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We present a variational data assimilation method in order to improve the accuracy
of velocity fields ṽ, that are measured using particle image velocimetry (PIV). The
method minimises the space–time integral of the difference between the reconstruction
u and ṽ, under the constraint, that u satisfies conservation of mass and momentum.
We apply the method to synthetic velocimetry data, in a two-dimensional turbulent
flow, where realistic PIV noise is generated by computationally mimicking the
PIV measurement process. The method performs optimally when the assimilation
integration time is of the order of the flow correlation time. We interpret these results
by comparing them to one-dimensional diffusion and advection problems, for which
we derive analytical expressions for the reconstruction error.

Key words: computational methods, variational methods, turbulence simulation

1. Introduction
The particle image velocimetry (PIV) technique measures a fluid velocity field by

seeding the fluid with micron sized particles, and imaging their positions in a plane,
using a laser sheet (e.g. Adrian & Westerweel 2011). The measured fluid velocity
ṽ(x, t) at time t and position x is obtained from two consecutive images I ( y, t −
1
21tPIV) and I ( y, t+ 1

21tPIV), with time difference 1tPIV , by maximising for each x
the correlation function,

C (x)=
∫

f`(|x− y|)I ( y, t− 1
21tPIV)I ( y+ ṽ(x, t)1tPIV, t+ 1

21tPIV) d2y, (1.1)

where f`(x) is a (two-dimensional) mask function, whose size `2 is referred to as the
interrogation window. As an effect, PIV does not resolve the eddies that are smaller
than `, i.e. the measured velocity field ṽ is a filtered version of the actual field v.
Besides filtering, PIV introduces additional noise, which depends in a complicated way
on the structure of the unresolved eddies, and on the out of plane velocity component
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of v, as well as on the particle seeding density, particle image diameter, non-uniform
laser illumination and camera limitations, e.g. pixel locking and resolution.

Various methods have been proposed to mitigate the PIV noise. Some methods
are based on the data assimilation technique. This technique reconstructs a velocity
field u by minimising the difference between u and ṽ, under the constraint, that u
satisfies conservation of mass and/or momentum. There are principally two distinct
data assimilation methods, being the space integral method (SIM) (e.g. Humphrey
1993; Ruhnau, Stahl & Schnörr 2007; Suzuki 2012; Foures et al. 2014; Symon et al.
2017), and the space–time integral method (STIM) (e.g. Talagrand & Courtier 1987;
Gronskis, Heitz & Mémin 2013; Mons et al. 2016; Gillissen et al. 2018). In both
methods the mismatch between the reconstructed field u and the observed field ṽ is
translated into a force field, that drives u towards ṽ. In SIM the force at time t= t1
depends only on measurements ṽ at t1, while in STIM the force at t1 depends on ṽ
in a time window t1 < t < t1 + τ , where τ is referred to as the assimilation time. In
this approach the observations ṽ from t> t1 are propagated backward in time to t1, to
update the initial conditions of u at t1. As an effect STIM is more computationally
intensive and more accurate than SIM.

To our knowledge STIM has not yet been applied to improve PIV data. In this
work we fill this gap, and apply STIM to improve the accuracy of synthetic PIV
data for a two-dimensional (2-D) turbulent flow. In particular we study, how the
reconstruction error ε depends on the assimilation time τ , and the PIV measurement
error, where the latter is controlled by the size of the PIV interrogation window `2.
We interpret these numerical results, by comparing them to one-dimensional diffusion
and advection problems, for which we derive analytical relationships between ε and
the above mentioned parameters.

2. Data assimilation methods
In this work, we study the performance of a STIM to improve the accuracy of

synthetic PIV data for a 2-D turbulent flow. In order to evaluate its performance, we
compare the STIM to a SIM, which is less computationally intensive, but also less
effective in reducing the PIV measurement error. We derive the STIM and SIM in
§§ 2.1 and 2.2 below.

2.1. Space–time integral method
We consider a PIV velocity field ṽ, which is a measurement of an actual velocity
field v, at evenly distributed time instances ti = i1t, where i = 1, 2, 3, . . . , and 1t
is the sampling time. We construct an improved velocity field u, by minimising the
difference between u and ṽ under the constraint that u satisfies the Navier–Stokes
equations,

R(w)=
(
∂tu+ u · ∇u+∇p− ν∇2u

∇ · u

)
= 0, (2.1)

where w = (u, p) is referred to as the ‘state variable’, p is the fluid pressure and ν
is the fluid kinematic viscosity. We therefore minimise a constrained cost functional,
referred to as the Lagrangian L ,

L =

∫ tP

t1

(
1
2
‖u− ṽ‖2

P∑
i=1

δ(t− ti)+ 〈ŵ,R(w)〉

)
dt, (2.2)
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which involves a set of P measurements, taken from an assimilation window t1 < t<
tP, where τ = tP − t1 is the assimilation time. The Lagrange multiplier ŵ= (û, p̂) is
introduced to enforce the constraint (2.1). Note, that a hat ˆ above a field variable
denotes, that the field variable is a Lagrange multiplier. In (2.2) time integration is
performed from the first to the last (Pth) measurement, δ(·) denotes the Dirac delta
function and ‖ · ‖ is the norm based on the standard inner product 〈·, ·〉, which, when
applied to two complex vector fields a and b, reads

〈a, b〉 =
∫

dVa∗ · b. (2.3)

Here V is the spatial domain, on which a and b are defined, and the superscript ∗
denotes complex conjugation.

