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In this paper, we investigate the propagation of electromagnetic waves in a piezoelectric composite
comprising carbon nanotubes and piezoelectric fibers. This hybrid medium is initially subjected to
the effects of an extremely short optical pulse consisting of just two oscillations of the electric
field. On the basis of Maxwell’s equations and the wave equation for the displacement vector of the
medium, we obtain an effective governing equation for the vector potential of the electromagnetic
field, as well as the displacement vector for the media. The dependence of the pulse shape on the
parameters of the problem was analyzed, thereby revealing a non-trivial interplay between the char-
acteristics of the pulse dynamics and the electrically induced mechanical vibrations of the medium.
The uncovered properties could potentially offer promising prospects for the development of new
materials for the optoelectronics industry. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4964445]

I. INTRODUCTION

In recent years, due to the growing range of applications,
researchers have increasingly paid more attention and inter-
est to the problem of propagating extremely short electro-
magnetic pulses in various media.1–7 This is essentially the
consequence of two factors: (i) the related systems are asso-
ciated with the well-known theory of solitons, and (ii) the
fact that the study of these issues may lead to the develop-
ment of significant practical applications.8–12 On the other
hand, the successes in the physics of nanostructures con-
stantly offer new objects for the studies in this field. One of
such fascinating nanostructures is carbon nanotubes (CNTs),
the nonlinear properties of which have long been intensively
and extensively studied.13–16 In particular, many studies are
devoted to the dynamics of intense and extremely short opti-
cal pulses—a.k.a. light bullets—in such media.17–22 In par-
ticular, there were various aspects investigated, such as the
effective equations, the dynamics of the pulse with the influ-
ence of impurities, the Coulomb interaction between elec-
trons, the collisions between light bullets, and the influence
of external fields to name a few.

Among the affected range of issues, however, there are
a number of remaining challenges, which are not addressed
in the papers cited above. First of all, it concerns the proper-
ties of the medium in which the carbon nanotubes were
placed. In this regard, one can highlight Ref. 23, in which
the impact of medium dispersion on the propagation of light
bullets has been investigated. Meanwhile, as we know, the
medium can have different properties (piezoelectric, mag-
netic, ferroelectric, and so forth), which may have a signifi-
cant effect on the propagation of light bullets. In this paper,
we set out to prove the last assertion and theoretically stimu-
late experiments in this area. Specifically, we consider CNTs
placed in a particular environment, which can be subjected
to electrically induced mechanical deformations—i.e.,

piezoelectric vibrations. Such hybrid media based on CNTs
and piezoelectric fibers create unique conditions for the
propagation of light bullets: the locally intense electric field,
in turn, excites various nonlinear responses of the medium.

II. FORMULATION OF THE PROBLEM AND GENERAL
EQUATIONS

Consider the propagation of extremely short electromag-
netic pulses through an array of carbon nanotubes. The elec-
tric field of the pulse is assumed to be perpendicular to the
nanotube axis (see Fig. 1). The dispersion law for a ðm; 0Þ
zigzag-type CNT reads

es pð Þ ¼ 6c 1þ 4 cos apð Þcos
ps

m
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(1)

where s ¼ 1; 2;…;m (m is not a multiple of three), c % 2:7
eV is the overlap integral, a ¼ 3b=2!h, b¼ 0.142 nm is the
distance between carbon atoms.

In the presence of an external electric field E, which is
considered in the gauge E ¼ & 1

c @A=@t, it is necessary to
replace the momentum with the generalized momentum, i.e.,
p! p& eA=c (e being the elementary charge and c the
speed of light in vacuum). Maxwell’s equations with the
account of the gauge in a quasi-one-dimensional approxima-
tion can be written as follows:24
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where we neglect the diffraction spreading of the laser beam
in the direction perpendicular to the axis of propagation. The
vector potential is assumed to take the form A ¼ f0; 0;
Aðx; tÞg, and the current is j ¼ f0; 0; jg. To account for the
properties of the medium, we have added the term with the
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polarization vector P, directed along the CNT’s axis (see
Fig. 1).

Let us now express, in a standard fashion, the current
density

j ¼ e
X

psr

vs p& e

c
A tð Þ

! "
hC†

psrCpsri; (3)

where vsðpÞ ¼ @esðpÞ=@p and the brackets h…i denote aver-
aging with the nonequilibrium density matrix qðtÞ: hBi
¼ SpðBð0ÞqðtÞÞ. C†

ps and Cps are the creation and annihila-

tion operators for excitations with quasi-momenta (p, s).

Taking into account the relation ½C†
psrCpsr;H( ¼ 0, equations

of motion for the density matrix give us the conservation

equality hC†
psrCpsri ¼ hC†

psrCpsri0. Here hBi0 ¼ SpðBð0Þ
qð0ÞÞ; q0 ¼ exp ð&H=kBTÞ=Sp½exp ð&H=kBTÞ( (kB is the
Boltzmann constant and T the temperature). The dispersion
law esðpÞ can be expanded as a Fourier series

es pð Þ ¼
1

2p

X

sq

asq cos apqð Þ;

asq ¼
ð

cos apqð Þes pð Þdp;

(4)

where the integration is performed over the first Brillouin
zone, and q is any natural number.

