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Abstract—To date, the methodology to track and identify
vertical movement from large-scale unstructured data sets
is lacking. Here, we design and develop such a framework
to accurately and systematically identify the sparse human
vertical displacement activity typically buried into the pre-
dominantly horizontal mobility. Our framework uses sensor
data from a barometer, accelerometer, and Wi-Fi scanner
coupled with an extraction step involving a combination of
feature engineering and data segmentation. This methodol-
ogy is subsequently integrated into a machine-learning-based
classifier to automatically distinguish vertical displacement
activity—with98% overall accuracyand a 92% F1-score—from
its horizontal counterpart. We illustrate the potential of this
framework by applying it to an unstructured large-scale data set associated with over 16,000 participants going about
their daily activity in the city-state of Singapore. With the vertical movements of this large group uncovered,we can analyze
the specific features of this activity class using its statistical distribution. This new knowledge would have significant
ramifications for the architectural design of vertical cities.

Index Terms— Wearable sensors, barometer, multi-sensor identification, human activity recognition, vertical displace-
ment activity, stair climbing.
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I. INTRODUCTION

THE urbanization of our planet is rapidly increasing, with
55% of the world population now living in cities [1].

In 2030, this number is projected to increase to 60% [1].
In the face of this unabated urbanization trend, cities struggle
to accommodate the population influx through urban sprawl
alone, primarily because of land scarcity and the induced
strain on transportation networks. An alternative to urban
sprawl currently predominant in the rapidly urbanizing Asia
is increasing the density of the built environment, inevitably
leading to cities with vertically dominated landscapes and
singular skylines.

Such vertical cities exhibit a very distinct urban land-
scape, manifesting a sprawl of an upward nature with a very
high density of high-rise buildings—not necessarily limited
to skyscrapers. This vertical growth of cities is reflected in
the increasing market demand around the world for verti-
cal transportation systems like elevators and escalators, with
approximately 100, 000 units installed in 2019 and a fore-
cast for 250, 000 units commissioned in 2024 alone [2].
The Asia-Pacific region, where most of the fastest-growing
cities in the world are present [1], is said to have the
highest growth in demand (85%) for vertical transportation
systems [2].
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Over the last half-century, today’s urban planning has
dramatically benefited from extensive human mobility
studies. Over the last two decades, this area of research has
experienced significant growth due to the convergence of
several technological factors: (1) the development of new
sensors enabling more accurate tracking of human mobility,
(2) the very rapid and massive adoption of mobile phones
globally, and (3) the so-called “Big Data” effect. In addition,
complexity scientists have developed several new frameworks
to analyze and identify specific mobility patterns. Those
patterns hidden in troves of high-resolution mobility data
have been uncovered thanks to large-scale experiments or
from massive commercial databases—e.g., call detailed
record (CDR) [3]. However, it is essential to note that these
human mobility studies are limited to horizontal movements,
i.e., based on a two-dimensional representation of the urban
landscape. Roads, railway networks, and pedestrian pathways
are modeled on a planar surface in these studies.

As already mentioned, the rapid change in the topology of
cities in the developing world, especially in Asia, is promi-
nently three-dimensional [4]. Therefore, the development of
sustainable and livable cities heavily depends on studies of
human mobility across all three dimensions. However, while
brand-new skyscrapers are being erected every day globally,
we know surprisingly little about vertical human mobility.
For instance, some recent studies propose to study verti-
cal displacements in vertically integrated mixed-use devel-
opments as a means to identify key spatial connectors that
have a direct influence on social interactions [5]. Moreover,
a systematic study of vertical human mobility would benefit
urban/infrastructure planning in many ways: e.g., targeted
facility allocation in high-rise buildings, optimal placement
of vertical nodes based on the typology of the building and
the estimated vertical transportation load, effective vertical
integration of a building in its neighborhood, etc. [6].

Horizontal mobility has been extensively studied using a
wide variety of data sources: e.g., census data, travel sur-
veys, CDR, location-based social network services, GPS [7],
and smart travel/transit cards [8]. However, none of these
approaches and sensors can effectively track vertical displace-
ments. Interestingly, the sensor technology required to track
such human vertical mobility accurately is readily available.
What is missing is a methodology that enables the accurate
identification of various types of possible vertical displace-
ments from the output of large-scale human experiments with
sufficient statistical significance.

Here, we report a contribution towards that goal by introduc-
ing and validating a methodology to accurately and systemat-
ically identify the sparse human vertical displacement activity
(VDA) [9] that is deeply embedded within the predominantly
horizontal displacement activity. This methodology is then
integrated into a machine-learning-based classifier capable of
dealing with large-scale data sets collected in free-living and
unstructured urban environments. Classically, barometers have
been the primary type of sensor used to track motion in
the vertical direction. Indeed, barometric pressure—possibly
augmented by other sensors—is commonly used in the field of
Human Activity Recognition (HAR) to recognize the particular

VDA class, which is of prime interest to us [9]. Specifically,
VDA is a particular human activity class that deals with the
vertical displacement of individuals in the built environment
through commonly available modes of vertical mobility such
as stairs, escalators, elevators, or slopes. In this work, the term
VDA is intended to encompass human movements in vertically
built structure solely. That means we are discarding changes in
elevation associated with any vehicle motion (motor vehicle,
train, bicycle, cable car, etc.).

Our methodological advancement is thoroughly tested and
validated using a big data set obtained from a large-scale
human experiment carried out in Singapore: the so-called
National Science Experiment (NSE). The NSE was a
city-scale experiment that involved 50,000 students in Singa-
pore between 2015 and 2017. The wearable devices designed
explicitly for this large-scale experiment were carried by
students continuously for five days and contained several
sensors, including a barometer and an accelerometer. By fully
understanding the complex interplay of factors that influ-
ence barometric pressure, we develop several preprocessing
methods to alleviate the effects of those factors, with the
end goal of achieving the highest possible accuracy in the
VDA identification process. Moreover, the VDA extraction
process must be robust enough to handle inherent limitations
associated with such large-scale human experiments—i.e.,
low sampling rate, heterogeneity in devices and participant
population, missing data, and sensor errors. As part of this
process, we manually label a large number of training data
(81 subjects, 81 devices, for a time period of 24 hours).
This step is followed by a validation using a short-term
video-annotated data set (2 subjects, 5 devices, for a period
of 6 hours). Finally, we integrated the developed VDA iden-
tification methodology into a machine-learning-based clas-
sifier. Subsequently, we applied it to the large-scale NSE
data set to extract unique features of human vertical mobil-
ity associated with the student population participating in
the NSE.

