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ABSTRACT

We study the combined effects of electromagnetic pumping and piezoelectric damping on the propagation of ultrashort pulses in carbon
nanotubes. Based on Maxwell’s equations, an effective equation is obtained for the vector potential of the electromagnetic field, which takes
into account both the dissipation of the pulse field associated with piezoelectric effects due to the oscillations of the heavy nuclei of the
medium and the pumping from an external electromagnetic wave. Our analysis shows that, when the dissipative piezoelectric effects are
properly compensated through external pumping, a stable propagation of the ultrashort pulses is achievable. Specifically, we demonstrate
the stability of the steady-state form of the electromagnetic pulse at long time scales with variations in various system parameters, including
the absorption coefficient of heavy ions as well as the initial pulse field distribution. In addition, the stability of the pulse with respect to
angular perturbations—breaking the axisymmetry of the pulse distribution—is substantiated.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5128365

I. INTRODUCTION

The study of phenomena arising from the interaction of electro-
magnetic radiations with matter is particularly important in modern
opto- and nanoelectronics owing to a large number of possible prac-
tical applications.1–5 Recent successes in modern laser technology—
e.g., in generating powerful electromagnetic radiations such as
ultrashort laser pulses with durations corresponding to several half-
periods of the field oscillations6,7—have stimulated systematic studies
of the propagation of electromagnetic waves, including extremely
short pulses, in various media (e.g., see Refs. 8–12). Particular inter-
est in the study of the propagation of ultrashort pulses comes from
four key factors: (1) the high directivity of their radiation, (2) the
stability of their shape, (3) their resilience to a range of disturbances
from certain parameters, and (4) the practical aspects associated with

the fact that the peak intensity of their field is sufficient for useful
nonlinear properties to manifest without affecting the physical integ-
rity of the waveguide material.13

Physical effects arising from the propagation of ultrashort
pulses in nonlinear media can be used as the basis for the creation
of new energy transfer systems, optical information processing, and
other promising compact devices required in modern optoelec-
tronic devices based on various micro- and nanostructures. In this
context, graphene-based materials have attracted significant attention
given the wide range of applications they offer in terms of both funda-
mental research and commercial applications (see, for example,
Refs. 14–16). In particular, carbon nanotubes—quasi-one-dimensional
carbon macromolecules17–20—have a high potential for the develop-
ment of optoelectronic devices based on the propagation of nonlinear

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 203103 (2019); doi: 10.1063/1.5128365 126, 203103-1

Published under license by AIP Publishing.

https://doi.org/10.1063/1.5128365
https://doi.org/10.1063/1.5128365
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5128365
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5128365&domain=pdf&date_stamp=2019-11-26
http://orcid.org/0000-0003-4399-6015
http://orcid.org/0000-0002-2507-4642
http://orcid.org/0000-0003-2003-3793
mailto:alex.zhukov@outlook.sg
https://doi.org/10.1063/1.5128365
https://aip.scitation.org/journal/jap


electromagnetic waves, such as ultrafast lasers, photodetectors, solar
energy converters, transparent conductive surfaces, and displays.
Nowadays, carbon nanotubes (CNTs) continue to be the subject of
close attention by scientists and engineers due to a number of
unique physical properties used in various applications.21–27 The
interest in CNTs is primarily due to the peculiarity of their electronic
structure. In particular, the nonparabolicity of the dispersion law
of conduction electrons—i.e., the dependence of the energy on the
quasimomentum—determines the nonlinearity of the response of
nanotubes to applied electromagnetic radiations of moderate
strengths, starting with intensities of 103–104 V=cm. This circum-
stance allows us to observe a number of unique electromagnetic
phenomena in media with nanotubes, including the propagation of
solitonlike ultrashort pulses (e.g., see Ref. 28). So far, the propagation
of ultrashort electromagnetic pulses in arrays of semiconductor
carbon nanotubes have been systematically studied taking into
account the influence of various physical factors. In particular,
effective equations describing the evolution of the electromagnetic
field during the passage through a CNT array were obtained and
enabled the study of the effects of impurities and the Coulomb
interaction of electrons on the pulse dynamics, the collision of light
bullets, and the effect of external fields on the shape of an electro-
magnetic pulse.29–34

