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Propagation of ultrashort laser pulses through various nano-objects has recently became an

attractive topic for both theoretical and experimental studies due to its promising perspectives in

a variety of problems of modern nanoelectronics. Here, we study the propagation of extremely

short two-dimensional bipolar electromagnetic pulses in a heterogeneous array of semiconductor

carbon nanotubes. Heterogeneity is defined as a region of enhanced electron density. The

electromagnetic field in an array of nanotubes is described by Maxwell’s equations, reduced to a

multidimensional wave equation. Our numerical analysis shows the possibility of stable

propagation of an electromagnetic pulse in a heterogeneous array of nanotubes. Furthermore, we

establish that, depending on its speed of propagation, the pulse can pass through the area of

increased electron concentration or be reflected therefrom. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4879900]

I. INTRODUCTION

One of the most promising objects for modern nanoelec-

tronics is the ensemble of carbon nanotubes (CNTs),1 which

represent quasi-1D macromolecules of carbon. The nonlinear-

ity of the electron dispersion in nanotubes leads to a wide

range of properties, which manifest in fields of moderate inten-

sity �103 � 105 V=cm (see, e.g., Refs. 2 and 3 and references

therein). Recent successes in laser physics in the generation of

powerful electromagnetic radiations with given parameters,4

have provided the impetus for comprehensive studies of elec-

tronic and optical properties of CNTs in the presence of an

electromagnetic field. Special interest in phenomena related to

the propagation of ultra-short electromagnetic pulses through

an array of CNTs5–10 has recently been mounting. In particu-

lar, the possibility for propagation of solitary electromagnetic

waves in an array of CNTs has been demonstrated,5,6 as well

as the dynamics of a periodic train of electromagnetic pulses,

and the induced current domains have been investigated.7,8

Generally, the theoretical and experimental studies of

electromagnetic solitary waves have a rather long history. In

the last two decades, optical solitons in Bose–Einstein con-

densates have attracted a growing body of interest (see Refs.

11 and 12 and references therein for a review on this topic).

More generally, the propagation of stable/quasistable optical

solitons requires specific types of medium nonlinearity.13–15

The latter can be provided, e.g., by a proper choice of nonlin-

ear lattices (topic comprehensively reviewed in Ref. 16). In

this context, the CNT arrays provide one of the unique and

practically reliable systems for studying various aspects of

nonlinear electromagnetic waves propagation in media.

Earlier studies of the propagation of electromagnetic

pulses were mainly devoted to the analysis of 1D cases.

Later on, it was realized that there are a lot of unresolved

issues remaining in 2D and 3D cases, some of which are

quite peculiar. Indeed, the possibility of propagation of

cylindrically symmetric electromagnetic waves in an array

of nanotubes has been demonstrated.17 Furthermore, the pos-

sibility of propagation of 2D traveling solitary electromag-

netic waves (a.k.a. light bullets) has been reported in

Ref. 18. Subsequently, their interaction with inhomogene-

ities in the arrays of nanotubes has been investigated.19–21

The possibility of propagation of 2D bipolar electromagnetic

pulses in semiconductor arrays of CNTs was revealed in

Ref. 22. The general aspects of stability of the laser beams

propagating in an array of CNTs were analyzed in Ref. 23.

It should be noted that the theoretical analysis in the

abovementioned studies has been performed under the

assumption of homogeneity of the pulse field along the axis

of the CNTs. However, the heterogeneity of this field can

cause the emergence of interesting and unexpected physical

effects of potentially practical importance. In particular,

Ref. 24 is concerned with the 2D model of the propagation

of ultrashort electromagnetic pulses in an array of CNTs

with the heterogeneity of the field along their axis.

Furthermore, recently the authors carried out a comprehen-

sive study of the latter problem in the fully 3D case, which

resulted in the demonstration of the possibility of 3D bipolar

electromagnetic breathers propagation through an array of

CNTs with account for the field inhomogeneity.25 As a

result, it was found that in that specific case, an electromag-

netic pulse induces a significant redistribution of the electron

density in the sample, both in 2D and 3D systems.

Apart from the field inhomogeneity leading to the elec-

trons redistribution, there are other natural heterogeneities in

the experimental samples. A case of special importance is

when heterogeneities are caused by regions of increased con-

duction electron concentration, induced by the presence of

impurities. In this regard, it seems appropriate to study the

effects of heterogeneity of the electron concentration on thea)Electronic mail: alex_zhukov@sutd.edu.sg
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characteristics of propagation of extremely short bipolar

electromagnetic pulses through an array of semiconducting

carbon nanotubes. The relevance of this issue is critical for

modern optoelectronics applications.