The main contributions of this paper can be summarized as
follows (see Fig. 1):

• A novel and accurate multi-sensory identification of ver-
tical displacement activity is developed and validated
against a sparse data set from a large-scale human experi-
ment involving over 16, 000 individuals going about their
daily activity within a densely urban environment.

• The accuracy of this VDA identification process is found
to be strongly dependent on a several constraints associ-
ated with the sensing of key physical quantities. Specif-
ically, we design a feature extraction step involving a
combination of feature engineering and data segmenta-
tion. In addition, the properties of the sensors and how
they are used in such large-scale experiments create many
challenges, which are identified and addressed.

• Using our novel VDA identification process, a machine-
learning-based classifier allows us to carry out the first
large-scale analysis of human vertical mobility in a city-
scale experiment. Interestingly, our results reveal a highly
heterogeneous distribution of vertical activity, both in
terms of the number of events and of the size of vertical
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Fig. 1. Human activity recognition (HAR) process in the identification of VDA [10]. This flowchart describes the overall process developed to achieve
our VDA analysis represented in the last rectangular box. The key contributions of this work are in the boxes with a red outline.

jumps. These results have far-reaching implications for
the architectural design of dense urban environments.

II. RELATED WORKS

In the field of HAR, sensor data requires preprocessing fol-
lowed by the application of recognition models to classify the
activity classes of interest [11], [12]. Algorithms for identify-
ing VDA from sensor data range from simple threshold-based
models to sophisticated Machine Learning (ML) algorithms
like deep learning. In the present work, we employ an
ML-based classification model, and we review here several
prior studies concerning the use of ML to classify VDA events.

One of the pioneering works on identifying VDA was
performed in 1998 by Sagawa et al. [13], using accelerom-
eter and barometer data to identify VDA. The study used
a threshold-based model with a small training sample
(83 minutes and 6 subjects). Since then, the combined effects
of the digital revolution, the ubiquity of mobile devices, and
the advances in sensors, Big Data, and ML have paved the way
for the possibility of real-time recognition of activity classes
of individuals evolving in complex environments.

Accelerometers are the most widely used sensors to track
human activities [14]–[16]. Studies using an accelerometer
as the stand-alone sensor show that the prevalent mode of
tracked vertical mobility is stairs climbing [11], [17]–[23].
However, the classification accuracy of stairs climbing tends
to be lower than other activity classes [24], [25]. This led
researchers to include additional data sources to improve the
accuracy of VDA detection, such as gyroscope, magnetome-
ter, and barometer data [26]–[30], consider other modes of
vertical mobility such as escalator and elevator rides. For
instance, Liu et al. [26] added barometer data to a model that
used accelerometer, gyroscope, and magnetometer sensor data,
notably improving the classification accuracy from ∼ 80% to
∼ 90% (number of subjects: 10).

Additionally, some studies have acknowledged that
accelerometers are effectively less robust than barometers
for VDA classification. For example, Muralidharan et al. [31]
compared the VDA recognition performance using an

accelerometer versus a barometer and showed that their
VDA classification performances were similar — with the
barometer-based framework performing slightly better at
nearly 100% accuracy (number of subjects: 2). However,
the accuracy of the accelerometer-based framework dropped
drastically when the mobile device was used to take calls
or play games [31]. Similarly, Vanini et al. [32] showed that
the classification performance of VDA was comparable for
accelerometer-only and barometer-only study (∼ 99%), but
that the barometer was more energy-efficient and less depen-
dent from the on-body position than accelerometers (number
of subjects: 10).

Our study focuses on recognizing VDA as a general class
of activity. It uses the following sensor data: (1) location data
derived from Wi-Fi Access Points (APs), (2) magnitude of
3-axis accelerometer, and (3) barometric pressure data.

The magnitude of the 3-axis accelerometer signal is orien-
tation independent [33], [34] and does not require complex
data post-processing [11]. On the other hand, raw barometric
sensor data can entail noise introduced by random sensor
errors, limited sensor resolution, and high sampling frequency
(> 2 Hz). Filtering techniques like moving average fil-
ters [35]–[37], Finite Impulse Response (FIR) filters [38], and
Infinite Impulse Response (IIR) filters [27], [38]–[40] are com-
monly used to alleviate the noise effects. Signal modeling such
as sinusoidal fitting [41] and sigmoidal nonlinear fitting [42] is
used to increase the precision in extracting elevation changes.
In the present study, the spectral resolution of the sensor data
collection is 0.06 Hz. Such a low sampling rate allows the
system to side-step noise appearing at a high sampling rate
that affects precise extraction of elevation changes. Therefore,
the barometric pressure sensor data we consider here are
not filtered, and other noise sources due to sensor resolution
are used to quantify the uncertainty in the magnitude of the
predicted VDA.

Barometric pressure data is usually converted to several
common feature types such as: (1) statistical [43], [44],
(2) spectral [43]–[45], (3) temporal [43], [44], and (4) wavelet-
based features [46], [47]. The most commonly used fea-
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tures are the rate of change of pressure (vertical velocity
or slope) [26], [35], [43], [48], [49] and differential pres-
sure (dp) [48], [50].