It is worth noting that the above-mentioned studies of the
propagation of ultrashort pulses in CNT arrays were carried out
based on one fairly conservative assumption: namely, that the dissi-
pation of the energy of the ultrashort pulse is considered to be
negligible. Such an assumption requires the introduction of strict
restrictions on the parameters of the system under consideration.
In particular, conditions were imposed on the ratio of the pulse
duration to the relaxation time in the electron subsystem, thereby
providing the time interval during which the simulation results
could be considered fair. The fulfillment of this criterion assumed
that the relaxation time significantly exceeds the pulse duration
but is still shorter than the system observation time.31 As a conse-
quence, it appears timely to consider the generalization of the men-
tioned model by introducing various dissipative factors present in
real systems (e.g., see Ref. 35). Indeed, the search for conditions
associated with the stabilization of the propagation of ultrashort
pulses in dissipative systems at large times becomes a critical task.

The possibility of a stable propagation of ultrashort pulses in
semiconductor waveguides may be an important prerequisite for
the development of new and more advanced methods of transmit-
ting and processing data, whose carriers may be electromagnetic
solitons. Such a technical process can be achieved using dissipative
solitary waves, which are more stable than conservative soli-
tons.36,37,40 In Ref. 41, the stable propagation of three-dimensional
(3D) ultrashort pulses in an array of carbon nanotubes with two-
level impurities was demonstrated. In this work, it was shown that
an inverse population of levels makes it possible to counterbalance
the attenuation of the pulse field under the action of dissipative
factors. In Ref. 42, external field pumping was proposed as a way
to alleviate the unavoidable dissipative effects that lead to the
damping of the pulse field. It was shown that, in principle, the
propagation of three-dimensional extremely short pulses can be
sustained in CNTs by pumping energy into the pulse through an
external electromagnetic field. At the same time, it is also critical

ensuring the stability of ultrashort pulses subjected to disturbances
—a key feature of solitary waves with the properties of dissipative
solitons.36–39 In this paper, we study the interaction of an ultrashort
pulse with the medium of an array of semiconductor carbon nano-
tubes under damping conditions due to piezoelectric effects associ-
ated with the oscillations of the heavy nuclei of the medium. To
compensate the dissipation and stabilize the pulse, the system is
irradiated by an external electromagnetic pump wave. We show
that an ultrashort pulse that forms in the system under consider-
ation retains its stability, even in the presence of disturbances that
break the axisymmetry of pulse.

II. FORMULATION OF THE PROBLEM AND GOVERNING
EQUATIONS

We consider the propagation of three-dimensional ultrashort
electromagnetic pulses in an array of zigzag carbon nanotubes. For
definiteness, we assume that the electromagnetic pulse propagates
along the axis of the nanotubes (z-direction), and its electric vector
field is collinear to the Oy-axis (Fig. 1).

The potential vector has the form A ¼ 0, A(x, y, z, t), 0f g, the
electric current density j ¼ 0, j(x, y, z, t), 0f g, and the polarization
of the medium P ¼ 0, P(x, y, z, t), 0f g. For the component of the
electric field, directed along the axis of the CNTs (taking into
account the Lorentz gauge E ¼ � 1

c @A=@t), we write the three-
dimensional wave equation as

1
c2
@2A
@t2

� Γ
@A
@t

¼ @2A
@x2

þ @2A
@y2

þ @2A
@z2

þ 4πj(A)� β
@P
@t

, (1)

where the parameter Γ . 0 describes the pumping of the electric
field43 and, accordingly, its amplification and c is the speed of light
in vacuum. To take into account the properties of the medium,
Eq. (1) contains a term involving the rate of change of the polariza-
tion of the medium P (rightmost term), which is directed along the
CNT axis (Fig. 1). The pumping here is introduced phenomenolog-
ically and, in general, depends only on the spatial coordinates.
Also, via the parameter β ¼ 4π=c, we phenomenologically take into
account the reverse effect of the medium excited by an electric field
pulse on the electric field itself.