The paper is constructed as follows. The effective equa-

tion describing the evolution of the electric field during the

propagation of two-dimensional extremely short bipolar

electromagnetic pulses through an inhomogeneous array of

semiconductor CNTs is derived in Sec. II. In Sec. III, we

describe the details of our numerical simulation scheme and

discuss the obtained results. The main outcomes of our study

are summarized in Sec. IV.

II. EFFECTIVE WAVE EQUATION

Let us consider the propagation of a solitary electromag-

netic wave (laser pulse) through a volumetric array of mono-

layer semiconductor carbon nanotubes of the zigzag type,

(m,0), where the number m (not a multiple of three) determines

the radius of the nanotube through R ¼
ffiffiffi
3
p

bm=2p, with b the

distance between nearest-neighbor carbon atoms.3 This partic-

ular choice of CNTs type is dictated by the presence of stable

solitary solutions even for the generic sine-Gordon case in

2D.26 We assume that the nanotubes are placed into a homoge-

neous insulator in a way that the axes of the nanotubes are par-

allel to the common Ox-axis, and the distances between

neighboring nanotubes are large compared to their diameter,

which allows us to neglect the interaction between CNTs.22,23

Given the above framework, the dispersion relation for

the conduction electrons of CNTs takes the form

Dðpx; sÞ ¼ c0

(
1þ 4 cos px

dx

�h

� �
cos p

s

m

� �

þ 4 cos2 p
s

m

� �)1=2

; (1)

where the quasimomentum is represented as p ¼ px; sf g,
with s ¼ 1; 2;…;m is the number characterizing the momen-

tum quantization along the perimeter of the nanotube, c0 is

the overlap integral, and dx¼ 3b/2.2,3

Now, let us consider the propagation of a laser beam in

an array of CNTs in the direction perpendicular to the their

axes, namely, along the Oz-axis with our choice of spatial

coordinates. Further, we assume that the electric field of the

laser beam, E ¼ Eðy; z; tÞ; 0; 0
� �

, is oriented along the

Ox-axis. The characteristic pulse duration sp is supposed to

satisfy the condition sp � srel, where srel is the characteristic

relaxation time. The latter condition allows us to use the colli-

sionless approximation to describe the evolution of the pulse

field.5 The electromagnetic field in an array of nanotubes can

be described by Maxwell’s equations,28 which in our case

lead to the following wave equation for the vector potential:

e
c2

@2A

@t2
� @

2A

@y2
� @

2A

@z2
� 4p

c
j ¼ 0; (2)

where A(y, z, t) and j(y, z, t) are the projections of the vector

potential A¼ (A, 0, 0) and the current density j¼ (j, 0, 0)

onto the Ox-axis, e is the permittivity of the medium, and c is

the speed of light in vacuum. The electric field of the laser

beam is determined by the gauge condition

E ¼ �c�1@A=@t.29

In this particular study, we assume that the electric field

along the Ox-axis is homogeneous. The inhomogeneity of the

field can lead to a charge redistribution, so that it is necessary

to include additional induced fields into consideration.25 The

latter problem is beyond the aim of the present study. Let us

derive the conduction current density in an array following the

approach developed in Refs. 22, 23, and 31. Following the

scheme used in, e.g., Ref. 10, and representing the electron

energy spectrum (1) as a Fourier series, we write the expres-

sion for the projection of the current density on the Ox-axis in

the collisionless approximation, namely,

j ¼ �en
dx

�h
c0

Xm

s¼1

X1
a¼1

Ga;s sin a
edx

c�h
A

� �
; (3)

where e is the electron charge, n is the concentration of con-

duction electrons in the array of nanotubes, and the coeffi-

cients Ga,s are explicitly given by

Ga;s ¼ �a
da;s

c0

ðp

�p
cosðanÞexp �

X1
a¼1

ha;s cosðanÞ
n o

dnðp

�p
exp �

X1
a¼1

ha;s cosðanÞ
n o

dn
;

(4)

with ha;s ¼ da;sðkBTÞ�1
, and da;s are the coefficients in the

expansion of the spectrum (1) in a Fourier series

da;s ¼
dx

p�h

ðp�h=dx

�p�h=dx

Dðpx; sÞcos a
dx

�h
px

� �
dpx: (5)

Details of the derivation of Eq. (3) can be found in Ref. 10.

In our work, the dispersion law is expanded as a Fourier se-

ries. At this point, we have to note that the current density in

Eq. (3) explicitly depends on the vector potential A.