Vanini et al. [32] used barometric pressure data alone to
recognize VDA using the features–rate of change of pres-
sure and the standard deviation of differential pressure. They
found that Long Short-Term Memory (LSTM) neural net-
work framework produces a 99% accuracy compared to a
decision tree approach (96%) and naïve Bayes classifiers
(93%). However, their data collection was of short dura-
tion (30 minutes for each class) and conducted in limited
environments. Muralidharan et al. [31] detected floor changes
with an accuracy of 99% using the J48 decision tree model.
Even though several factors that affect barometric pressure
are considered, the data collected were of short duration
(few minutes), conducted in limited structured environments,
and lacked any entanglement with transportation modes.
Liu et al. [26] classified vertical displacement activities from
horizontal displacement activities (HDA) using inertial mea-
surement units (IMU, including magnetometer) and barometer
sensor data, with barometric sensor features derived from the
standard deviation of pressure and rate of change of pressure.
By training various classifiers such as Random Forest, J48
decision trees, Artificial Neural Networks (ANN), SVM, and
Naïve Bayes, they obtained that Random Forest classifiers
produced the highest accuracy of 92%. Also, in this study,
each activity class was performed only for a few minutes and
limited to ambulation [26].

The review of the literature on HAR [11], [12], [51]–[54]
makes it clear that no classifier can be considered the best
one universally, i.e. without considering the context in which
it is used. As each data set comes with its own set of distinct
characteristics, the classifier working best for a particular data
set and activity type might not have the best performance for a
specific problem or different circumstances (i.e., not generaliz-
able) [11]. In this study, we have chosen two ensemble models
(XGBoost and Random Forest), a neural network model (Mul-
tilayer perceptron) a Bayesian model (Naive-Bayes), and an
instance-based nearest-neighbor model (k-Nearest Neighbor)
to evaluate and compare the performances of each model on
our data set (see Fig. 1).

It is common in the HAR literature to use short-duration
training data collected in segments that contain only one or
two activity classes and are performed in semi-natural or
laboratory conditions, with limited variability in environments.
However, real-life human activities occur in complex and
unstructured environments, with a wide range of possible
sequences, spanning heterogeneous activity classes with het-
erogeneous durations. Our study collocates itself in such a
framework, as it uses a long-term (5 days) data set collected
in a large-scale student population (∼ 50, 000 students) during
their regular weekdays. Hence, it requires a different approach
than those reported in the literature.

Indeed, long-term monitoring of human activities requires
a thorough understanding of all the factors affecting the
sensor data in different static and dynamic environments.
In particular, the factors that influence barometric pressure
data are climate and weather, air velocity during motion, built

Fig. 2. NSE SENSg device details: (a) outside look, (b) internal
structure [56], (c) working cycle. (Picture Courtesy: [57]).

environment, altitude, and sensor accuracy [9]. For a detailed
review on the use of barometers to track human activity and
the many factors that affect barometric pressure, we refer the
reader to the recent review paper [9].

III. DESCRIPTION OF DATA

A. National Science Experiment Data
The National Science Experiment (NSE) was designed and

commissioned by the Singapore National Research Founda-
tion (NRF) and the Singapore University of Technology and
Design (SUTD), with other private and government bodies
in Singapore [55]. The primary objective of this island-wide
science experiment carried out by Singapore students—themed
“Step Out for Science”—was to monitor and evaluate their
carbon footprint, travel mobility patterns, amount of time spent
indoors and outdoors, and more.

Almost 50, 000 students from 92 schools distributed
nation-wide participated in the NSE in 2016 (Table I). Each
student carried a wearable device called SENSg (see Fig. 2),
which consisted of built-in environmental, motion sensors, and
communication units. The devices were able to record and
transmit the sensed data related to the Activities of Daily
Living (ADL) of the students to a cloud server [56]. The data
was recorded every 13 ∼ 18 seconds over weekdays, from
Monday to Friday, for eight weeks in 2016. The device goes to
sleep mode to reduce battery consumption when the processed
IMU signal shows no user movement. The SENSg devices
were handed over to the students on Mondays and collected
back on Fridays. Hence, the full-time scale of daily ADL
is only available on Tuesdays, Wednesdays, and Thursdays.
Table II shows the cleaned NSE 2016 database after removing
devices based on two criteria (a) data coverage for less than
6 hours per day (b) percentage of missing location data larger
than 50% in a day.

Our study uses the accelerometer, barometer, and Wi-Fi
scanners embedded in the SENSg devices to detect stu-
dents’ Vertical Displacement Activities (VDA) during their
ADL. These sensor types are widely available in modern
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TABLE I
NSE 2016 - DEVICE DELIVERY INFORMATION

TABLE II
CURATED NSE 2016 DATABASE

smartphones, rendering them ideal for this particular HAR.
The SENSg device comprises the IMU sensor MPU9250 from
InvenSense and the barometer sensor BMP280 from Bosch
Sensortech. The device also collected and stored up to a
maximum of 20 Wi-Fi Access Points (AP) with the highest
Receiver Signal Strength Indication (RSSI). We used Skyhook,
a mobile location service from Boston, Massachusetts, that
has geolocation of billions of Wi-Fi APs around the world,
to convert the Wi-Fi APs to location coordinates [58]. The
location coordinates (latitude and longitude) have a typical
location accuracy of ±100 meters. The location accuracy is
increased by applying regression to the time-series of location
data (see Appendix B). When the Wi-Fi APs are sparse or
absent, location data is considered missing. Interpolation is
then applied to the time-series data to predict these missing
values (see Appendix A). The full sensor characteristics are
shown in Table III [56]. The embedded barometer sensor is
capable of detecting up to 1-meter changes in height, i.e.,
±12 Pa [56]. The raw values measured by the accelerometer
along its three axes were processed on-board the SENSg, and
only descriptive statistics of these raw data were recorded:
(1) max(Macc)—the maximum value of the accelerometer’s
signal magnitude (2) std(Macc)—the standard deviation of
accelerometer’s magnitude, both sampled at 100 Hz during the
one-second data acquisition temporal window, which occurred
in its turn with frequency ∼ 0.0625 Hz. The SENSg device,
along with its working cycle, is shown in Fig. 2.

B. Video-Annotated Data
As the measure of the barometric pressure behavior is

influenced by many factors, it is vital to have at our disposal

TABLE III
SENSOR CHARACTERISTICS OF SENSG DEVICE

TABLE IV
VIDEO-ANNOTATED DATA

a data set with the corresponding ground truth for validation
purposes. Therefore, we collected approximately 6 hours of
sensor data annotated using video recording to this aim. This
data set was recorded across different modes of horizontal
(walking, idle, train, bus, car, and cycle) and vertical (elevator,
escalator, and stairs) activity (Table IV). Two researchers
collected data on different days and times using a SENSg
device that was hung using a lanyard similar to the one used
by students in the NSE. The video was recorded using a Go
Pro Hero 6 mounted on the chest. We will use this data set to
validate manual labeling methods described in Sec. IV-A.