FIG. 1. Schematic diagram of the setup and the associated coordinate system.
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This problem is better reformulated using a cylindrical coordi-
nates system,

1
c2
@2A
@t2

� Γ
@A
@t

¼ 1
r
@

@r
r
@A
@r

� �
þ @2A

@z2
þ 1
r2
@2A

@f2 þ 4πj(A)� β
@P
@t

,

(2)

with cylindrical coordinates (r, f, z), so that r2 ¼ x2 þ y2. The
standard expression for the current density reads31

j ¼ 2e
Xm
s¼1

ð
BZ

vs(p)f (p, s)dp, (3)

where e is the elementary charge, p is the projection of the quasi-
momentum of the conduction electron along the axis of the nano-
tube (Oy-axis), vs(p) ¼ @ϵs(p)=@p is the electron velocity, f (p, s) is
the Fermi distribution, and ϵs(p) is the dispersion law, which
describes the properties of electrons of CNTs of zigzag type (0, m)
and has the form17,22

ϵs(p) ¼ +γ0 1þ 4cos(ap) cos
πs
m

� �
þ 4 cos2

πs
m

� �n o1=2
, (4)

where s ¼ 1, 2; . . .m, γ0 � 2:7 eV, a ¼ 3b=2�h, and b ¼ 0:142 nm is
the distance between adjacent carbon atoms. In Eq. (3), the integra-
tion is carried out over the first Brillouin zone (BZ).

Generally, the nonuniform character of the ultrashort pulse
propagating in an array of CNTs induces nonuniformity in the
medium, thereby resulting in charges accumulated in some areas.
However, earlier calculations31 showed that this effect of charge
accumulation for femtosecond pulses can be neglected. As a conse-
quence, we can safely assume that the axisymmetry of the field
distribution is preserved. Based on this, we assume that all deriva-
tives with respect to the angle f are zero. As a result, we obtain the
following effective equation for the vector potential:

1
r
@

@r
r
@A
@r

� �
þ@2A
@z2

� 1
c2
@2A
@t2

þ4en0
c

X1
q¼1

bq sin qa
e
c
(Aþη)

� �
f (t)

þΓ
@A
@t

�β
@P
@t

¼ 0, (5)

where n0 is the electron concentration and the parameter η deter-
mines the displacement vector of the medium,

f (t) ¼ 0, t , t0(z),
exp(�t=trel), t � t0(z),

�
(6)

where t0(z) � (z � z0)=v is the time at which the intensity of the
pulse at its leading edge, measured at the point with the z coordi-
nate, is e times less than the peak intensity of the pulse; z0 is the
initial coordinate of the “center of mass” of the pulse at the initial
time t ¼ 0; v � c=

ffiffiffiffiffi
k0

p
is the approximate pulse velocity; k0 is the

average relative dielectric constant of the medium (array of nano-
tubes); and trel is the relaxation time of the electron subsystems.

The coefficients bq in Eq. (5) are given by

bq ¼
X
s

asq

ð
BZ

cos(pq)
exp �ϵs(p)=kBTf g

1þ exp �ϵs(p)=kBTf g dp, (7)

where kB is the Boltzmann constant, T is the temperature, and asq
is the coefficients in the expansion of the electron dispersion law
(4) as a Fourier series,

ϵs(p) ¼ 1
2π

Xm
s¼1

X1
q¼1

asqcos(pq), (8)

asq ¼
ð
BZ

cos(pq)εs(p)dp: (9)

Due to a decrease in the coefficients bq with an increase in q
[see Eq. (7)], we can restrict ourselves to the first 15 nonvanishing
terms in Eq. (9)28 and obtain the generalized sine-Gordon equa-
tion,44 which is widely used in applications but not integrated by the
inverse scattering method.

