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Abstract. Controllability of complex networks has been the focal point of many
recent studies in the field of complexity [11, 16]. These landmark advances shed
a new light on the dynamics of natural and technological complex systems [11,
16]. Here, we analyze the controllability of a swarm of autonomous self-propelled
agents having a topological neighborhood of interactions, applying the analytical
tools developed for the study of the controllability of arbitrary complex directed
networks. To this aim we thoroughly investigate the structural properties of the
swarm signaling network which is the information transfer channel underpinning
the dynamics of agents in the physical space. Our results show that with 6 or
7 topological neighbors, every agent not only affects, but is also affected by all
other agents within the group [5]. More importantly, still with 6 or 7 topological
neighbors, each agent is capable of full control over all other agents. This finding
is yet another argument justifying the particular value of the number of topological
neighbors observed in field observations with flocks of starlings [3].
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1. Introduction

The connectedness of the swarm signaling network (SSN), the swarm’s infor-
mation transfer channel, has been shown to be a sufficient condition for an
agent within the swarm to affect and get affected by some if not all agents
of the group [8]. However, in many occasions, one or more informed agents
need to be able to drive the swarm to a certain global state, and usually
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within finite time. This is better understood when considering two biologi-
cal systems such as a flock of birds or a school of fish. For instance, evasive
maneuvers triggered by a predator approaching or by collision avoidance col-
lective responses are induced by one or a few agents perceiving the threat and
responding to it. Those agents are said to be informed since they involuntarily
have a privileged access to out-of-the-swarm informational signals. Moreover,
these few agents effectively are driver agents: they are able to control the
entire swarm by bringing the other agents to swiftly respond to a threat that
they are not directly detecting. It is worth adding that those driver agents
do not possess any “super” power of any sort but they simply temporarily
become informed “leaders” as they happened to have discerned the danger
first; any other agent in the swarm could be driving the group as long as it
is subjected to specific external cues which are not made available globally to
the whole swarm. Therefore, controllability is a vital factor for a swarm to
robustly and effectively perform a dynamic collective response benefiting the
majority of the group members. In this paper, we analyze the controllability
of a dynamic swarm by tapping into network-theoretic concepts to represent
the dynamic complex network of interactions underlying the dynamics of the
collective in the case of topological interactions.

2. The Swarming Model

The model we investigate here, as a simple representation of swarming—is
composed of self-propelling agents moving about a two-dimensional plane with
constant speed, v0, similarly to the Vicsek’s model [15]. However, the neigh-
borhood of interactions is not metric but instead is topological [3]. The topo-
logical character of the neighborhood of interactions has a tremendous impact
on the properties of interagent connectivity, in particular with the induced
asymmetry in the relationship whereby if agent j is in the neighborhood of
agent i, then i is not necessarily in the neighborhood of j, i.e. the interaction
is directed.

For simplicity, we assume that each agent i is fully characterized by one
unique state variable θi, its velocity vi = v0 cos θix̂+ v0 sin θiŷ, or equivalently
its velocity direction θi, the speed v0 being constant. The local synchroniza-
tion protocol—based on relative states that prevents any singularity such as
those reported with the original Vicsek’s model [9] from occuring—is strictly
equivalent to a local alignment rule, which mathematically can be stated as:

θ̇i(t) =
1

|Ni(t)|
∑

j∈Ni(t)

wij(θj(t)− θi(t)), (1)

where Ni(t) is the time-dependent set of outdegree neighbors in the agent i’s
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topological neighborhood of interaction, with cardinal number |Ni(t)|, and wij

is the binary weight of the i−j communication link. Note that in some models,
wij can take a more complicated form than our binary choice [4, 6, 13]. Using
the k-nearest neighbor rule for the topological neighborhood of interactions,
we have |Ni(t)| = k and the following dynamical equation for each individual
agent in the swarm:

θ̇i =
1

k
[(θj − θi) + · · ·+ (θj+k−1 − θi)] , (2)

where θj , · · · , θj+k−1 are its k-nearest neighbors’ velocity directions.

3. The Swarm Controllability

In order to analyze the swarm controllability, we need to identify the SSN
which is the information transfer channel in the swarm underlying the dy-
namics of the interacting agents. The dynamics of the agents in the two-
dimensional physical space is intricately coupled to the dynamics of the SSN. It
is easy to verify that the SSN is a switching k-nearest neighbor digraph [1,2,7,8]
as agents are forced to interact with their k-nearest neighbors within the evolv-
ing swarm. Consequently, the global swarm dynamical model can be recast
as

Θ̇(t) =
1

k
(−L)Θ(t), (3)

where Θ(t) = [θ1(t), · · · , θN (t)]T is the vector of velocity directions of all
agents and L is the matrix of the graph Laplacian associated with the SSN
based on the outdegree. Note that given the k-nearest neighbor rule used for
the topological neighborhood of interactions, the outdegree for every single
node is constant and equal to k. Figure 3.(top) depicts a snapshot of the collec-
tive migration of a swarm comprising N = 100 topologically-interacting agents
moving in a two-dimensional square domain subjected to periodic boundary
conditions. The associated signaling network is shown in Fig. 3.(middle) with
the nodes representing the traveling agents at their exact location in the phys-
ical space, while the edges represent the directed topological interactions be-
tween individuals.