Therefore, it might be assumed that the change of the vector

potential by adding a scalar constant (which is classically

known not to lead to any physical consequence) causes a

change in the current density. However, in reality, this does

not happen, because while deriving Eq. (3), it was assumed

that the vector potential A initially (at t¼ 0) is zero valued,

which fixes its choice.

It is worth noting that the field is not known a priori in

the general case. That means that our present formalism is

not universal. However, we are not seeking general solutions

to this problem. Instead, we are considering the specific

problem of the propagation of a very short nonlinear solitary

pulse (breather). Therefore, in our framework, the preset

characteristics of the initial pulse are assumed to be precisely

known.

Let the area with a high concentration of electrons be

situated along the Ox-axis of the array of nanotubes. In the

simplest case, it can be modeled using a step function.30

Thus, with account of the expression for the current conduc-

tion (3), Eq. (2) gives us the wave equation describing the

203109-2 Zhukov et al. J. Appl. Phys. 115, 203109 (2014)
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field in an array of nanotubes containing region with an ele-

vated concentration of electrons

@2U
@s2
� @2U

@�2
þ @

2U

@f2

 !
þ gð�; fÞ

Xm

s¼1

X1
a¼1

Ga;s sin aUð Þ ¼ 0:

(6)

Here, U ¼ Aedx=c�h is the dimensionless projection of the

vector potential on the Ox-axis; s ¼ x0t=
ffiffi
e
p

is the dimen-

sionless time; � ¼ yx0=c and f ¼ zx0=c are the dimension-

less coordinates; g ¼ n=n0, where n0 is the equilibrium

electron concentration in the absence of external fields; and

x0 is the characteristic frequency, defined by the formula

x0 ¼ 2
edx

�h

ffiffiffiffiffiffiffiffiffiffiffi
pc0n0
p

: (7)

The step function gð�; fÞ used in Eq. (6) has the form

gð�; fÞ ¼ 1; homogeneous area

n=n0; inhomogeneous area
:

�
(8)

This choice of the inhomogeneity distribution—fully charac-

terized by Eq. (8)—originates from our wish to understand

the basic peculiarities of the pulse behavior in the presence

of some inhomogeneities. The latter are always present

because of impurities, structural defects, etc. Obviously, the

step function in Eq. (8) does not represent a realistic configu-

ration. However, it conveniently offers us the possibility to

understand the underlying physics. Using our framework,

more realistic charge distributions could be considered in

future studies.

Note that we assume our system to be homogeneous

along the Ox-axis. While deriving Eq. (6), we have used the

collisionless approximation, which is valid for times smaller

than the characteristic relaxation time s � 10�12 s.2 This

assumption is fully justified by the fact that the typical size of

the pulse is of the order of micrometer, while the diameter of

CNTs is of the order of 10 nanometers. Even if we consider

multilayered CNTs, the overlap constant would not exceed

0.1 eV, while within a layer it is about 3 eV. In the array, the

nanotubes are weakly linked, so that the overlap constant

does not exceed 0.01 eV, thereby allowing us to neglect all

effects appearing during the ultra-short pulse passage.

The electric field of the wave in the array of nanotubes,

given its form E¼ (E, 0, 0), reads

E ¼ � 1

c

@A

@t
¼ E0

@U
@s

; (9)

in which E0 is given by

E0 ¼ �
�hx0

edx

ffiffi
e
p : (10)

One may notice that we are not dealing with the scalar poten-

tial u in our construction. Indeed, initially, the system is

electrically neutral. For a given geometry, the current is uni-

form along the whole length of CNTs, so the charge is not

elevated. Hence, the system essentially remains neutral, and

the d’Alembertian of the scalar potential is equal to zero

with zero boundary conditions. Thus, the governing equation

for u is �u ¼ 0 (� being the d’Alembertian operator)

admits only constant solutions, equal to the potential at infin-

ity, chosen to be zero using classical conventions.

As is well known, the practically measurable physical

quantities are the intensity, energy, or power of the electro-

magnetic radiation, which are proportional to the square of

the absolute value of the electric field vector.28 Taking into

account the expression (9) and the chosen gauge for a vector

potential, the intensity I¼E2 takes the form

I ¼ I0

@U
@s

� �2

; (11)

where I0 ¼ E2
0 (see Eq. (10)).

III. NUMERICAL SIMULATION AND DISCUSSION OF
RESULTS

Given the quite general framework considered, Eq. (6),

in general, does not possess any exact analytical solutions.

Hence, we carried out a numerical study of the propagation

of an electromagnetic pulse in an array of CNTs.