IV. METHODOLOGY

As the NSE was conceived as a large-scale data collection
with relatively high temporal resolution and for long dura-
tions, sensor data collection was optimized to save battery
life and data bandwidth. Unfortunately, this compromised
sensor resolution, sampling rate, and type of sensor data
collected, which inevitably makes the VDA identification more
challenging. This section thus details the machine learning
framework that we developed to identify and extract VDAs
from continuous temporal segments of the NSE data (Fig. 1).
Section IV-A explains the manual labeling techniques,
and sections IV-B, IV-C, IV-D, and IV-E encompass the
machine learning framework. We refer to the Appendices
for details related to the pre-processing of the location data
(App. A and B), while App. C describes the classification
model parameters, and App. D deals with model tuning.

A. Manual Labeling
Accurate annotation of sensor data is highly manpower

intensive [59]. One solution is to manually label a small subset
of the data based on expertise and validate the classification
framework. We were indeed able to perform such a manual
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labeling in a subset of the NSE database (see Sec. IV-D), using
our general understanding of the factors affecting barometric
pressure [9] and leveraging the data annotated with the help
of the ground truth video (Sec III-B). In this manual labeling,
we labeled each data point as either VDA or HDA, based
on the unique characteristic profile of vertical transportation.
As noted in [9], pressure changes caused by factors other than
vertical transportation are mostly long-term variations (e.g.,
diurnal pressure cycle) or brief and intense transient spikes
(e.g., Indoor-to-outdoor transition).

First, and based on our pilot experiments illustrated in [9],
we distinguish VDA from HDA in our manual labeling by
monitoring the following characteristics: (1) a low horizon-
tal travel velocity, (2) body movements picked up by the
accelerometer, and (3) an increase or decrease in baromet-
ric pressure. We note that high magnitude pressure changes
that can be mistaken for VDA occur during transportation
modes [9], but these transportation modes can be identified
by tracking the location data trend, which should then reveal
a high horizontal velocity.

For validation of the procedure, the classifier will be trained
on the manually labeled data set and then applied to the
data set described in Sec.III-B, for which the ground truth
is available.

B. Data Segmentation
We segment the time-series sensor data into regions of

significant and minor pressure changes to allow the classifier
to focus on the main characteristic of VDA—i.e., the pressure-
altitude relation. First, each data point is considered to a
have significant pressure change based on a cut-off value
(dpi,cut-off), determined by considering three points: (1) we
want to discard small pressure jumps that could correspond to
other factors that yield pressure changes of similar magnitudes,
such as slopes and indoor-outdoor transitions [9], (2) we want
to consider pressure changes corresponding to at least 50%
of the minimum vertical displacement of a single floor, and
(3) the changes need to be consistent with the sensor resolution
(±12 Pa).

The change in pressure (dpi ) for each data point is cal-
culated from the difference of the time-series data dpi =
Pi−Pi+1, where Pi is the pressure datum at instant ti . The time
interval dti = abs(ti −ti+1) associated with dpi should be less
than a cut-off value dti,cut-off to consider that data can be miss-
ing in times of inactivity, and the resulting variation in pressure
values for large values of dti might then be due to the diurnal
pressure cycle. The consecutive significant pressure changes
in the same direction (positive change or negative pressure
drop) are then grouped to form a segment, i.e. SPi,n+1 =
{Pi , Pi+1, . . . , Pn, Pn+1} for a pressure change sequence of
Sdpi,n+1 = {Pi − Pi+1, Pi+1 − Pi+2, . . . , Pn − Pn+1}. Other
features and sensor data are grouped using the same groups
of indices as for the segmented pressure sequences.

In the case of manually labeled time-series data set, we first
label each data point as either VDA or HDA (Sec. IV-A).
Therefore, each segmented data might contain both data points
labeled VDA and data points labeled HDA. We thus label each
segment using a majority rule, and assigning a VDA label

TABLE V
SELECTION OF DATA SEGMENTATION

PARAMETERS BASED ON F1 SCORE

in case of a draw. A perfect data segmentation would allow
each VDA segment to indicate a complete VDA event with
no false positives or false negatives. The choices of dti,cut-off
and dpi,cut-off ultimately determine the performance of this
method. Hence, we compute the F1 score (a.k.a. F-measure
of balanced F-score) of capturing a complete VDA event
in each segment labeled as VDA in the manually labeled
training data for a range of dti,cut-off ([30, 50, 90, 120] sec)
and dpi,cut-off ([20, 23, 25, 27, 30] Pa) values (Table V). The
best F1 score is obtained for values dpi,cut-off and dti,cut-off
equal to 25 Pa and 120 seconds, respectively. We thus perform
the data segmentation with these parameter values, and the
final classification described below will be performed on these
segmented data.

C. Feature Engineering
Model explainability is a growing focus in Machine Learn-

ing. Therefore, it is natural to start from features based on
domain-specific knowledge to improve explainability. We use
our data exploration and our understanding of the sensor
data and the target event to be recognized to design several
domain-specific features. Specifically, we compute the follow-
ing features from the accelerometer, barometer, and Wi-Fi
localization data.

1) Rate of Pressure Change dp/dt: It accounts for the pace
of the VDA. This distinguishes the elevation change based
activities from phenomena that unravel over slow temporal
scales such as sensor drift and diurnal pressure cycle.

2) Modified Zero-Crossing Rate z̃cr: The zero-crossing rate
zcr is a temporal feature that counts the number of sign
changes for a given signal during a particular time window.
Here, we modified this feature to count sign changes only if
the corresponding magnitude difference in pressure is ≥ 20 Pa.
This conditioned z̃cr can indeed identify the pressure spikes
due to factors such as weather and climate, built environment,
air velocity during motion, or sensor accuracy, and distinguish
them from one-directional pressure changes that occur during
elevation changes.