Recently, the field of complex networks have seen the emergence of new
general theories and tools related to the controllability of such networks. The
two most prominent controllability tools are: (i) the structural controllabil-
ity framework developed by Liu et al. [11], and (ii) the exact controllability
framework very recently introduced by Yuan et al. [16]. In applying both the
exact and the structural controllability tools, one has access to the details of
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Figure 1: (Top) Physical view: snapshot of a swarm of N = 100 topologically-
interacting individuals traveling at constant speed (v0 = 0.03) in a 2D square
domain (10× 10) with periodic boundaries; each agent interacts topologically
with k = 7 neighbors. (Middle) Network view: the associated swarm signaling
network (SSN); the nodes and edges are colored according to the topological
distance (increasing topological distance from blue to red). (Bottom) Com-
bined view: the swarm overlaid with the SSN.
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the extent of the swarm’s controllability, however, it requires adapting the dy-
namical governing equations for the swarm to these frameworks. This is the
aim of the following lemma.

Lemma. The controllability of the system governed by Eq. (3) is equivalent
to the controllability of the system

Θ̇(t) = AΘ(t), (4)

where A is the adjacency matrix of the SSN, whose graph Laplacian matrix L
appears in Eq. (3).

Proof. The number ND of driver nodes—a.k.a. unmatched nodes—in the
system governed by Eq. (3) is determined as follows:

ND = max
i

{
N − rank

(
δiI +

1

k
L

)}
, (5)

where δi is the i-th eigenvalue of L̃ = −L/k.
Given the definition of the matrix of the graph Laplacian and the topo-

logical nature of the inter-agent interactions, one can write:

δiI +
1

k
L = δiI +

1

k
(D −A) = δiI +

1

k
(kI −A) = (δi + 1)I − 1

k
A. (6)

It is easy to check that both transition matrices in Eqs. (3) and (4) share the
same eigenvectors. Thus, their corresponding eigenvalues are associated as

δi =
1

k
λi − 1, (7)

where λi is the i-th eigenvalue of the adjacency matrix A of the SSN. Given
Eqs. (6) and (7), we can conclude that

rank

(
δiI +

1

k
L

)
= rank(λiI −A). (8)

In our swarming model, interactions among all individual agents are ei-
ther “on” or “off” depending on whether the pair of agents are topologically
interacting or not—or equivalently we can say that the weights of the con-
stituent links are binary numbers, 0 or 1. This highlights the fact that link
weights are not free independent parameters in our SSN model. Hence, the ex-
act controllability framework looks suitable to be applied to our problem [16].
Figure 3. shows the results of the exact controllability analysis of the dynam-
ical swarm at any given point in time. One can see that the number of driver
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nodes decrease exponentially as k, the number of agents in the topological
neighborhood, increases. We can conclude through these results that if the
number of nearest neighbors reaches a value around 6 to 8—typical values
for the number of topological neighbors observed by Ballerini et al. [3] during
field experiments with bird flocks—every agent not only affects and is affected
by all other agents within the group, but more importantly, is capable of full
control over all other agents, i.e. the swarm.
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Figure 2: Density of required driver agents for a swarm with topologically-
interacting members vs. the number of neighbors (k) for three different swarm
populations (N). Results applying the exact controllability tool were collected
for 10 distinct SSNs at each data point. The average density of driver nodes
is calculated and the related standard deviations are illustrated by means of
errorbars.

One concern that should be addressed regarding the above results on
the number of driver nodes and the overall controllability of the swarm is
associated with the dynamic nature of the SSN. Since the SSN is intrinsically a
switching network—at each instant a certain number of links are broken while
the exact same number of edges are created due to the motion of the agents
in the physical space—one can prove that it is controllable at each instant,
assuming of course a high-enough value for k, for example around 6 to 8. If that
is the case, it is known from control theory associated with dynamic hybrid
systems that the overall switching dynamical system is controllable [10, 14].
However, if the value of k is not large enough to have a controllable swarm at
each instant, then this analysis reveals a lower bound for the control centrality
of each single agent, i.e. the ability of a single agent to control the whole
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swarm [12].

In either natural or artificial swarms it is more realistic to have non-
binary weights for communication links in order to model the imperfection of
the information transfer channel. Thus, it is necessary to consider how the
swarm controllability is affected by changing the weights of edges of the SSN.
Moreover, such an study would reveal the efficiency of our simple model in
analyzing the swarm controllability associated with realistic cases. To that
end, we further perform a structural controllability analysis of the swarm.

A system’s structural controllability is to a great extent encoded in the
underlying degree distribution, p(kin, kout). That is, the number of driver
agents is determined mainly by the number of incoming and outgoing links
each node of the SSN has, and is independent of where those links point
at [11]. As mentioned before and by construction, the outdegree distribution
of the SSN is a Dirac delta distribution, while its indegree distribution very
much resembles the one of a k-nearest random digraph [8], namely a Poisson
distribution associated with mean degree k. To allow for an analytical study of
the structural controllability of the swarm, we therefore consider the following
degree distributions:

pout(kout) = δ(kout − k),

pin(kin) =
k
kin
kin!

e−k.
(9)

Given the above discussion, the following lemma provides a key and useful
result originating from the structural controllability framework [8].

Lemma. The number of driver agents of the system governed by Eq. (4) at
each time instant is given by ND ≈ N

2 e
−k, in the large k limit.

Figure 3. shows the required number k∗ of topological agents to achieve
full controllability of the swarm based on the above analytical result. In other
words, Fig. 3. provides an answer to the following question: for a given swarm
population N , what is the number of topological neighbors k∗ required to
confer to each and every single agent full controllability “powers” over all other
agents. Moreover, this approximate analytical result based on the structural
controllability is in very good agreement with those obtained using the exact
controllability framework.
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Figure 3: The required number of topological neighbors (k∗) in a swarm to
reach full controllability vs. swarm size (N). The blue line corresponds to the
approximate analytical result from the structural controllability analysis. The
red dots refer to the result obtained with the exact controllability tool.
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