The value of η in Eq. (7) is related to the nonzero component
of the displacement vector of the medium u ¼ 0, u(z, t), 0f g as45

η ¼ �cd
ðt
�1

@u(z, t0)
@z

dt0, (10)

where d is the piezoelectric strain coefficient. Here, we consider the
simplest model, in which the polarization of the medium is directly
proportional to the applied field owing to the piezoelectric effect,

P ¼ d
@u
@z

: (11)

In this case, Eq. (10) must be supplemented with an equation for
the nonzero component of the displacement vector u,45,46

@2u
@t

þ γ
@u
@t

þ ω2
0u ¼ χ

@A
@t

: (12)

Here, γ is the absorption coefficient of the nuclei of the medium
(heavy ions), ω0 is the resonant frequency of vibrations of heavy
ions, and χ is the susceptibility coefficient. It is worth highlighting
that absorption by such nuclei can significantly narrow the range of
transparency and reduce the width of the transmission spectrum in
a medium of carbon nanotubes.35

Within the framework of the model described, a number of
remarks must be made. First, we consider only one component of
the displacement vector, which can easily be generalized. Second,
we do not take into account that the medium may have nonlinear
acoustic properties and, as a result, the polarization vector may be
noncollinear to the electric field vector.
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III. NUMERICAL RESULTS

The basic governing equations (5) and (12) are solved numeri-
cally using an explicit difference scheme of the “cross” type.47 For
convenience, we introduce the following dimensionless variables
and parameters (Planck’s constant is taken as unity):

~A¼ eaA
c

, ~r ¼ r
a
, ~z ¼ z

a
, ~t ¼ ct

a
, ~η¼ eaη

c
, ~u¼ eau

cd
: (13)

The initial condition for the vector potential can be written in the
following dimensionless form:

~A(~r,~z, 0)¼Q~rn�1 exp �(~z�~z0)
2

~l
2
z

( )
exp �~r2

~l
2
r

 !
,

d

d~t
~A(~r,~z, 0)¼2v

(~z�~z0)

~l
2
z

Q~rn�1 exp �(~z�~z0)
2

~l
2
z

( )
exp �~r2

~l
2
r

 !
,

~u(~r,~z, 0)¼0,
d

d~t
~u(~r,~z, 0)¼0,

(14)

where Q is the amplitude of the electromagnetic pulse at the
entrance to the CNT-based medium; v is the initial pulse velocity
when entering the medium; ~lz and ~lr determine the pulse width
along the z- and r-directions, respectively; ~z0 is the initial coordi-
nate of the center of the pulse along the z-axis; n ¼ 1 for one oscil-
lation of the electric field; and n ¼ 2 is the pulse profile for two
oscillations of the electric field. The initial condition corresponding
to the Gaussian pulse profile with two oscillations of the electric
field is represented by the following expression:

~A(~r,~z, 0)¼Q(~z�~z0)exp �(~z�~z0)
2

~l
2
z

( )
exp �~r2

~l
2
r

 !
,

d

d~t
~A(~r,~z, 0)¼Qexp �(~z�~z0)

2

~l
2
z

( )
exp �~r2

~l
2
r

 !
� v

~l
2
z

þ2v
(~z�~z0)

~l
2
r

( )
:

(15)

The evolution of the electromagnetic field as it propagates over the
sample in the case of a single oscillation of the electric field is
shown in Fig. 2.

The attenuation of the pulse can clearly be observed, as well as
the appearance of a “tail” in its wake. The stabilization of the pulse
can be achieved by tuning the parameter Γ, which is responsible
for the pumping of the electric field, in the super-Gaussian form,

Γ(~r) ¼ QΓ exp �~r6

~l
6
Γ

 !
: (16)

Here, ~lΓ determines the width of the amplifying medium in the
direction perpendicular to the direction of propagation of the elec-
tric pulse. Note that the choice of a super-Gaussian form in
Eq. (16) for the parameter Γ originates from our need to compen-
sate the diffraction spreading of the pulse. Hence, outside the

FIG. 2. Evolution of a pulse for the case of a single oscillation of the electric field E for QΓ ¼ 1: (a) ~t ¼ 0; (b) ~t ¼ 1:0; (c) ~t ¼ 5:0; and (d) ~t ¼ 9:0. The nondimensional
unit of E corresponds to 107 V=m.