The goal is to find u, that minimises L (2.2). Since u is determined by its initial
conditions u1, we determine u by minimising L with respect to u1. It is noted, that
subscript indices refer to time instances, e.g. u1= u(t1). To minimise L with respect
to u1, we need the gradient of L with respect to u1, i.e. δL /δu1. To derive an
expression for δL /δu1 we start by writing the variation of the cost functional δL
due to an infinitesimal variation of the state variable δw= (δu, δp),

δL =

∫ tP

t1

(
〈u− ṽ, δu〉

P∑
i=1

δ(t− ti)+ 〈ŵ, δR(w)〉

)
dt. (2.4)

We rewrite the Lagrange multiplier term in (2.4) using integration by parts (e.g.
Gunzburger 2003),

δL =

∫ tP

t1

(
〈u− ṽ, δu〉

P∑
i=1

δ(t− ti)+ 〈R̂(w, ŵ), δw〉

)
dt+ 〈ûP, δuP〉 − 〈û1, δu1〉,

(2.5)

where R̂ is the adjoint of the linearised Navier–Stokes equations R (2.1),

R̂(w, ŵ)=

(
−∂tû− u · (∇û+∇ûT

)−∇p̂− ν∇2û
−∇ · û

)
, (2.6)

where a hat ˆ above an operator denotes the adjoint of the linearised version of that
operator, and ∇ûT is the transpose of ∇û. In (2.5) the terms involving ûP and û1 are
time-boundary terms, that are obtained by integrating by parts the time derivative term
in 〈ŵ, δR(w)〉 in (2.4). These terms determine the initial and final conditions for û at
t = tP and at t = t1, respectively. We do not consider similar spatial boundary terms,
as we assume spatial periodicity, for simplicity.

We find the initial value u1 that minimises the cost functional L (2.2), using a
conjugate gradient method, by iteratively updating u1 in a search direction, that is
related to the functional derivative of L with respect to u1. From (2.5) we find that

δL

δu1
=−û1. (2.7)

To find the Lagrange multiplier û1 at instant t1, we use the equation of motion for
û. This equation is derived from (2.5), by demanding that the Lagrangian L is at
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an extremum with respect to the state variable w, i.e. δL is zero under infinitesimal
variation δw,

−∂tû− u · (∇û+∇ûT
)−∇p̂− ν∇2û+ (u− ṽ)

P∑
i=1

δ(t− ti)= 0,

−∇ · û= 0.

 (2.8a)

According to (2.8a), the Lagrange multiplier û is incompressible and is advected by
u and is subjected to a (negative) viscosity −ν and is driven by a source term, which
is the difference between the measurement ṽ and the reconstruction u, at discrete
sampling times ti. Due to the negative viscosity, the equation is integrated backward
in time. The corresponding ‘initial’ conditions at time tP and ‘final’ conditions at time
t1 are found from (2.5), by demanding that δL is zero under infinitesimal variations
δuP and δu1, giving

ûP = 0, (2.8b)

and

û1 = 0. (2.8c)

The conjugate gradient update direction û1 (2.7) is found by integrating (2.8a)
backward in time, using ‘initial’ conditions given by (2.8b). After updating the
initial conditions for the forward problem u1, equation (2.1) is integrated (forward
in time), which gives a new source term for the Lagrange multiplier equation (2.8a).
This procedure is repeated until L is at an extremum, with respect to u1, which,
according to (2.7), corresponds to (2.8c) being satisfied, to a certain degree of
accuracy.

2.2. Space integral method
In this work we compare the performance of the STIM (2.2) to a SIM, which is
similar to previously used methods, to improve PIV data (e.g. Ruhnau et al. 2005).
The SIM minimises, at each instant t = ti, the following cost functional, which
penalises the difference between the reconstruction u and the measurement ṽ, under
the constraint that u is divergence free

L = 1
2‖u− ṽ‖2

+ 〈p̂,∇ · u〉 + 1
2κ‖∇

2u‖2, (2.9)

and where a regularisation term κ‖∇2u‖2 is added to suppress the noise at large
wavenumbers (e.g. Tikhonov & Arsenin 1977). Here κ is referred to as the
regularisation strength. Minimising L with respect to u involves computing the
variation of L due to a variation in u

δL = 〈u− ṽ, δu〉 − 〈∇p̂, δu〉 + 〈κ∇4u, δu〉, (2.10)

where we have applied integration by parts. To find the reconstructed velocity field u,
we demand that δL is zero under infinitesimal variation δu

(1+ κ∇4)u= ṽ +∇p̂. (2.11)

Here the term ∇p̂ ensures that u is divergence free

∇ · u= 0. (2.12)

https://doi.org/10.1017/jfm.2019.602
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


200 J. J. J. Gillissen, R. Bouffanais and D. K. P. Yue

The solution to (2.11), (2.12) in Fourier space reads

uk
=

ṽ
k

1+ κk4
·

(
δ −

kk
k2

)
, (2.13)

where the superscript indices refer to the wavevectors of the spatial Fourier modes.
Equation (2.13) shows, that the regularisation term in the cost functional (2.9)
effectively applies hyper diffusion to the measurement field ṽ. The order of the hyper
diffusion, which in this case equals four, depends on the exponent on the velocity
gradient in the κ-term in (2.9), which in this case equals two. For a unit exponent
we would have recovered normal, second-order diffusion (see e.g. Ruhnau et al.
2005). Fourth-order diffusion is chosen above second-order diffusion however, since
the former affects more selectively the large wavenumbers, while leaving the small
wavenumbers intact.

