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In this study, we address the influence of the order parameter on the three-dimensional dynamics of
extremely short optical pulses in a nonlinear media made of carbon nanotubes creating a heteroge-
neous distribution of electrons. We obtained the effective nonlinear wave equation, which allowed us
to analyze the dependence of the shape of three-dimensional ultrashort optical pulses on the relaxa-
tion rate of the order parameter, as well as on its equilibrium value. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4977011]

I. INTRODUCTION

In recent years, researchers have devoted significant
attention to the study of strongly nonlinear media—including
composite ones—due to advances in the synthesis of a vari-
ety of materials.1–3 Among all the variety of newly investi-
gated environments, there are two classes standing out: (i)
materials undergoing phase transitions, which can be charac-
terized in general by an order parameter quantifying its mac-
roscopic level of ordering and (ii) media containing carbon
nanotubes (CNTs). Environments with CNTs are of interest
primarily for their unique nonlinear properties.4–6 In particu-
lar, by virtue of the unique structure of CNTs, they can with-
stand very intense electric fields. At the same time, these
substances are extremely sensitive to the orientation of the
electric field because of the anisotropy of the structure of
CNTs. Media capable of undergoing phase transitions—i.e.,
whose order parameter significantly changes following varia-
tions of a control parameter in the parameters space, are of
paramount importance with regard to a myriad of novel prac-
tical applications.7–9 Suffice it to say, that all ferroelectric
and ferromagnetic materials belong to this type of materials.
It is also worth mentioning that some important studies of
carbon fibers doped with CNTs, which offer an array of
promising practical applications.10–12

Despite several decades of intense theoretical and exper-
imental activity on the subject of phase transitions in con-
densed matter physics, there is still a number of open
questions, which continue to attract the attention of research-
ers. One such example is the nonequilibrium dynamics of the
order parameter, especially in the presence of external alter-
nating fields. The study of these issues remain to be fully
understood from the theoretical point of view. In particular,
the relaxation dynamics of the order parameter toward its
equilibrium value is extremely important for practical appli-
cations. On the other hand, media containing CNTs can with-
stand extremely strong electromagnetic field and, as shown
previously, they allow for the propagation of stable solitary

states of the electromagnetic field.13–24 Such localized wave
packets that are localized in space and that can travel while
retaining their spatiotemporal shape—in spite of diffraction
and dispersion effects—are referred to as light bullets. It is
worth adding that light bullets can be used to carry out the
spectroscopy of such media and processes occurring therein.

Given all the above, the question of the interplay between
phase transition properties and spectroscopic ones naturally
arises for nonlinear media containing CNTs. There are several
crucial questions in this regard, which can readily be addressed
by means of a theoretical analysis. For instance, a specific
dynamics of the order parameter may potentially lead to the
collapse of light bullets due to an imbalance between disper-
sive and nonlinear effects. On the other hand, even if a light
bullet is stable, there is a possibility that it is insensitive to the
order parameter—i.e., insensitive to the level of ordering or to
its relaxation dynamics. In other words, it is important to focus
on both the stability of a light bullet, and its sensitivity to the
order parameter. In practice, the order parameter can be a sca-
lar, a vector, or any higher order representation depending on
the nature of the problem. Here, we start with the simplest case
of a scalar order parameter. However, one should note that the
generalization to more complicated cases might not be trivial
or straightforward.

This study is devoted to the analysis of possible scenar-
ios for the influence of the order parameter on the dynamics
of three-dimensional (3D) ultrashort optical pulses in an
array of CNTs.

II. FORMULATION OF THE PROBLEM AND GENERAL
EQUATIONS

Let us consider, for definiteness, the dynamics of a
scalar order parameter in a nonlinear medium containing
CNTs. To obtain the corresponding governing equation of
motion for the order parameter, we exploit the approach
developed in Refs. 7–9 such that

dP

dt
¼ "C

dU
dP

; (1)
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where the functional derivative in the r.h.s. reflects the fact
that P is in general a function of spatial and temporal coordi-
nates, C is the kinetic coefficient, which determines the
relaxation rate; P is the order parameter; U is the density of
free energy functional. Indeed, according to the classical
nonequilibrium thermodynamics, the rate of change of P
should be proportional to the thermodynamic driving. In
other words, the order parameter evolves such as to tend to
its local free energy minimum. Note that in our framework,
the order parameter can describe the different physical sys-
tems. For instance, in the case of ferroelectric (resp. ferro-
magnetic) materials, the order parameter P would then be
the polarization (resp. the magnetization). Accordingly, the
governing equation [see Eq. (2)] is able to describe the
dynamics of a wide range of physical systems—this is one of
the key features of the phenomenological theory developed
by Patashinskii and Pokrovskii.9 Furthermore, given the spe-
cificity of the problem at hand, it will be assumed that the
scalar order parameter P is related to the electric field
directed along the nanotube axis. For the sake of definiteness
and clarity, we consider a ferroelectric medium with the
polarization axis coinciding with the axis of the nanotube.