3) Horizontal Travel Velocity dx/dt: As the location data are
recorded latitude and longitude, we use the haversine formula
(see Eq (1)) to calculate the great circle distance x between
two locations. It is based on the assumption that the Earth
is approximately spherical, a valid assumption for small dis-
tances such as those measured in the NSE data. The horizontal
travel velocity dx/dt plays a crucial role in differentiating
significant pressure changes of VDA from transportation-based
activities [9]. Specifically, the great-circle distance x between
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TABLE VI
PROPERTIES OF THE TRAINING-TEST SPLIT DATA SETS

location coordinates (ϕ1, λ1) and (ϕ2, λ2) with ϕ the latitude,
λ the longitude, and r the radius of earth, is given by:

x =2r arcsin

(√
sin2

[
ϕ2−ϕ1

2

]
+cos ϕ1 cos ϕ2 sin2

[
λ2−λ1

2

])
.

(1)

4) Statistical Features of Immediate Neighborhood in
Time-Series Data Ni: By definition, a VDA event is always
preceded and followed by an HDA event. However, during
vertical mobility modes like the elevator (and sometimes
during escalator rides), a person is potentially standing with
no significant body movement. Likewise, during transporta-
tion modes such as car, bus, or train travel, the vehicle
stops intermittently, leading to low horizontal travel velocity
regions. Hence, calculating statistical features over an imme-
diate neighborhood of each data point can entail a sequence
of events during and around an activity of interest. More
precisely, for each data point i , we compute on the time
window N = {i − 2, i − 1, i, i + 1, i + 2} (of approximate
width ∼ 80 seconds) and for both the horizontal travel velocity
dx/dt and the accelerometer data (max(Macc) and std(Macc))
the ten following statistics: Minimum, Maximum, Average,
Median, Mode, RMS (Root Mean Square), MAD (Median
Average Deviation), Standard deviation, Variance, and IQR
(Inter Quartile Range).

5) Statistical Features of Segmented Data Si: Many of the
statistical features considered for the immediate neighborhood
of time-series data are not suitable for segmented data, as the
length of the sequences is typically very small for most VDA
events—2 ∼ 4 or even less (1 ∼ 2) for transportation modes
during which the sign of slope dp/dt changes very often.
Hence, we compute only each data segment’s mean, median,
and mode. This is done both for the original sensor data and
for the statistical features of immediate neighborhood in the
time series, the modified zero-crossing rate z̃cr , the horizontal
travel velocity dx/dt , and the accelerometer data (max(Macc),
and std(Macc)).

In total, we compute 95 features of the segmented data
(Sec IV-B). We refer to this set of features as Feature set-I.

D. Training-Validation-Test Data
The NSE 2016 data set is very diverse in terms of the

number of students, unique devices, and the demography of
individual participants. Hence, each train-validation-test data

set should reflect this diversity. To ensure this, we select the
data collected during one day by 81 students from 81 different
schools, with an appropriate balance of school types (pri-
mary, secondary, and pre-university) and weekdays (limited to
Tuesday, Wednesday, and Thursday) to form a representative
sample (see Table VI. We manually label this data sample
according to the steps described in Section IV. This sample
data set is then randomly divided into training (80%) and test
set (20%). The data collected by any single device is assigned
either to training or testing as a whole (data collected by a
single student cannot be split between training or testing). The
classifier model is trained on the training set, and a 5-fold
cross-validation tunes the model’s hyperparameters. Once the
best model parameters are identified, it is then tested against
the test set for the final performance evaluation.

In addition, to validate the manual labeling, we use the
trained classifier model on the video-annotated data described
in Sec.III-B.

E. Classification Models
We have selected five commonly used classifiers in

HAR [11]: (1) Extreme Gradient Boosting (XGBoost or
XGB), (2) Random Forest (RF), (3) Naive-Bayes model (NB),
(4) k-Nearest Neighbors (kNN), and (5) Multilayer Perceptron
(MLP). Both XGBoost and Random Forest are decision-tree-
based ensemble learning algorithms. The XGBoost algorithm
is based on the boosting method that adds weak learners
sequentially to reduce the model’s loss function. In contrast,
the Random Forest model is based on the bagging method
that adds weak learners in parallel and uses the majority
voting model to make final predictions. On the other hand, the
Naive-Bayes model is a probabilistic learning algorithm based
on Bayes’ theorem that assumes strong independence between
the features. Furthermore, the k-Nearest neighbor model is
non-parametric and uses distance-based measures to find the
k-nearest samples and a majority voting model to assign a
class. Finally, a Multilayer perceptron is an artificial neural
network with a single input and output layer, and at least
one hidden layer. Due to its multiple (hidden) layers and its
nonlinear activation, MPL is known to be suitable for data that
is not linearly separable.

The hyperparameters of these classifiers are tuned through
a grid search using a 5-fold cross-validation on feature set-I.
A more detailed description of the model parameters and
model tuning can be found in App. C and D respectively.
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Fig. 3. Flowchart of Sec. V: Results and Discussion.

V. RESULTS AND DISCUSSION

The central objective of our study is to obtain the magnitude
of vertical displacements of individuals during their daily
activities as an indication of vertical movement in a large-scale
study of human mobility. By leveraging the relationship
between barometric pressure and altitude, our specific aim is
to develop pre-processing methods that alleviate the adverse
influence of the other factors that affect barometric pressure
to extract the instances of vertical motion accurately.

We globally consider the following procedure. First,
a small representative sample of the cleaned NSE 2016 data
(Sec IV-D) is manually labeled as described in Sec IV-A.
We then segment the whole cleaned NSE 2016 data set from
Table II and the manually labeled data and video annotated
data according to Sec IV-B. The classifier model is then
trained on the segmented manually labeled data to achieve a
binary classification between Horizontal Displacement Activ-
ity (HDA) or Vertical Displacement Activity (VDA). Next,
the trained classifier is applied to the video annotated data
to validate manual labeling and finally applied to the cleaned
NSE 2016 data set (see Fig. 3).