To proceed, we use the following considerations. In a
non-piezoelectric medium, electron dynamics is determined
by Newton’s second law, i.e., dp=dt ¼ eE. With the gauge
E ¼ &@A=c@t, this yields a standard solution for the so-
called “long” momentum, p ¼ p0 & eA=c. If we account for
the piezoelectric effects, electron dynamics is described by
the equation dp=dt ¼ eEþ ed@u=@z, where d is the piezo-
electric coefficient, and u is the displacement vector of the
medium. This latter equation with the account for Eqs. (3)
and (4) leads us to a single effective equation for the vector
potential in the form (subscripts z are omitted for clarity)
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The quantity g in Eq. (5) is related to the non-zero compo-
nent of the displacement vector u of the medium as follows:

g ¼ &cd

ðt

&1

@u z; t0ð Þ
@z

dt0: (6)

Here, we consider one of the simplest models possible,
such that the induced polarization in the medium admits
linear variations with the applied electric field and is
directed parallel to the electric field due to the piezoelectric
effect

P ¼ d
@u

@z
: (7)

It is worth noting that Eq. (5) must be supplemented with the
equation for the displacement vector u25–27
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where q is the medium density, and va is the speed of sound
in the medium.

Within the framework of the model described above, it
is necessary to make a couple of remarks. First, we take into
consideration only one component of the displacement vec-
tor P, which can obviously be easily generalized. Also, we
do not take into account the fact that the environment can
have some nonlinear acoustic properties, thereby resulting in
the possibility of having the polarization vector not being
colinear with the electric field.

III. RESULTS OF THE NUMERICAL MODELING

Equation (5) was solved numerically using the direct
cross-type difference scheme.28 The initial condition is
chosen in the form of extremely short pulses consisting of
two electric field fluctuations and can be written in the
form

A x; 0ð Þ ¼ Qx exp & x2

c

 !

;
dA x; 0ð Þ

dt
¼ 2x2v

c
Q exp & x2

c

 !

;

c ¼ 1& v2ð Þ1=2
; (9)

u x; 0ð Þ ¼ 0;
du x; 0ð Þ

dt
¼ 0;

where Q and v are the initial pulse amplitude and velocity,
respectively. The evolution of the electromagnetic field dur-
ing its propagation through the sample is shown in Fig. 2.
Due to the fact that Eq. (5) is sufficiently close to the integra-
ble sine-Gordon equation, the pulse propagates preserving its
shape in the initial stage. Then the non-integrable terms in
Eq. (5) begin to play a non-negligible role resulting in the
appearance of a tail behind the pulse, which has approxi-
mately zero area. Note that, as shown by the results of
numerical calculations, the type of carbon nanotubes only

FIG. 1. Schematic drawing representing the geometry of the problem.
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weakly affects the dynamics of the pulse. This behavior
occurs for all types of semiconductor nanotubes. Also note
the appearance of a “tail,” which is also not related to the
type of CNTs. Lastly, it is worth noting the increase in the
pulse amplitude as it propagates through the sample.

The dependence of the pulse shape on the initial pulse
velocity is shown in Fig. 3. Such a behavior can be explained
by the transition to a moving coordinate system which leads

to narrowing of the pulse. Also note that the evolution of the
extremely short pulse depends, in general, on the initial pulse
amplitude. Moreover, low-amplitude pulses propagate with
almost unchanged shape. Larger amplitude pulses undergo
major changes due to the effects of nonlinearity and wave-
front interference with its decay.

We also investigated the influence of the piezoelectric
coefficient d on the pulse propagation through the sample,

FIG. 2. Dependence of the vector
potential on coordinate (v=c ¼ 0:95):
(a) initial pulse; (b) t ¼ 5:0) 10&12 s;
and (c) t ¼ 7:5) 10&12 s. All quanti-
ties are given in relative units.

FIG. 3. Dependence of the vector
potential on time for different values
of the initial speed of pulse: (a)
v=c ¼ 0:93; (b) v=c ¼ 0:95; and (c)
v=c ¼ 0:93. All quantities are given in
relative units.
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which is illustrated in Fig. 4. The figure shows that, as
expected, this parameter only determines the shape of the
“tail,” but has no effect on the main pulse. Moreover, the
larger the value of d, the greater the fluctuations in the pulse
“tail” due to the piezoelectric effect. That is, one can control
the generation of the terahertz pulse by changing the piezo-
electric coefficient d.

IV. CONCLUSIONS

As a result of our study, the following conclusions can
be made:

(i) Over time, there is an increase in the amplitude of the
extremely short optical pulse in a piezoelectric
medium with CNTs, which allows the use of this
medium in devices for amplification of pulses.

(ii) The emergence of the “tail” behind the extremely short
pulse may be useful for generating terahertz pulses.

(iii) The pulse behavior strongly depends on the value of
the piezoelectric coefficient d, which determines the
character of the oscillations in the “tail” following the
main pulse.
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