Equation (6) can be considered as a generalization of the 2D

sine-Gordon equation. Let us assume that at the instant t¼ 0

the specimen is irradiated by a bipolar electromagnetic pulse,

described by its dimensionless vector potential of the form

U¼4arctan
sinv

coshl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

X2
�1

r( )
exp � ���0

k

� �2
( )

; (12)

where we have used the following notations:

v ¼ X
s� f� f0ð Þu=vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðu=vÞ2
q ; (13)

l ¼ su=v� ðf� f0Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X2

1� ðu=vÞ2

s
: (14)

X ¼ xB=x0 is the parameter determined by the natural fre-

quency of the breather xB (X < 1); u/v is the ratio of the

pulse velocity u to the speed of light in the medium

v ¼ c=
ffiffi
e
p

; �0 and f0 are the dimensionless coordinates along

the Oy- and Oz-axes, respectively, at s ¼ 0; k is the dimen-

sionless half-width of the pulse along the Oy-axis.

Note, the first factor in Eq. (12) is a traveling breather,

propagating with velocity u.32 The choice of initial pulse is

justified in Refs. 22, 23, and 25. For the numerical solution

of Eq. (6), we have implemented explicit finite-difference

schemes for hyperbolic equations.33 Difference scheme steps

in both time and space were iteratively decreased twice until

the solution became unchanged in the eighth decimal place.

To prevent any reflection at the boundaries of the computa-

tional domain, an absorbing boundary treatment was imple-

mented similar to what is classically done.20,22,23,25,26,35

Specifically, this absorbing boundary is achieved by expand-

ing the computational domain beyond the limits of the actual
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physical boundaries, and by imposing a variable damping

throughout the extended part of the computational domain.

The intensity of the damping is increased logistically from

zero at the border with the physical part of the computational

domain. The number of additional damping layers on the

outer part of the computational domain is varied in order to

effectively dampen any reflection with the same accuracy as

the above convergence criterion. The obtained values for

Uð�; f; sÞ have been further used to calculate the electric

field by means of Eq. (9), as well as the intensity distribution

of the field through Eq. (11).

Modeling of the laser pulse propagation has been done

for an array of carbon nanotubes of the (7, 0)–type, where

we have used the following realistic parameters: c0 ¼
2:7 eV; b ¼ 1:42� 10�8 cm; dx � 2:13� 10�8 cm; n0 ¼
2� 1018 cm�3,27 T¼ 77 K, and e ¼ 4. We assume that the

array of nanotubes contains heterogeneity, namely a region

of elevated electron concentration, n¼ 5n0. Furthermore, we

approximate the latter region by a rectangular shape in the

plane �Of. The characteristic sizes of an inhomogeneity are

d� ¼ df ¼ 0:5 ðdy ¼ dz � 1:5� 10�4 cmÞ, and the center of

the region is located at the origin � ¼ f ¼ 0. For definite-

ness, we have chosen the following initial parameters:

X¼ 0.5 (equivalent to xB ¼ Xx0 � 5:05� 1013 s�1); k¼ 1

(equivalent to the pulse half-width along the axis Oy equal

to Ly ¼ kc=x0 � 3� 10�4 cmÞ; �0 ¼ 0, and f0 ¼ �3.

Numerical simulations show that the result of the interaction

of ultrashort laser pulse with an area of elevated electron

density depends on the speed of the pulse u¼ bv.

Figures 1–4 represent the typical results of modeling the

pulse propagation in an inhomogeneous array of CNTs.

Figures 1 and 2 illustrate the propagation of an ultrashort

laser pulse for the initial velocity u ¼ bc=
ffiffi
e
p
¼ 1:43� 1010

cm=s (which corresponds to b¼ 0.95, see Eq. (12)) through

the region of elevated electron concentration. Specifically,

Fig. 1 represents the distribution of field intensity within the

array of nanotubes in a plane �Of at different instances of

the dimensionless time s ¼ x0t=
ffiffi
e
p

. The field intensity is

presented by a ratio Ið�; f; sÞ=Imax, different values of which

correspond to a variation of colors (flooded contours) with a

colormap from violet to red. The quantity Imax stands for the

maximum intensity at the given instant s considered. Red

areas correspond to near-maximum intensity, while purple

ones reflect near-minimum intensity regions. The distribu-

tion is plotted using the dimensionless coordinates,

� ¼ yx0=c and f ¼ zx0=c. With the parameters selected

above, the units on the axes correspond to the physical dis-

tances Dz ¼ Dy � 3� 10�4 cm.