Based on the Ginzburg–Landau theory,7–9 the free
energy density U of a ferroelectric material, in the presence
of an electric field and applied stress may be written as a
Taylor expansion in terms of the order parameter P

U ¼ U0 þ aP2 þ bP4 " vEP; (2)

where U0 corresponds to the origin of energy for a free
unpolarized (P¼ 0) and unstrained medium, and E is the
applied electric field. Furthermore, one needs to take into
account the fact that electrons of carbon nanotubes are sub-
jected to action from both the electromagnetic field of the
pulse and from the field of the environment. The latter
appears due to the emergence of a nonzero order parameter,
and is defined as

Es ¼
dU
dP

: (3)

Let us consider the propagation of 3D extremely short
electromagnetic pulses through an array of CNTs. The elec-
tric field of the pulse is assumed to be directed along the axis
of the nanotubes, i.e., E¼ {0, 0, E(r, t)}. The dispersion law
for zigzag nanotubes (m, 0) reads24,25

!s pð Þ ¼ 6c 1þ 4 cos apð Þcos p
s

m

! "
þ 4 cos2 p

s

m

! "# $1=2

;

(4)

where s¼ 1, 2,…m, c& 2.7 eV, a ¼ 3b=2!h, b¼ 0.142 nm is
the distance between the neighboring carbon atoms.

The vector potential A and the current density j are
assumed to have the following form A¼ {0, 0, A(r, t)} and
j¼ {0, 0, j(r, t)}, respectively. Thus, using the particular
choice of Coulomb’s gauge, E ¼ " 1

c @A=@t, one can follow
the formalism developed in Ref. 17 to obtain the following
expression for the current density:

j ¼ "ean0c
X

k

Dk sin
ke

c
A tð Þ

! "
;

Dk ¼
Xm

s¼1

ðp=a

"p=a

dpAks cos kpð Þ
exp "!s pð Þ=kBT
& '

1þ exp "!s pð Þ=kBT
& ' ;

(5)

where n0 is the equilibrium electron concentration in CNTs,
x0 is the frequency of the external electric field E0, kB is
the Boltzmann constant, T is the temperature, and c is the
speed of light in vacuum. The coefficients Aks arise from
the expansion of the charge carriers velocity in Fourier
series. With account for Coulomb’s gauge and Eq. (5), the
corresponding Maxwell’s equation in a cylindrical coordi-
nates system reads as

@2A
@t02
¼ 1

r0
@

@r0
r0
@A
@r0

! "
þ @

2A
@z02
þ 1

r02
@2A
@u2

þ sin AþAsð Þ þ
X1

k¼2

Dk sin kAþ kAsð Þ; (6)

where A ¼ eaA=c is the single component of the dimension-
less vector potential of the pulse field, andAs ¼ eaAs=c corre-
sponds to the electric field of the medium, Es ¼ " 1

c @As=@t
[see also Eq. (3)]. We define the dimensionless coordinates as
follows:

r0 ¼ r
ea

c

ffiffiffiffiffiffiffiffiffiffi
4p0c

p
; z0 ¼ z

ea

c

ffiffiffiffiffiffiffiffiffiffi
4p0c

p
; t0 ¼ tea

ffiffiffiffiffiffiffiffiffiffi
4p0c

p
: (7)

Here and thereafter, we assume the cylindrical symmetry,
so that @=@u ' 0. The latter is a simplifying approxima-
tion since we consider an array of nanotubes. However,
previous estimates (see, e.g., Refs. 21–24) indicate that the
resulting error can be considered to be negligible (less than
1%). It is worth noting that due to the field inhomogeneity
along certain directions (e.g., the field is nonuniform along
the z-axis, the current is also not uniform. The heterogene-
ity of the current causes an accumulation of charges in
some areas that can be assessed from the charge conserva-
tion law

dq
dt
þ dj

dz
¼ 0; (8)

q / s
j

lz
: (9)

Here q is the charge density, j is the current density along
the z-axis, s is the pulse duration, and lz is the characteristic
length for the electric field change along the z-axis.
Equation (9) allows us to conclude that the duration of a
short pulse has a significant impact on the accumulated
charge. Our estimates show that the accumulated charge is
about 1%–2% of the charge, which contributes to the
current. The latter allows one to neglect the charge accu-
mulation effect for femtosecond pulses. This approxima-
tion has been validated by other numerical experiments
for the case of CNTs and a pulse duration of tens of
femtoseconds.21–23
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III. RESULTS AND DISCUSSION

Equation (7) is solved numerically.26 Steps in time and
coordinates are determined from the stability conditions.
They were decreased until the solution is not changed in the
eighth decimal place. The initial condition is chosen in the
form

A z; r; t ¼ 0ð Þ ¼ Q exp " z" z0

cz

! "2
( )

exp " r2

c2
r

 !