3. Linear problems
3.1. General considerations

In this work we study the performance of the STIM (2.2) to improve the accuracy of
synthetic PIV data. Before considering 2-D turbulent flow cases in § 4, we start in this
section by considering one-dimensional (1-D) linear problems, for which analytical
expressions can be derived for the method performance. In general, the linear equation
of motion reads

∂tu− S(u)= 0, (3.1)

where S is a linear spatial operator. We decompose the spatial part of u into the
Fourier modes exp(ikx), where k is the wavenumber and where i=

√
−1,

u= uk(t) exp(ikx). (3.2)

Here uk(t) are the time-dependent Fourier coefficients, and summation of repeated
indices is assumed. It is noted, that superscript indices refer to Fourier coefficients.
Inserting (3.2) into (3.1) and taking the inner product (2.3) of the result with exp(ilx)
and using the orthogonality property of exp(ikx), gives the equation of motion of ul

∂tul
−Mlkuk

= 0, (3.3)

where Mlk
= 〈exp(ilx), S exp(ikx)〉 is the Fourier representation of S. Similarly we

decompose the Lagrange multiplier into û = ûk(t) exp(ikx), where it is recalled, that
a hat ˆ above a field variable denotes that the field variable is a Lagrange multiplier.
The evolution equation for the Fourier coefficients ûl is derived, following similar lines
as for (2.8), and is given by

− ∂tûl
−M∗lkûk

+ (ul
− ṽl)

P∑
i=1

δ(t− ti)= 0, (3.4a)

where M∗lk is the complex conjugate of Mlk. The initial and final conditions for (3.4a)
read

ûl
1 = 0, (3.4b)
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and

ûl
P = 0. (3.4c)

To allow for an analytical treatment of the problem, we assume, in this section, that
the PIV measured velocity field ṽ is related to the actual velocity field v as follows:

ṽ = v + v′, (3.5a)

where v′ is white noise with standard deviation σv, and (·) is the following spatial
filter:

v(x)=
∫

f`(|x− y|)v(y) dy. (3.5b)

Here f`(x) is a mask function of width `. In Fourier space, the PIV measurement
operation (3.5) reads

ṽl
= Flk(vk

+ v′k), (3.6)

where Flk is the Fourier representation of the filter operator (3.5b), which is assumed
to be a sharp cutoff filter, with a width of kfilter = 2π/`

Fkl
= δkl

{
1, if k 6 kfilter,
0, if k> kfilter.

(3.7)

It is noted, that actual PIV noise is more complex than white noise. Assuming white
noise is necessary however to make analytical progress. In § 4.3 we consider more
realistic noise when applying the method to 2-D turbulent flow cases.

Without loss of generality, we assume that t1 = 0 and we introduce the following
notation for the forward integration, from t= t1 to t= ti, of the linear equation (3.3)

ul
i =Glk

i uk
1, (3.8a)

where Glk
i is given by

Glk
i = exp(Mlkti). (3.8b)

It is recalled, that subscript indices refer to time instances. With this notation, the
backward in time integration of (3.4a), from t = tP to t = t1, starting at t = tP with
ûk

P = 0, is written as

ûl
1 =

P∑
i=1

G∗lk
i (u

k
i − ṽ

k
i ), (3.9)

Using (3.6) and (3.8a)

ṽl
i = Flk(Gkm

i v
m
1 + v

′k
i ), (3.10)

we rewrite (3.9) into

ûl
1 =

P∑
i=1

G∗lm
i [G

mk
i uk

1 − Fmn(Gnk
i v

k
1 + v

′n
i )]. (3.11)
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It is recalled that superscript indices refer to spatial Fourier modes. For the ease of
notation, we replace these superscript indices with vector notation, such that (3.11)
reads

û1 =

P∑
i=1

G∗i · [Gi · u1 −F · (Gi · v1 + v′i)]. (3.12)

Minimisation of the cost functional corresponds to û1 = 0, which results in the
following reconstruction error:

u1 − v1 =

( P∑
i=1

G∗i ·Gi

)−1

·

P∑
i=1

G∗i ·F ·Gi − δ

 · v1

+

(
P∑

i=1

G∗i ·Gi

)−1

·

P∑
i=1

G∗i ·F · v′i. (3.13)

The error (3.13) consists of two terms. The first term is referred to as the filter error,
and the second term is referred to as the noise error. In the next subsections, we
analyse the behaviour of these two terms, as a function of the assimilation time τ ,
for the cases of diffusion and advection.

