonal conductivity σxy [see Eq. (7)] have been

analyzed numerically. Figure 1 shows a typical dependence of conductivity on the

magnitude of the magnetic field for different values ǫa of the energy of the impu-

rity atoms. Note that such a behavior of the conductivity is associated with the

movement of electrons in a magnetic field given the complex nature of the Landau

levels (6) and the presence of the Fermi distribution function in Eq. (7). This leads

to a decrease in susceptibility when the magnetic field becomes large enough, since

most of the electrons will occupy the lowest Landau level. In other words, the effec-

tive size of the region of localization of electrons becomes rather small, which leads

to a decrease in the transport characteristics. The region of negative conductivity,

in our opinion, is associated with transitions between Landau levels similarly to

semiconductor systems.10,11 To demonstrate the strong influence of the hybridiza-

tion potential on the Hall conductivity we present in Fig. 2 similar dependences

for a value of V almost three times smaller than the one considered in Fig. 1. To

be even more transparent at this point, we would like to refer to Fig. 3, where the

conductivity is plotted for different values of hybridization potential. It is important

Fig. 1. The dependence of conductivity on the magnetic field for different values of the energy

of the impurity atoms (V = −1.43 eV): (i) solid line, ǫa = −4 eV; (ii) dotted line, ǫa = −5 eV;
(iii) dashed line, ǫa = −6 eV.
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Fig. 2. The dependence of conductivity on the magnetic field for different values of the energy
of the impurity atoms (V = −0.5 eV): (i) solid line, ǫa = −4 eV; (ii) dotted line, ǫa = −5 eV;
(iii) dashed line, ǫa = −6 eV.

Fig. 3. The dependence of conductivity on the magnetic field for different values of the hy-
bridization potential of the impurity atom and atom graphene lattice (ǫa = −5 eV): (i) solid line,
V = −0.5 eV; (ii) dotted line, V = −0.7 eV; (iii) dashed line, V = −1.43 eV.

to emphasize that we are working in the frame of long-wavelength approximation.

More specifically, it is supposed that the levels should be nondegenerate and the

strong inequality E/B ≪
√

∆/2m (∆ is the bandgap) holds.12 It means that our

approach is quantitatively correct in the domain of strong enough magnetic field B

and/or large hybridization potential V .

As can be seen from Fig. 1 that with an increase in absolute value of the adsorp-

tion energy, the magnitude of the peak corresponding to positive Hall conductivity
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Fig. 4. The dependence of conductivity on the magnetic field for different values of the hy-
bridization potential of the impurity atom and atom graphene lattice (ǫa = −5 eV): (i) solid line,
V = −0.9 eV; (ii) dotted line, V = −1 eV; (iii) dashed line, V = −1.1 eV.

increases, and the peak shifts toward lower values of the magnetic field. At the

same time, the magnitude of the peak corresponding to negative Hall conductivity

decreases. This behavior can be associated with hops of the Larmor orbit centers,13

which are responsible for the appearance of absolute negative conductivity.

Figure 4 demonstrates the dependence of the Hall conductivity on the magnetic

field for three different values of the hybridization potential in the vicinity of V =

−1 eV. With the increase in the absolute value of the hybridization potential, the

peak of the positive conductivity increases and shifts toward higher values of the

magnetic field, while the peak of negative conductivity decreases in absolute value.

This behavior is also related to the hops of the Larmor orbit centers.13 Thus, with an

increase in the absolute value of the hybridization energy V , the electrons become

more strongly associated with the adsorption centers and, accordingly, the Larmor

orbits hops are less likely, therefore leading to a decrease in the effect of absolute

negative conductivity.

Note that a state with absolute negative conductivity is unstable and would

not be observed experimentally. As already noted in Ref. 11, the experimental

observations indicate a splitting into domains, in which the current flows in different

directions, which in turn will lead to a state with zero conductivity. With increasing

magnetic field the domains will merge, and eventually the formation of a single

domain will again lead to nonzero conductivity.

Based on Eq. (6), one can say that a stronger influence of hybridization on

the conductivity can be attributed to the change of the electron mobility and the

structure of the Landau levels. Note that similar effects have been observed in other

systems with intricate electronic spectra.14,15
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4. Conclusions

In conclusion, the main results of this work can be summarized as follows:

(i) Landau levels in doped graphene subjected to a constant external magnetic

field applied in the direction perpendicular to its plane were calculated

(ii) The dependence of of electrical conductivity on the magnetic field has been

studied taking into account the Landau levels. The presence of impurities has

a significant influence on this quantity.

(iii) When increasing the potential of hybridization of the electron clouds of

graphene and impurity atoms, the extent of the negative conductance region

decreases, which is assumed to be due to the influence of the magnetic field on

the impurity levels of the system.
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