; (10)

d

dt
A z;r; t¼ 0ð Þ ¼ 2Qvz

z" z0

c2
z

exp " z" z0

cz

! "2
( )

exp " r2

c2
r

 !

;

(11)

where Q is the field amplitude, cz and cr determine the pulse
width in corresponding directions, vz is the initial pulse
velocity along the z-axis.

The evolution of the electromagnetic pulse as it propa-
gates through the sample is shown in Fig. 1. Parameters v and
C were chosen in a range of values typical of ferroelectric

materials; b determines Tc and does not actually affect the
results of our study; a is governed by the distance from the
critical point, T – Tc. One can observe a clear broadening of
the ultrashort optical pulse during its propagation through the
sample, thereby reducing the amplitude of the electric field
associated with the pulse. This behavior is caused by the inter-
action of the current flowing through the carbon nanotubes
with the subsystem described by the order parameter. The
dynamics of this subsystem has a relaxation nature, which
leads to a decrease in the electric field of the pulse.

The influence of relaxation rate of the order parameter
C, on the process of propagation of ultrashort optical pulse is
shown in Fig. 2. An increase in the relaxation rate C reduces
the peak amplitude of the pulse along with an increase in the
“tail” following the main pulse. This, in turn, shows the
mechanism of reducing the amplitude of the pulse, which is
related to the relaxation dynamics of the order parameter.

The dependence of the pulse shape on the parameter a is
shown in Figure 3. It is important to note that in the
Ginzburg–Landau theory of phase transitions, the magnitude
of the parameter a is directly related to the distance of the

FIG. 1. Three-dimensional electromagnetic pulse intensity I(r, z, t)¼E2(r, z, t) at different instants of time (a¼ 0.005, b¼"1, v¼ 0.1, C¼ 0.1): (a) initial
pulse; (b) t¼ 2( 10"13 s; (c) t¼ 5( 10"13 s; and (d) t¼ 7( 10"13 s.
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critical point of phase transition, namely, a / Tc – T, where
Tc is the critical temperature, and T is the current tempera-
ture. The graphs in Fig. 3 show that the shape of the pulse is
directly determined by the distance to the critical point. That
important observation can in practice be used to identify

experimentally the critical point. Thus, this makes it possible
to investigate the dynamics of the order parameter with the
help of ultrashort optical pulses.

Note that although pulses are experiencing some level
of broadening due to inherently present dispersive effects on

FIG. 2. Three-dimensional electromag-
netic pulse intensity I(r, z, t)¼E2(r, z, t)
for different values of the relaxation rate
C (t¼ 7( 10"13 s, a¼ 1, b¼"1): (a)
C¼ 0.01; (b) C¼ 0.02; (c) C¼ 0.05;
and (d) C¼ 0.1.

FIG. 3. Three-dimensional electromag-
netic pulse intensity I(r, z, t)¼E2(r, z,
t) for different values of the parameter
a (t¼ 7( 10"13 s, C¼ 0.1): (a) a¼ 0.0;
(b) a¼ 0.1; (c) a¼ 0.5; and (d) a¼ 1.0.
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the medium, the pulse remains localized in space. Indeed,
the main part of the pulse energy is still concentrated in a
limited region of space; in that sense, the pulse propagation
is stable. Furthermore, we would like to draw attention to the
fact that the pulse propagation is not accompanied with a
secondary wave radiation, which also speaks in favor of the
stability of light bullets.

IV. CONCLUSIONS

As a result of our study, the following conclusions can
be made:

(i) We derived the effective equation describing the dynam-
ics of multidimensional extremely short optical pulses in
an array of CNTs in a medium that can undergo phase
transitions when subjected to variations of an order
parameter.

(ii) Ultrashort optical pulses propagate with decaying
amplitude as a consequence of the relaxation dynam-
ics of the order parameter.

(iii) The possibility of carrying out spectroscopy by means
of varying the order parameter while probing the
medium with ultrashort pulses is demonstrated.
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