3.2. Diffusion
We consider scalar diffusion with diffusivity ν on a domain of size 2π. The Fourier
representation of the corresponding operator S(u)= ν∂2

x u reads

Mkl
=−νk2δkl, (3.14)

which is diagonal, meaning that the Fourier modes evolve independently. Inserting
Gkl

i = exp(−k2νti)δ
kl and (3.7) into (3.13), gives that for a single mode with

wavenumber k 6 kfilter, the filter error is zero (first term on right-hand side of (3.13)),
while the noise error is non-zero (second term on right-hand side of (3.13)), and is
given by

uk
1 − v

k
1 =

P∑
i=1

exp(−k2νti)

P∑
j=1

exp(−2k2νtj)

v′ki . (3.15)

Assuming that v′ki has a zero mean and a non-zero standard deviation σv, the mean
of the error ε = uk

1 − v
k
1 is zero, and its standard deviation σε equals

σε =

√√√√√√√
P∑

i=1


exp(−k2νti)

P∑
j=1

exp(−2k2νtj)

σv


2

=
σv√√√√ P∑

i=1

exp(−2k2νti)

. (3.16)
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FIGURE 1. (a) Theoretical standard deviation of the reconstruction error σε (3.17) for
a diffusing Fourier mode, relative to the standard deviation of the measurement error
of that mode σv as a function of the dimensionless assimilation time 2νk2τ for various
dimensionless sampling times 2νk21t. (b) The evolution of a scalar profile, with u(t =
0)= cos(x), that is advected by an inhomogeneous velocity field U cos(x). (c) Theoretical
standard deviation σε and absolute value of mean |µε| of the reconstruction error (3.13)
for the k = 1 mode in non-uniform advection (3.18) based on a measurement filter, that
only passes the k= 1 mode (3.7).

By recalling that ti =1t(i− 1), where 1t= τ/(P− 1) is the sampling time, and τ =
tP− t1 is the assimilation time, and by using that

∑P−1
i=0 xi

= (xP
− 1)/(x− 1), we find

σε = σv

√
exp(−1t′)− 1

exp(−τ ′ −1t′)− 1
, (3.17)

where τ ′ = 2τνk2 and 1t′ = 2νk21t are the assimilation time and the sampling
time, non-dimensionalised with the correlation time T = (2k2ν)−1. For 1t′� τ ′� 1,
equation (3.17) predicts the expected behaviour, that the standard deviation of the
noise error σε scales inversely with the square root of the number of samples P, i.e.
σε = σv

√
1t′/τ ′ = σv/

√
P. For τ ′� 1�1t′ on the other hand, the reconstruction is

affected only by a fraction of the total number of samples P, whose time distances
are smaller than the correlation time. The number of contributing samples is then
equal to the correlation time divided by the sampling time, which in non-dimensional
units reads: 1/1t′� P. In this case σε scales inversely with the square root of this
number, i.e. it grows with the square root of the sampling time σε = σv

√
1t′.

Equation (3.17) is plotted in figure 1(a) as a function of τ ′ for various 1t′ showing
the transition from inverse square root to constant. The graph illustrates that the
reconstruction does not improve when information is added beyond the correlation
time of the system T = (2k2ν)−1, i.e. measurements at time ti�T do not influence
the reconstruction at time t= 0.

3.3. Advection
Next we consider the advection of a scalar u in an inhomogeneous velocity field
U cos(x), with an amplitude U and a unit wavenumber on a domain of size 2π. The
evolution of a scalar profile u(x, t) with u(x, t= 0)= cos(x) is sketched in figure 1(b).
The Fourier representation of the corresponding operator S(u)=−U cos(x)∂xu is given
by

Mkl
=−

ilU
2
(δl,k−1

+ δl,k+1). (3.18)
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We compute the error (3.13) in the small time limit τ‖M‖ � 1, such that Gi (3.8b)
is approximated by

Gi ≈ δ + i1tM, (3.19)

which to leading order in τ‖M‖ gives

u1 − v1 =

[
F− δ +

τ

2
(F ·M−M ·F)

]
· v1 + P−1

P∑
i=1

F · v′i, (3.20)

where we have used that τ = 1tP. Using (3.7), (3.18), we see that the noise error
(second term on the right-hand side of (3.20)) equals

P−1
P∑

i=1

Fklv′li =

P−1
P∑

i=1

v′ki , if k 6 kfilter,

0, if k> kfilter,

(3.21)

and the leading order of the filter error (first term on the right-hand side of (3.20))
equals

[
Fkl
− δkl
+
τ

2
(FkmMml

−MkmFml)
]
vl

1 =


0, if k< kfilter,

−
1
4
iUτ(k+ 1)vk+1, if k= kfilter,

vk
1, if k> kfilter.