FIG. 3. Evolution with time of the pulse intensity for the case of a single oscilla-
tion of the electric field. (Curve 1) QΓ ¼ 1:5 and a balance between attenuation
and amplification is achieved; (Curve 2) QΓ ¼ 1:0 and dissipation prevails; and
(Curve 3) QΓ ¼ 2:0 and amplification through pumping prevails. I0 is the peak
intensity for each of the three cases.
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region in which the amplification takes place, the pulse will experi-
ence the usual attenuation due to the inherent dissipative effects
within the medium. The prefactor QΓ is a phenomenological
parameter introduced to characterize the properties of the amplifi-
cation process within the CNT-based medium.

A close observation of curve 1 in Fig. 3—corresponding to an
intermediate value of QΓ ¼ 1:5, the intensity of the pulse reaches a
plateau over time. Thus, it can be concluded that the effects of the
linear dissipative factors can be overcome through field pumping,
with ultimately a stabilization of the pulse. For a pulse consisting of
two field oscillations, a result similar to that in Fig. 2 is obtained and
shown in Fig. 4. The numerical analysis shows that there is a range
of values for the amplification and dissipation parameters, leading to
a conditional stabilization of the pulse. In other words, changes in
the amplitude of the pulse are quite small over a long time interval.

To better appreciate the evolution of the pulse shape as it
propagates, we present in Fig. 5 the dynamics of the pulse width
with time. Specifically, the pulse width (denoted L) is taken as the
distance between its transverse boundaries, corresponding to a
decrease in the amplitude of 50%. By studying a number of cases
corresponding to different types of initial pulse profile, we conclude

that the most stable pulses are those that initially possess one field
oscillation. The temporal evolution of the maximum absolute value
of the pulse amplitude is shown in Fig. 6. Over time, the pulses
consisting of one-field oscillation exhibit a stabilization of their
amplitude. This result clearly favors selecting one field oscillation
for the initial profile of the electromagnetic pulse.

Moreover, we investigated the behavior of a pulse in the form
of a ring with the axis of coinciding with the direction of propaga-
tion of the pulse (z-axis). The maximum in distribution of the field
of such a pulse is situated at r = 0 (see Fig. 7).

The evolution of the pulse shape with time is shown in Fig. 8,
in the particular case of a pumping pulse with a ring profile.
Such solutions are quite close to the vortex solutions reported in
Refs. 8 and 48 which, in general, may be unstable. However, we
note that the pulse of a ring shape in our case is quasistable. The
outcome of various analyses (see Figs. 2, 4, and 8) confirms that,
although diffraction spreading of the pulse occurs in the direction
transverse to the direction of propagation, the pulse generally

FIG. 4. Evolution of a pulse for the case of two oscillations of the electric field E for QΓ ¼ 1: (a) ~t ¼ 0; (b) ~t ¼ 5:0; (c) ~t ¼ 9:0; and (d) ~t ¼ 15:0. The nondimensional
unit of E corresponds to 107 V=m.

FIG. 5. Temporal evolution of the pulse width L for different initial conditions.
(Curve 1) one field oscillation and (Curve 2) two field oscillations.

FIG. 6. Temporal evolution of the maximum absolute value of the pulse ampli-
tude for different initial conditions. (Curve 1) one field oscillation and (Curve 2)
two field oscillations. The nondimensional unit of E corresponds to 107 V=m.
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retains its shape. It should also be noted that a partial distortion of
the pulse front occurs due to diffraction.