A. Performance Comparison of Classification Models
The four classifiers described in sec. IV-E are trained using

feature set-I with the respective hyperparameters tuned from
the 5-fold cross-validation with grid search (see Sec. IV-E).
Their respective classification performances on the test data set
are reported in Table. VIII. The XGBoost model provides the

highest overall accuracy (98 %) and F1-score for classifying
VDA (93 %), closely followed by the Random Forest (overall
accuracy of 97 % and F1-score for classifying VDA at 89 %)
and the Multilayer perceptron model (overall accuracy of 97 %
and F1-score for classifying VDA at 88 %). The Naive-Bayes
model and k-Nearest Neighbor model perform poorly with an
F1-score for classifying VDA standing at 52 % and 17 %
respectively. The ensemble learning methods clearly show
a superior performance than Naive-Bayes and kNN models,
similar to the results reported by Liu et al. [26] in classifying
VDA from HDA. However, the neural-based MLP also pro-
duces similar overall performance as the ensemble learning
models while falling slightly short in VDA classification
performance. Therefore, we select XGBoost as the classifier
of choice for this analysis.

It might be worth adding that future practitioners having
access to much larger data sets—possibly with additional
sensory features—may consider recent developments in Deep
Learning [9], [51], [54], [78] to not only extract VDA but also
to discriminate between all VDA types (e.g., escalator riding,
staircase climbing, elevator riding).

As shown in Tab. VII, this study considers all the factors
that influence barometric pressure with the data set that
consisted of both general activity classes—ambulation and
transportation—that a user comes across in a natural daily
free-living environment and recorded over a long period
(1 ∼ 3 days). As a result, our results show high accuracy
in detecting VDA (and HDA) similar to the results reported
in the literature while greatly expanding the scope of the
identification using the developed framework.

B. Validation of Manual Labeling
The trained XGBoost classifier model is applied to the data

set with ground truth annotated from a video recording to
ensure the validity of our manual labeling strategies. The
results of the classifier performance is shown in Table IX.
Although the classifier has 100% precision (i.e., it does not
capture false positives), it has a recall of 80% (i.e., it only
captures 80% of the actual VDA events), thereby yielding an
F1-score of 89%.

The recall performance is relatively low due to a high
proportion of instances such that dp/dt < 1.9 Pa/sec in the
video-annotated data set (16.9% of all points marked as VDA)
compared to the test data set (5.5%), for example. This issue is
also responsible for some false negatives in the predicted data,
where 77% of the predicted false negatives in video-annotated
data set have dp/dt < 1.9 Pa/sec (see Fig. 4). This is because
many of the data points with small pressure jump dp are
not labeled as VDA in the manually labeled data set. Indeed,
many instances with similar magnitudes for dp cannot be ruled
out with high confidence, given the known factors influencing
barometric pressure [9].

C. Impact of Sensor Type and Feature Importance
Three sensors are employed for this study: Barometer,

tri-axis accelerometer, and Wi-Fi scanner (location data).
To understand the impact of these sensor types on the
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TABLE VII
CATEGORIZED LITERATURE RELATED TO STUDIES THAT HAVE IDENTIFIED VDA AS PART OF THE ACTIVITY CLASS USING BAROMETER AND

ADDITIONAL SENSORS. SENSORS: BAROMETER (BARO), ACCELEROMETER (ACC), MAGNETOMETER (MAG), AND GYROSCOPE (GYRO).
FACTORS CONSIDERED: 1. ALTITUDE, 2. CLIMATE AND WEATHER, 3. BUILT ENVIRONMENT, 4. AIR VELOCITY DUE TO MOTION,

AND 5. SENSOR ACCURACY. ACTIVITY CLASS: AMBULATION (A) AND TRANSPORTATION (T)

classification of VDA, we conduct an ablation study. Since
barometric pressure data is used in the pre-processing step

(data segmentation) and is vital to extracting vertical displace-
ments, features derived from barometer data are not removed
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TABLE VIII
COMPARISON OF CLASSIFIER PERFORMANCE ON THE

TEST DATA SET WITH FEATURE SET-I

Fig. 4. Distribution of the rate of pressure changes in predicted data in
video-annotated data set when using feature set-I.

TABLE IX
CLASSIFICATION RESULTS OF VIDEO-ANNOTATED

DATA SET WITH FEATURE SET-I

in this ablation study. Table X reports the results of the classifi-
cation performance with features from the following sensor(s):
(a) Barometer only, (b) Barometer and tri-axis accelerometer,
and (c) Barometer and Wi-Fi scanner (location data). The
F1-score for classifying VDA is 57% (overall accuracy of
89%) with barometer features only. It is significantly improved
by adding the tri-axis accelerometer features (overall accuracy
of 96% and F1-score for classifying VDA at 83%). Even

TABLE X
IMPACT OF SENSOR TYPE ON THE CLASSIFIER PERFORMANCE WITH

SELECTED FEATURES OF FEATURE SET-I. BARO - BAROMETER,
ACC - ACCELEROMETER, AND LOC - LOCATION

DATA DERIVED FROM WI-FI SCANNER

better performance is achieved with the combination of loca-
tion and barometer features with 97% overall accuracy and
90% F1-score for classifying VDA. The addition of the
accelerometer data to barometer and location data thus only
improves the F1-score by 3%. As noted in Sec. II, previ-
ous studies [31], [32] have obtained similar accuracy with
accelerometer only or barometer only features. However, their
training data was collected in a limited environment (e.g.,
ambulation only or transportation only activities and short time
period). For a data set such as the one considered here, which
was collected in a long term free-living environment, it thus
seems that barometer only features are not enough to classify
VDA with high accuracy; however, adding the data of even
one additional sensor data allows excellent performances even
in this case.

The XGBoost model (see App. C for a description of
the model and its hyperparameters) has an embedded feature
ranking method that quantifies the importance of each feature
to build the predictive model. The most relevant parame-
ter to quantify relative feature importance is the total gain
that measures the improvement in accuracy brought on by
the feature for each tree in the model. Based on the total
gain, the feature importance of all 95 features is calculated
from the tuned model. To understand the impact of using
reduced feature sets, we use the top 10 (out of 95) and the
top 5 (out of 95) of the important features, denoted as the
feature set-II (features 1–10 in Table XI) and feature set-III
(features 1–5 in Table XI) respectively. We re-tune the hyper-
parameters and re-train the classifier model using the same
procedure as described in App. D. The reduced feature set
size of 10 and 5 are arbitrarily chosen, but it is supported
by the fact that the total gain drops drastically after the most
important feature (Sdp/dt ) as shown in Table XI.