(3.22)

Equation (3.22) shows a 0 % and a 100 % error for k < kfilter and k > kfilter, and an
intermediate error for k= kfilter, which is explained as follows. When acting on the kfilter
mode at t = 0, the advection operator (3.18) creates kfilter + 1 and kfilter − 1 modes at
t= τ . Since the kfilter+ 1 mode is cut off by the filter (3.7), the resulting filtered signal
at t= τ contains insufficient information, to fully reconstruct the kfilter mode at t= 0,
which explains the intermediate filter error for k = kfilter in (3.22). Combining (3.21),
(3.22), we write for the total reconstruction error ε = ukfilter

1 − v
kfilter
1 for the k = kfilter

mode

ukfilter
1 − v

kfilter
1 =−

iUτ(kfilter + 1)
4

v
kfilter+1
1 + P−1

P∑
i=1

v
′kfilter
i . (3.23)

The mean of the error µε is due to the filtering

µε =−
iUτ(kfilter + 1)

4
v

kfilter+1
1 , (3.24a)

and the standard deviation of the error σε is due to the noise

σε = σv

√
1t
τ
, (3.24b)

where we have used that P= τ/1t, and that v′kfilter
i are uncorrelated random variables

with a standard deviation σv. The (absolute value of the) filter error (3.24a) increases
with the assimilation time τ , since the advection operator (3.18) re-distributes the
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Fourier modes from the resolved part of the spectrum k 6 kfilter to the unresolved part
k> kfilter. The noise error (3.24b), on the other hand, decreases with τ , i.e. it decreases
as the inverse square root of the number of samples P∼ τ , similar as in the diffusion
problem (3.17).

It is recalled, that µε and σε in (3.24) are obtained by linearly expanding Gi
in i1t (3.19). In figure 1(c) we plot µε and σε , based on the full nonlinear
operator (3.8b), and by numerically evaluating (3.7), (3.13), (3.18), where we have
used kfilter = 1. In agreement with (3.24), the figure shows that the (absolute value
of the) filter error |µε| increases, and the noise error σε decreases, both as functions
of τ .

4. Two-dimensional turbulence
4.1. Set-up

In this section we study the performance of the STIM (2.2), to improve the accuracy
of synthetic PIV data for a 2-D incompressible, decaying turbulent velocity field v, on
a square bi-periodic domain of size L= 2π. The flow starts at t = 0 from a random
velocity field, with a velocity norm of U = ‖v‖ = 1.

It is emphasised, that the present test case is a purely 2-D flow, which may
be realised in the laboratory using large aspect ratio flow cells (e.g. Shats et al.
2007) or soap films (e.g. Gillissen et al. 2018). Since the reconstruction principles
are equivalent in two and three dimensions, these principles are studied most
effectively in two dimensions. Purely 2-D flow is not to be confused with planar PIV
measurements of a 3-D flow. In this context, it is noted, that measuring turbulence
in a single plane is insufficient to reconstruct volumetric turbulence, which instead
requires three-dimensional PIV, involving for instance the use of four cameras, and
tomographic reconstruction algorithms (e.g. Scarano 2012). It is further noted that the
characteristics of the measurement errors in tomographic PIV are different than in
standard PIV, and the ability of STIM to reduce these errors deserves further study.

We non-dimensionalise our variables using the velocity scale U , and the length
scale L/(2π), which corresponds to a time scale L/(2πU ). Starting from random
conditions at t = 0, the flow takes a few time units to develop physical structures.
We apply the reconstruction thereafter, i.e. within the period 2< t< 2+ T , where the
reconstruction interval is chosen to be T = 10. We define the following PIV errors for
the kinetic energy ε̃K:

ε̃K = T−1
∫ 2+T

2

∫
(ṽ − v)2 dV∫

v2 dV
dt, (4.1)

for the pressure ε̃p

ε̃p = T−1
∫ 2+T

2

∫
p2(ṽ − v) dV∫

p2(v) dV
dt, (4.2)

and for the energy dissipation ε̃D

ε̃D = T−1
∫ 2+T

2

∫
D(ṽ − v) dV∫

D(v) dV
dt, (4.3)
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where it is recalled that v is the true velocity field and ṽ is the synthetic PIV velocity
field. The dissipation field is given by

D(u)= ν∇u : ∇u, (4.4)

and the pressure field is computed from the equation of state

∇
2p(u)=−∇∇ : uu, (4.5)

and reads in Fourier space

pk(u)=−
kk : ukuk

k2
, (4.6)

where the superscript indices refer to the Fourier wavevectors. Similarly we define the
following reconstruction errors for the kinetic energy εK

εK = T−1
∫ 2+T

2

∫
(u− v)2 dV∫

v2 dV
dt, (4.7)

for the pressure εp

εp = T−1
∫ 2+T

2

∫
p2(u− v) dV∫

p2(v) dV
dt, (4.8)

and for the energy dissipation εD

εD = T−1
∫ 2+T

2

∫
D(u− v) dV∫

D(v) dV
dt, (4.9)

where it is recalled that u is the reconstructed velocity field.
The reconstruction time interval 2 < t < 2 + T is split into segments of size τ ,

referred to as the assimilation time. In each of these segments, a reconstruction
problem is solved, which finds the velocity field at the start of that segment u1.
While the initial guess for the initial conditions of the first segment is zero: u1 = 0,
a considerable improvement of the reconstruction is achieved by using for the initial
guess for the initial conditions of the following segments, the final conditions of each
previous segment (Gillissen et al. 2018). Figure 3(a) illustrates this improvement, by
plotting the time dependence of the instantaneous reconstruction error in the kinetic
energy ε ′K

ε ′K =

∫
(u− v)2 dV∫

v2 dV
. (4.10)
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FIGURE 2. (a) Auto-correlation C of the various modes (with absolute wavevector k),
of the true vorticity field ∇ × v, as a function of the time distance t between the pair
of values, obtained by analysing data in the time interval 2 < t < 12. (b) Vorticity field
at time t = 2 of the synthetic PIV data ∇ × ṽ using a noise level of σv = 0.3, and a
reciprocal filter width of kfilter = 32. (c) Vorticity field at time t= 2 of the corresponding
STIM reconstruction ∇× u, using an assimilation time of τ = 0.16 and a sampling time
of 1t= 5× 10−3.

