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 1. INTRODUCTION

Discovery of graphene and its unique characteris�
tics [1, 2] allows considering it as a basis for the elec�
tronics of the future. Nowadays the interest of
researchers has increasingly shifted toward studying
the properties of graphene, which can be modified in
many different ways: impurities, defects, graphene
nanoribbons, etc. [3, 4]. The latter is due to the fact
that the pure graphene has no energy gap in its band
structure and, consequently, the creation of various
devices (e.g., analogs of transistors) is hardly feasible.
The band structure of graphene in the Dirac points is
degenerate, but any perturbation removes the degen�
eracy and results in the appearance of an energy gap in
the spectrum. This particular specificity arises in
graphene nanoribbons, which are restricted to one
dimension. This leads to the quantization of the elec�
tron energy spectrum along a given direction, which
therefore yields the appearance of an energy gap. Also,
it is well known that the flat structure of graphene
sheets is unstable [5, 6]; so that normally graphene has
a wave�like curved surface. All these circumstances
have stimulated recently the study of different modifi�
cations of a curved graphene [7, 8]. The long�wave
approximation, which is widely used to describe the
properties of electrons in graphene, leads to an analog
of the Dirac equation, which in turn makes it easy to
produce a generalization to the case when the
graphene surface is curved [9]. Note that in this case
the degeneracy in the Dirac points is removed and
therefore it becomes possible to create various struc�
tures with different band gaps. Curvature of the
graphene (see, e.g., [7]) leads also to a change in the
electron density of states and, therefore, it is possible
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to change the whole set of electrical characteristics of
the graphene sample. Apparently, the easiest way for
an experimental verification of changes in the density
of states is to study the tunneling current [10] through,
e.g. a contact with the metal. All of the above form the
impetus for the present study.

2. ELECTRON SPECTRUM

We consider the graphene nanoribbon in the Fried�
mann model of a non�stationary universe [11]. The
properties of electrons in the graphene nanoribbon in
the long�wave approximation in the vicinity of the
Dirac point will be described on the basis of the gener�
alized Dirac equation for a curved space�time [9]:

(1)

where ∂μ is the partial derivative with respect to the
coordinate μ, Ωμ is the spin connection, and Ψ =
(φ, ψ)T is the spinor, containing the wavefunctions
describing the electrons in different sublattices of
graphene near the Dirac point K. Dirac gamma�
matrices γμ in a curved space�time are determined
from the relation γμγν + γνγμ = 2gμν, where gμν is the
metric tensor.

As is known from [9, 12], once the metric tensor gαβ
is given, i.e., 

(2)

γμ ∂μ Ωμ–( )Ψ 0,=

ds2 gαβdxαdxβ
,=

gαβgβγ δα

γ
,=
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one can define the field of frames (tetrads)

(3)

where for the 2D curved surface ηab = diag(1, –1, –1).
Then

(4)

where

For a strained/curved graphene, constantly under
the influence of an external variable mechanical force,
the effect of this force leads to a periodic change in the
distance between the atoms of graphene, which, in
turn, leads to a change in the Fermi velocity, vF. Using
the analogy with a curved space�time, we can say that
this force leads to a periodic change of spatial inter�
vals, which, as is well known, is adequately described
in the frame of the Friedmann non�stationary model.
The metrics in the Friedmann non�stationary universe
model has the form:

(5)

where

Here, a stands for the relative amplitude of the
strain, while ω0 is the characteristic frequency of oscil�
latory deformation. Then, the only nonzero Christof�
fel symbols are

so that

Let us choose γ0 = σ3, γ1 = –iσ2, γ2 = –iσ1, where σi

are the corresponding Pauli matrices. Then, we obtain
the following set of equations:

(6)
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where we explicitly introduced the Fermi velocity for

the flat graphene via ∂0 = ∂t.

The solution of system (6) can be found in the form

yielding

(7)

Let the function φ can be ansatz�sought through the
equation

where

Then, the substitution φ  φexp( ) in the set

of equations (7) yields the nonlinear Schrödinger
equation with the excitation term (second one):

(8)

Let us choose the trial unexcited function in the form
φ(t) = φ0eiωt. In the non�perturbed case (f = 0), we
obtain the spectrum

The wave vector p is found from the boundary con�
ditions at the ends of the nanoribbon. In our particular
case we have chosen the armchair�type ribbon [8, 13],
hence

(9)

where a0 is the interatomic distance in the carbon lat�
tice, M is the number of atoms along the nanoribbon
axis, and n is the quantum number.

Let us calculate the first energy correction V =

ψdx with ψ = Asin(pnx1) and  = ( f ' + g* – g)∂t.
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The integration is done over the interval [0, (3M +
1)a0], and results in

(10)

The dependence of the energy correction on the
atom numbers M is demonstrated in Fig. 1. This
dependence has a step�like form, which is associated
with the quantization of the electron spectrum in
graphene nanoribbons according to Eq. (9). Note that
this is similar to the dependence of the energy gap in
zigzag�type carbon nanotubes [14], which also arises
from the quantization of the electron spectrum in the
direction along the circumference of the nanotube.

Furthermore, it is worth characterizing the depen�
dence of V on the parameters ω0 and n. This depen�
dence is shown in Fig. 2 and demonstrates that with
the increase in the characteristic frequency ω0, we
observe a periodic change of the correction to the
energy of the electrons. With increasing quantum
number n, we observe a shift to the right and a remark�
able increase in the amplitude.

3. TUNNEL CHARACTERISTICS

Within the framework of the Kubo response theory
[15], the current is given by

(11)

where nf(�) is the equilibrium distribution of fermions
with the energy �. Here the tunnel densities of states
ν(A, B) are given by

Let us take the electronic spectrum for the
graphene nanoribbon given by Eq. (8) while account�
ing for the correction term given by Eq. (10). Note, we
consider that the electron in a metal with a contact is
supposed to have the free�like spectrum

(12)

After computing the integrals in Eq. (11), we obtain
the current–voltage characteristics of the contact
shown in Fig. 3. It shows the asymmetric behavior of
current versus voltage applied to the contact. This is
due to both, the peculiarities of the electronic struc�
ture (density of states) of the metal and graphene nan�
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Fig. 1. Energy correction V caused by the perturbation 
versus the number of atoms M along the axis of the nanor�
ibbon (n = 1).

V̂

Fig. 2. Energy correction V caused by the perturbation 
versus the parameter ω0 for M = 20, n = 1 (1) and n = 3 (2).

V̂

Fig. 3. Current–voltage characteristics of a curved nanor�
ibbon–metal tunnel junction. 
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oribbon, and the processes of carrier recombination in
the transition contact, which dominates over the ther�
mal processes when V > 0. Similar behavior is observed
for germanium, and especially for silicon diodes. Note
that this dependence can have important practical
applications in the study of nanocontacts and the
design of diodes based on graphene nanoribbons.

4. CONCLUSIONS

The main results of this work are as follows.

(i) We have derived the effective equation describ�
ing the electrons in a curved graphene nanoribbon for
the tunneling current through the nanoribbon–metal
contact in the framework of the non�stationary Fried�
mann model.

(ii) The dependence of the electronic spectrum of
the nanoribbon on the space curvature has been
revealed. In general, the first correction to the spec�
trum is determined by the number of atoms along the
axis of the nanoribbon M, as well as by the character�
istic deformation frequency ω0.

(iii) We have derived the current–voltage charac�
teristics for a grapheme nanoribbon–metal contact,
which is similar to the well�known characteristics of
classical diodes.
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