The classification performance of the XGBoost model with
feature sets I, II, and III are shown in Table XII. The overall
classification accuracy of the model for all feature sets on the
test set stands at 98%, and the F1-score for classifying VDA
is found to be slightly lower at 93% for feature set-I and 92%
for feature set-II and III. As the number of features is reduced
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TABLE XI
FEATURE IMPORTANCE OBTAINED FROM THE TUNED XGBOOST

CLASSIFIER MODEL. TOP 10 RESULTS ARE SHOWN.
S STANDS FOR SEGMENTED DATA

TABLE XII
CLASSIFICATION PERFORMANCE OF THE XGBOOST MODEL

from 95 to 10 and ultimately down to 5, there is a slight
increase in precision with a complementary decrease in recall.
The confusion matrix in Table XIIb shows no significant drop
in performance when reducing the feature set size. We use the
XGBoost model results with feature set-II in this section’s
further analysis to balance between performance and the
number of features.

D. VDA Classification Performance
Table XIIb shows the confusion matrix—i.e., predicted

class distributions and corresponding Type-I (False Positives)
and Type-II errors (False Negatives). When closely inspecting
the feature space in the test data set, one finds that the Type-II
error generally occurs when the rate of pressure changes Sdp/dt

is small, typically below 1.9 Pa/sec for 65% of the false

negatives. This observation may have two possible origins.
This is either due to the small magnitude of pressure jumps
dp (associated with low recording frequency that splits a single
VDA event across multiple time intervals). Alternatively, this
could also be due to larger time intervals dt (due to irregular
recording frequency of 0.076 ∼ 0.016 Hz). The low and
irregular sampling rate is the critical limiting factor in both
cases. In addition, in some cases, a vertical mobility event
follows or precedes a horizontal transportation mode—e.g.,
above-the-ground or underground train travel—, which may
lead to misclassification due to the reliance on Wi-Fi local-
ization to calculate the travel velocity. This is the case, for
instance, when the APs are sparse.

E. VDA Recognition Limitations
The magnitude of the altitude change in a given VDA

event is derived from the barometric pressure change of the
segmented data Sdp using Eq (2). The accuracy of this mag-
nitude is limited by the barometric sensor resolution, which
is ±12 Pa for our SenSg device (see Table III). Some of the
VDA events with lower values of Sdp/dt are not appropriately
classified, as stated in Sec. V-D. For a typical sampling
frequency of 0.062 Hz, this corresponds to an altitude change
of 2.5 meters (30 Pa). Hence, it is reasonable to assume that
vertical displacements smaller than this value are not properly
captured, and thus the vertical moves can only be accurate
with a vertical resolution of ∼ 2.5 meters.

The classification performance when recognizing VDAs in
this study is thus limited by the type of sensor data, sensor
resolution, and sampling frequency. For example, location data
from GPS with an accuracy of ±10 meters would outperform
the often inaccurate Wi-Fi localization, which is only accurate
within ±200 meters. Similarly, a higher sampling rate of
barometric pressure to the tune of 1 Hz would be ideal
compared to the lower sampling frequency of ∼ 0.062 Hz
in this data set. Moreover, using an accurately annotated data
set—e.g., employing video recording—can markedly improve
the training performance.

VDA can be further sub-classified into different modes of
vertical transportation like elevator, escalator, or stairs. This
would, however, require large amounts of video-annotated
training data set with high temporal and spatial resolution.
This is because the rate of change of vertical displacement—
a key metric in distinguishing between these modes [9]—
needs to be sampled at a reasonably high resolution, especially
to differentiate between stairs climbing and escalator riding.
Furthermore, the classification between stairs/escalators and
elevators will only be accurate for floor jumps larger than
2 ∼ 3 if the sampling frequency is low, such as that found
in our data set. For these reasons, we do not consider VDA
sub-classification in this study. However, using sensors with a
higher sampling rate, such sub-classification of VDA should
be attainable, as shown in previous works [26], [31], [32], [75].

F. Prevalence of Vertical Mobility in Singapore’s Student
Population

We have applied the trained XGBoost model with feature
set-II to the curated NSE data described in Table II. The data
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Fig. 5. Aggregated distribution of VDA for a population of N = 16,486 individuals. The aggregation period is set to 1 day. N is the number of subjects
and x̃ denotes the median value (dashed lines). Top row: number of VDA events per subject; Middle row: total cumulated vertical displacement
(in meters) per subject; bottom row: total time spent in VDA (in seconds) per subject; left column: total population; right column: subjects grouped
by school types.

was collected for N = 16, 486 students from 89 schools aged
6–19 whose residences and schools were spread throughout the
island-state of Singapore. For each subject, the data contains
at least 6 hours of coverage during a day. The results presented
in this section are aggregated over a single day for each
participant—the selected day corresponds to the one with the
largest data points collected during their week of carrying
the SENSg device as part of the NSE program. In addition,
the predicted VDAs are post-processed to remove vertical
displacements (less than 9% of total) that are accompanied
by significant pressure fluctuations (dp > 20 Pa) that may
have been caused by sensor errors (see [9]).

The predicted VDAs in the entire data set reaches
182, 841 events after postprocessing. Some statistics of VDA
for each subject over a day are calculated and shown in
Fig. 5, namely the number of VDAs, the cumulated vertical
displacement, and the total time spent in the VDA mode. On a
daily average, a subject was found to be engaged in 10 events
of vertical mobility, traveled vertically ∼ 83 meters, and spent
a total of 4 minutes per day in this mode. As an element
of comparison, Americans are found to spend on average
∼ 65 minutes per day eating [79]. However, the distributions
are rather heterogeneous, with individuals who traveled as
much as 140 meters vertically in a single VDA event, moved
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Fig. 6. Temporal statistics of VDA according to group types: (a) number of subjects with VDA (active subjects) by hours, (b) total VDA count by hour,
(c) average vertical displacement per active subject by hour, and (d) hourly average time spent in VDA per active subject by hour. The errorbars in
(c) and (d) indicate the confidence intervals estimated using a bootstrap approach (n = 1000).

up to 60 times in vertical direction and spent up to 24 minutes
per day in VDA. The highest vertical displacement in our
predicted data (140 meters) is nearly half the size of the highest
building in Singapore—the Guoco tower stands at 290 meters.