In this figure each line segment corresponds to one assimilation window with a time
interval of τ .

The synthetic PIV data ṽ are generated by adding noise to the true velocity field v.
The true velocity field is generated by numerically simulating the Navier–Stokes
equations (2.1), which in the absence of forcing mechanisms, and starting from
random initial conditions, results in freely decaying turbulence. The numerical method
uses Fourier functions to compute spatial derivatives (e.g. Canuto et al. 1988). Time
integration is performed using the second-order explicit Adams–Bashforth scheme
for the advection terms and the second-order implicit Crank–Nicolson scheme for
the diffusion terms. The number of grid points is N2

= 1282, which is sufficient
to resolve all length scales, and the numerical integration time step is 1 × 10−3,
which is sufficiently small, such that the numerical solution does not change upon
reducing the time step. The initial random velocity field is constructed by assigning
random numbers to the Fourier modes, whose absolute wavevectors |k|6 8, while the
remaining Fourier modes are assumed zero. The initial velocity field is normalised,
such that U = ‖v‖ = 1 at t = 0. The viscosity is ν = 7.3× 10−4, which corresponds
to a Reynolds number, based on the velocity scale U = 1 and on the domain size
L = 2π, of Re = U L/ν = 8.6 × 103. The correlation time of the resulting turbulent
flow is around T ∼ 1, see figure 2(a).

To generate synthetic PIV data ṽ, we add noise to the simulated, true velocity
field v. In this work we consider two types of noise. First, we consider in § 4.2
white PIV noise, which is an idealisation compared to realistic PIV noise. This
simplification, however, allows for a systematic variation of the noise properties and
a clear interpretation of the method performance, through a comparison with the
analytical results in § 3. In addition, we consider in § 4.3, realistic PIV noise, that
are generated by computationally mimicking the PIV measurement process. To this
end we employ a simplistic PIV algorithm, without employing state of the art PIV
noise reduction techniques. The resulting synthetic PIV error is highly correlated,
which provides an extremely stringent test case for STIM. This is opposite to the
white noise error in § 4.2, which is tackled effectively by STIM. The extreme cases
of white noise and simplistic PIV noise mark the upper and lower boundaries for the
effectiveness of the STIM.
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FIGURE 3. STIM performance for idealised synthetic PIV data with white noise.
(a) Instantaneous STIM reconstruction error in the kinetic energy ε ′K (4.10) as a function
of time t, using a reciprocal filter width of kfilter = 16, a noise level of σv = 0.3, an
assimilation time of τ = 0.16 and a sampling time of 1t = 5 × 10−3. (b) PIV error
in the kinetic energy ε̃K (4.1) (triangles) and reconstruction error in the kinetic energy
εK (4.7) using STIM (circles) and SIM (squares), as functions of kfilter, using σv = 0.9,
τ = 0.16 and 1t= 5× 10−3. (c) STIM reconstruction error εK as a function of 1t, using
kfilter = 32, τ = 0.64 and varying σv . (d) STIM reconstruction error εK as a function of τ ,
using kfilter = 32, 1t = 5 × 10−3 and varying σv . In (b–d), εK and ε̃K are averaged over
five reconstructions, using different true velocity fields v with different (random) initial
conditions.

4.2. White PIV noise
First we consider idealised PIV data ṽ, which are constructed by adding white noise
to the true velocity field v, and subsequently applying a filter (3.5). The standard
deviation of the noise σv is referred to as the noise level, and the reciprocal filter
width is denoted kfilter = 2π/`.

Figure 2(b) visualises the resulting synthetic PIV vorticity field ∇× ṽ at t=2, using
a noise level of σv = 0.3 and a reciprocal filter width of kfilter= 32. The corresponding
reconstructed vorticity ∇× u, that is produced by the STIM, is shown in figure 2(c),
where we have used an assimilation time of τ = 0.16 and a sampling time of 1t =
5× 10−3. The noise in the reconstruction is significantly reduced, as compared to the
synthetic PIV data in figure 2(b).

Figure 3(b) shows the PIV error in the kinetic energy ε̃K (4.1) as a function of the
reciprocal filter width kfilter for a noise level of σv = 0.9. It is seen that ε̃K depends
non-monotonically on kfilter, i.e. an initial decrease is followed by an increase. This
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non-monotonicity reflects, that low wavenumber modes contain more flow structure
than noise, while large wavenumber modes contain more noise than structure. Low
wavenumber modes therefore improve the measurement, while high wavenumber
modes deteriorate the measurement.