Figure 2 represents the intensity distribution

Ið�0; f; sÞ=I0 of the pulse field in an array of CNTs in an area

parallel to the plane nOf ðn ¼ xx0=cÞ and passing through

the point � ¼ �0 ¼ 0, at the same instants of the dimension-

less time s as in Fig. 1. Figure 2 allows us to trace the varia-

tion of the laser pulse and the maximum field intensity when

the pulse passes through the region of elevated electron den-

sity. The key result gathered from Figures 1 and 2 is that the

two-dimensional bipolar electromagnetic pulse continues to

propagate through an environment after the interaction with

the heterogeneity without incurring a significant spreading.

However, the situation changes drastically depending on

the initial pulse velocity. Figures 3 and 4 demonstrate the

reflection of a laser pulse from the region of the elevated

electron density for the initial pulse velocity u¼ 1.28

� 1010 cm/s (which corresponds to b¼ 0.85). Particularly,

Fig. 3 shows the intensity distribution on the plane �Of at dif-

ferent instants of s, while Fig. 4 gives us the intensity distribu-

tion Ið�0; f; sÞ=I0 of the pulse field in an array of CNTs in an

area parallel to the plane nOf, and passing through the center

of a pulse. The very interesting outcome seen from Figs. 3

and 4 is that even the reflected pulse remains stable and propa-

gates in the opposite direction without a significant spreading.

Thus, the results of our numerical analysis reveal that

depending on the initial velocity, the laser pulse can either

pass through a region of increased concentration of electrons

or be reflected therefrom. Electromagnetic pulses with low

propagation velocities are reflected from a region of

enhanced electron density, while the pulses with velocities

exceeding a certain threshold value uc overcome the region

FIG. 1. Field intensity distribution in the

array of CNTs at different points of the

dimensionless time s ¼ x0t=
ffiffi
e
p

during

the propagation of laser pulse through the

region of elevated electron concentration:

(a) s ¼ 0, (b) s ¼ 4:0, (c) s ¼ 8:0, (d)

s ¼ 12:0. The axes are scaled using the

dimensionless coordinates � ¼ yx0=c,

and f ¼ zx0=c. Values of the ratio I/Imax

are mapped on a color scale, the maxi-

mum values of the field intensity corre-

spond to red, and minimum ones to

purple. Imax is the maximum value of I at

the given instant s considered.

FIG. 2. Intensity distribution Ið�0; f; sÞ=I0 of the pulse field in an array of

CNTs in an area parallel to the plane nOf ðn ¼ xx0=c; f ¼ zx0=cÞ and pass-

ing through the point with coordinates � ¼ �0 ¼ 0, at different instants of

the dimensionless time s: (a) s ¼ 0, (b) s ¼ 4, (c) s ¼ 8, (d) s ¼ 12.

203109-4 Zhukov et al. J. Appl. Phys. 115, 203109 (2014)
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of high electron density. The value of uc depends on several

factors, which include the heterogeneity parameters: The ra-

tio of the concentration of electrons in an anomalous region

to the electron density in the homogeneous part of the sam-

ple, and the size of the region of the elevated concentration

of electrons. The probability of the pulse’s passage through

the region of high electron density increases with the

increase of initial velocity and while reducing the size of

the inhomogeneity, ceteris paribus. This result echoes with

the results of Ref. 34, revealing the selective nature of the

transmission of electromagnetic solitons through the region

of high electron density in the quantum semiconductor

superlattices. The revealed peculiarities of the interaction of

ultrashort bipolar electromagnetic pulses with the region of

elevated electron concentration in an array of semiconductor

carbon nanotubes can be potentially useful for the develop-

ment and design of new laser based control devices, optical

information processing systems, etc.

IV. CONCLUSIONS

In summary, the key results of our study are the

following:

(i) We consider an ultrashort laser pulse, propagating

through an array of carbon nanotubes, containing the

region of elevated electron concentration. For the first

time, we have derived the governing equation describ-

ing the evolution of the electric field during the propa-

gation of two-dimensional extremely short bipolar

electromagnetic pulses through an inhomogeneous

array of semiconductor CNTs (see Eq. (6));

(ii) We have found that the general wave equation (6)

can be considered as a generalization of a two-

dimensional sine-Gordon equation. Taking the initial

pulse being a traveling 2D breather, we have demon-

strated its stable propagation through a specimen;

(iii) Depending on the initial velocity, the laser pulse can

either pass through the inhomogeneous region, or get

reflected therefrom. The characteristic velocity, corre-

sponding to a passing/reflection turnover, generally

depends of the size of an inhomogeneity and the den-

sity of electrons in the elevated concentration region;

(iv) We have demonstrated that in both cases, whether

passing or reflecting, the pulse remains stable and

continues to propagate without incurring a significant

spreading. The latter observation makes the system

under study being potentially useful in various practi-

cal applications.
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