An important issue is the study of the stability of the obtained
solutions with respect to small-amplitude perturbations of the
pulse field E which depends on the angle f. The stability analysis
can be carried by linearizing Eq. (2) considering A ¼ A0 þ δA,
where δA are small-amplitude perturbations of the potential vector,

1
r
@

@r
r
@δA
@r

� �
þ@2δA

@z2
� 1
c2
@2δA
@t2

þ4en0
c

X1
q¼1

bq cos
aeq
c
(A0þη)

n o
δA

aeq
c
exp � t

trel

� �

þΓ
@δA
@t

�β
@P
@t

¼ 0: (17)

Note that the last term in (17)—related to the induced polarization—
is calculated based on the solution A0(z, r, t) of Eq. (5). By virtue of
the linearity of Eq. (17), one can consider perturbations made up of
modes of the form

δA ¼ δA(z, r, t)exp(inf): (18)

We can then calculate the corresponding corrections to the electric

field by means of the Lorentz gauge condition,

δE ¼ � 1
c
@δA
@t

: (19)

Equation (17) is solved numerically with the following initial condi-
tions:

δ~A(~r,~z, 0)¼δQ~rn�1 exp �(~z�~z0)
2

~l
2
z

( )
exp �(~r�~r0)

2

~l
2
r

 !
,

d

d~t
δ~A(~r,~z, 0)¼2v

(~z�~z0)

~l
2
z

δQ~rn�1 exp �(~z�~z0)
2

~l
2
z

( )
exp �(~r�~r0)

2

~l
2
r

 !
,

~u(~r,~z, 0)¼0,
d

d~t
~u(~r,~z, 0)¼0: (20)

Figures 8 and 9 show the corresponding results for the electric field.
These figures show the temporal variations of the maximum absolute
value of δE (in the entire computational domain) depending on the
mode n.

FIG. 8. Evolution of the pulse for the initial profile of the pulse in the form of a ring with QΓ ¼ 1: (a) ~t ¼ 0; (b) ~t ¼ 5:0; (c) ~t ¼ 10:0; and (d) ~t ¼ 15:0. The nondimen-
sional unit of E corresponds to 107 V=m.

FIG. 7. Profile of the ring-pulse at t ¼ 0.

FIG. 9. Temporal variations of the maximum of jδEj (with n ¼ 3). The nondi-
mensional unit of E corresponds to 107 V=m.
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Figure 8 shows that the amplitude of the perturbations mono-
tonically decays with time, and this behavior appears to be stable
and robust at large times. According to Fig. 9, higher-order modes
(i.e., higher values of n ) experience a more rapid decay. Figures 8
and 9 allow us to conclude that the solutions obtained are stable
with respect to perturbations in angle f. Hence, we can conclude
that having steady and stable propagation of 3D ultrashort and
localized pulses in arrays of CNTs when providing appropriate
external pumping is a possibility to overcome attenuation induced
by the absorption of heavy ions (Fig. 10).

IV. CONCLUSIONS

This study considers external field pumping as a way to coun-
teract the dissipation of the pulse field associated with piezoelectric
effects due to the oscillations of the heavy nuclei in the CNT-based
medium. The key results obtained may be summarized as follows:

(i) Due to the change in the amplitude of the pumping pulse, it
is possible to control the shape of an ultrashort optical pulse
and stabilize it. The amplitude of the pumping field is the
key factor affecting the propagation of electromagnetic pulses
in the CNT arrays.

(ii) We uncover the possibility of a stable propagation of an
extremely short electromagnetic pulse when pumping appro-
priately counterbalances attenuation. Indeed, dispersion
spreading of pulses during their propagation can be compen-
sated by means of inhomogeneous pumping along the sample
diameter, which taps into the nonlinearity of the CNT-based
medium.

(iii) We demonstrate that ultrashort pulses propagating in the
array of CNTs are stable with respect to modal angular pertur-
bations and that they maintain the axisymmetry of the field
distribution in the space of the system under consideration.
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