Figure 3(b) also shows the corresponding STIM reconstruction error in the kinetic
energy εK (4.7) as a function of kfilter, where we have used an assimilation time of
τ = 0.16 and a sampling time of 1t = 5 × 10−3. It is seen that εK follows the non-
monotonic trend of the PIV error ε̃K . For kfilter 6 4, the STIM does not improve the
PIV data, i.e. ε̃K ≈ εK , while for kfilter > 4, the STIM improves the accuracy of the data,
with a maximum error reduction of two decades in the absence of spatial filtering, i.e.
for kfilter =N = 128.

Next we compare the performance of the STIM (2.2) to that of the SIM (2.9).
Whereas STIM reduces measurement noise by fitting a solution to the Navier–Stokes
equation to time-dependent measurement data, SIM achieves this, by applying a hyper
diffusion process to the measurement data. The hyper diffusivity is referred to as
the regularisation strength κ . This parameter must be chosen sufficiently large, as
to dampen the small-scale noise, and sufficiently small, as to not affect the large-
scale, energy-containing eddies. A parametric study (not shown) revealed that κ=10−6

U [L/(2π)]3 is a suitable value, for the test case at hand. Figure 3(b) shows the
resulting SIM reconstruction error in the kinetic energy εK (4.7) as a function of kfilter.
As expected, SIM is less effective in reducing the measurement error than STIM. In
the absence of spatial filtering (kfilter = N = 128) SIM achieves a tenfold reduction in
measurement error, whereas STIM achieves a hundredfold reduction under identical
conditions.

As STIM fits a solution to the Navier–Stokes equation to time-dependent
measurement data, the performance of STIM, in the case of white measurement
noise, increases with the sampling frequency, i.e. the STIM reconstruction error
εK (4.7) increases with the sampling time 1t. This feature is illustrated in figure 3(c),
where we plot εK as a function of 1t, and where we have used a reciprocal filter
width of kfilter = 32, an assimilation time of τ = 0.64 and various noise levels σv. The
data in figure 3(c) show that the error in the kinetic energy εK depends linearly on
1t which is consistent with the square root dependence of the scalar error on 1t for
the linear diffusion problem (3.17).

Figure 3(d) shows the STIM reconstruction error εK (4.7) as a function of
the assimilation time τ for a reciprocal filter width kfilter = 32, a sampling time
of 1t = 5 × 10−3 and for various noise levels σv. It is seen that εK depends
non-monotonically on τ , where for small τ the error decreases, while for large
τ the error increases, in qualitative agreement with linear theory (3.17), (3.24).
This error increase reflects that information de-correlates over long times, making
the inverse problem of minimising (2.2) ill-posed. In the linear advection problem,
a similar increase in the reconstruction error εK with τ was observed ((3.24b);
figure 1c), which is related to the loss of information from the resolved modes into
the unresolved (filtered) modes. This loss of information therefore bears an analogy
with the de-correlation of information in the 2-D turbulent flow, which corresponds
to a dissipation of kinetic energy, via the energy cascade, into heat.

4.3. Realistic PIV noise
Next we generate synthetic velocimetry data with realistic PIV noise by computing
trajectories of passive point particles. The total number of particles Np(L/`)2 is
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chosen such, that there are on average Np particles inside the PIV interrogation
window of size `. The interrogation window corresponds to 322 image pixels. The
image size of the total domain is therefore (32L/`)2 pixels. Each particle generates
a light intensity image, which is a Gaussian function with a standard deviation of
0.7 pixels. A PIV image is constructed by superimposing the Gaussian images of all
the particles. To compute the PIV velocity field at t = ti, we generate two particle
images at t = ti −

1
21tPIV and t = ti +

1
21tPIV . The image time difference equals

1tPIV = 0.02`/U . To find the PIV velocity vector at position x we apply a mask
of width ` and centre x to these images, and maximise the correlation between the
masked images at t = ti −

1
21tPIV and t = ti +

1
21tPIV , as given in (1.1). The PIV

velocity field is determined using a sliding interrogation window on N2
= 1282 spatial

points, which is the same spatial grid, as is used in the fluid flow simulations. The
location of the correlation maximum is determined with sub-pixel accuracy by fitting
a paraboloid to the correlation function in a region of 3× 3 pixels around the pixel
with the largest intensity.

We apply the PIV algorithm described above, to the simulated two-dimensional
turbulent flow, which is described in § 4.1. The resulting synthetic PIV error ṽ− v is
correlated with the true velocity v, as shown by the joint probability density function
of ṽ− v and v in figure 4(a). Figures 4(b), 4(c) and 4(d) compare the corresponding
true velocity field v the synthetic PIV velocity field ṽ and the reconstructed velocity
field u using STIM, respectively. The comparison shows, that STIM significantly
improves the accuracy of the PIV data. The data in figure 4 are taken at time t= 4,
using a reciprocal filter width of kfilter = 2π/`= 32, a PIV particle density of Np = 2,
an assimilation time of τ = 0.64 and a sampling time of 1t= 5× 10−3.

In figure 5(a), we study the PIV error in the kinetic energy ε̃K (4.1) as a function
of Np, using kfilter= 32, τ = 0.64 and 1t= 5× 10−3. As expected Np < 1 is ineffective,
resulting in a 100 % error ε̃K ≈ 1. When Np exceeds unity, ε̃K drops sharply, and for
large NP the error saturates at ε̃K ∼ 10−2.

In figure 5(b) we study the PIV error in the kinetic energy ε̃K (4.1) in the pressure
ε̃p (4.2) and in the energy dissipation ε̃D (4.3) as functions of kfilter, using Np = 2.
The PIV error in the pressure ε̃p is similar to that in the kinetic energy ε̃K , and these
errors increase with decreasing kfilter. This reflects, that a larger interrogation window
` cuts off more energy, resulting in larger errors. The PIV error for the dissipation
ε̃D is two orders of magnitude larger than that for the energy and the pressure, and
ε̃D is independent of kfilter. This independence reflects, that the dissipative scales are
poorly captured by the PIV image correlation algorithm, irrespective of kfilter, in the
range considered.

In addition to the PIV errors, we also plot in figure 5(b), the corresponding STIM
reconstruction errors for the kinetic energy εK (4.7), the pressure εp (4.8) and the
dissipation εD (4.9), where we used τ = 0.64 and 1t= 5× 10−3. It is seen, that STIM
reduces the PIV error by a factor of around three for both the energy and the pressure,
while it reduces the error for the dissipation by a factor of up to 100. This result
illustrates, that STIM significantly improves the structure of the dissipating eddies,
which are generally poorly represented by PIV. This conclusion is also supported by
the snapshots in figure 4.

STIM (2.2) fits a solution of the Navier–Stokes equations to time-dependent
measurement data. We have seen in figure 3(d), that, in the case of white measurement
noise, the accuracy of the fit can be made arbitrarily small, by increasing the data
density, i.e. by reducing the sampling time 1t. For realistic PIV noise, the situation
is different, however. This is illustrated in figure 5(c), showing, that for synthetic
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FIGURE 4. (a) Joint probability density function (j.p.d.f.) of ṽ − v and v, where ṽ is
the synthetic PIV velocity field and v is the true velocity field. (b) Snapshot of the true
velocity field v. (c) Snapshot of the synthetic PIV velocity field ṽ. (d) Snapshot of the
STIM reconstructed velocity field u. The data in (a–d) are taken at time t = 4, using a
reciprocal filter width of kfilter = 2π/` = 32, an assimilation window of τ = 0.64 and a
sampling time of 1t= 5× 10−3.

velocimetry data with realistic PIV noise, the STIM reconstruction error in the
kinetic energy εK does not depend on 1t, provided that 1t is smaller than the
flow correlation time T ∼ 1 (figure 2a). This means, that the maximum sampling
time, that still produces a reasonable reconstruction, is of the order of the flow
correlation time, and adding more intermediate samples does not necessarily improve
the reconstruction.

5. Conclusions
We have derived a space–time integral method to reduce the PIV measurement noise.

The performance of the method is studied using synthetic PIV data in a 2-D turbulent
flow. Under the assumption of white measurement noise, there is a non-monotonic
relationship between the reconstruction error ε and the assimilation time τ , where ε
decreases with τ , when τ is smaller than the turbulent correlation time T , while ε
increases with τ , for τ &T . This supports the notion that predicting the flow at time
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FIGURE 5. STIM performance for synthetic velocimetry data with realistic PIV noise.
(a) The PIV error in the kinetic energy ε̃K (4.1) as a function of the PIV particle density
Np, using a reciprocal filter width of kfilter = 2π/`= 32, an assimilation time of τ = 0.64
and a sampling time of 1t= 5× 10−3. (b) The PIV error in the kinetic energy ε̃K (grey
circles; (4.1)), in the pressure ε̃p (grey squares; (4.2)) and in the energy dissipation ε̃D
(grey triangles; (4.3)) and the STIM reconstruction error in the kinetic energy εK (white
circles; (4.7)), in the pressure εp (white squares; (4.8)) and in the energy dissipation εD
(white triangles; (4.9)) as functions of kfilter, using Np = 2, τ = 0.64 and 1t = 5 × 10−3.
(c) The STIM reconstruction error in the kinetic energy εK (4.7) as a function of 1t,
using kfilter = 32, Np = 2 and τ =1t. In (a–c), the presented errors are averaged over five
simulations, using different true velocity fields v with different (random) initial conditions.

t, based on flow measurements at time t+ τ , is an ill-posed problem, when τ exceeds
the flow correlation time.

To interpret these numerical results, we compare them to linear problems, for which
we have derived analytical expressions for ε, which show a similar non-monotonic
dependence on τ . This non-monotonicity is explained by a decomposition of ε into
a noise contribution, which decreases with τ , due to an increase in the number of
samples, and a filter contribution, which increases with τ , due to a loss of information
from resolved to unresolved modes.

We also apply the method to synthetic velocimetry data with realistic PIV noise in
a 2-D turbulent flow. The method is shown to reduce the realistic PIV noise and to
improve the small scale structures, although to a lesser extent as for the idealised PIV
data, with white measurement noise.
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