Fig. 5 also shows the breakdown of the distributions of
VDA for primary (PRI), secondary (SEC), and pre-university
(PREU) students. Interestingly, the vertical mobility footprint
of PREU students is markedly higher than that of PRI or SEC
students, even if the descriptive statistics of single VDA events
are very similar: the median values are 5.2 m for PRI students,
5.1 m for SEC students, 5.8 m for PREU students; the mean
values are respectively 9.3 m (PRI), 8.3 m (SEC), 8.1 m
(PREU) and the maximum values are 116 m (PRI), 120 m
(SEC), 140 m (PREU). The fact that pre-university students
are more active in terms of cumulated VDA can, in particular,
be explained by the fact that they are more likely to travel
through public transportation like trains that are either above
or below the ground road level [80].

The timeline of VDA reveals a rich structure. In highly
vertical cities, people experience significant waiting times dur-
ing their vertical mobility due to shared public transportation
such as elevators or slow pedestrian movements in escalators
and stairs. In Singapore, these waiting times can be similar
in magnitude to the waiting times between trains or buses
(2 ∼ 5 minutes). Businesses operating on appointments only
often remind their customers to include the waiting time
associated with elevator rides when planning their arrival.
While these time scales can still be considered small, the
ongoing vertical integration of multi-purpose buildings will

underscore the importance of understanding congestion in
vertical transportation and mobility. Understanding congestion
per land-use type and time is essential to inform better trans-
portation planning, and this point will also apply to vertical
transportation.

Fig. 6 shows the hourly statistical distribution of VDA
according to the three group types under investigation (PRI,
SEC, and PREU). The group-based total number of subjects
with VDA (i.e., active subjects, Fig. 6(a)) and total count
of VDA (Fig. 6(b)) exhibit similar trends. They indicate that
different daily rhythms of individuals occur between the three
groups, i.e., the peaks in activity for PRI are at 7 a.m., 10 a.m.,
1 p.m., and 4 p.m., SEC at 6 a.m., 10 a.m., 2 p.m., and 6 p.m.,
and PREU students at 8 a.m., 12 p.m., and 5 p.m. In addition,
a large number of activities of PREU students is observed
during evening and night times, which can readily be explained
by the fact that some schools like the Institute of Technical
Education (ITE), operate primarily in the evening and by the
active after-school life of the late-teen population.

Due to the low number of active users between 12 a.m.
and 5 a.m., the average vertical displacement (Fig. 6(c)) and
average time spent in VDA (Fig. 6(d)) show considerable
uncertainty within that period and become stable again after
5 a.m. In terms of per-subject average vertical displacement
and time spent, the primary and secondary students show
similar patterns, while pre-university students yield markedly
different patterns. For instance, the primary and secondary
students’ average vertical displacement is high during the
5 a.m.–6 a.m. time window, drops to 9 meters between
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8 a.m.–12 p.m., then peaks up again to ≥ 20 meters between
4 p.m.–9 p.m., and decreases after that. On the other hand,
the pre-university students’ average vertical displacement is
about 20 meters between 6 a.m.–7 a.m., and 14 meters around
11 a.m., then slowly increases until 11 p.m. These differences
in the morning could be explained by the style of classes
between them. Primary and secondary classes are usually
fixed, and students do not need to change classes between
courses. In contrast, pre-university students will need to move
to other classes for different courses.

VI. CONCLUSION

Over the past two decades, advancements in sensor technol-
ogy and complexity science have enabled the dissection, with
unprecedented accuracy, of the fine details of human mobility
in urban areas from large-scale data. Mining these “Big Data”
revealed the burstiness and relative predictability of human
spatial movements [81], [82], as well as highly dense spatial
areas in cities [83]. However, these studies, albeit illuminating,
were mainly carried out on large groups of people living and
moving about in mostly flat cities and were therefore limited
to horizontal movements in two dimensions. The present study
explored the application of identifying and monitoring VDA to
highlight the prevalence of vertical mobility at city-scale and
its potential to add to the understanding of human mobility in
general.

This “Big Data” set consisted of 16,581 students between
the age of 6 and 19 from 89 schools spread throughout
the city-state of Singapore. The relatively long-term tracking
(5 days) and high recording frequency (every ∼ 16 seconds)
have provided high spatiotemporal resolution data sufficient
to identify VDA in diverse conditions. The classification
performance of the model is similar or closely aligned with
the results reported in the literature (Sec. II)—with 98%
overall accuracy and 92% F1-score in classifying VDA—while
significantly generalizing its applicability to almost all possible
real-world conditions.

The recognition of VDA is instrumental to the effectiveness
of a range of critical applications in indoor positioning and
navigation [29], [30], [36], [66], estimation of energy expen-
diture, and health monitoring [16], [39], [47]. The present
study markedly expands the scope of applications by rendering
possible the performance of large-scale human experiments
with the ultimate goal of shedding light on the human mobility
patterns in dense urban areas, and their impact on urban plan-
ning. Furthermore, the VDA extraction methodology described
in this paper can be used to perform urban data analytics.
These results may have significant ramifications for the design
of dense vertical cities. For instance, using this methodology,
one should identify the hidden vertical barriers and possible
facilitators to movement in the vertical city. Urban designers
and planners would then have quantitative information about
the hitherto unknown patterns of vertical human mobility.
This new knowledge could prove pivotal to establishing novel
design principles that can enhance mobility and, therefore,
livability in the vertical urban world.

Our study is ultimately limited by the participants’ age
group and size, the sensor characteristics (primarily resolution

and sampling rate), and the training data collection methods
(video annotation versus manual labeling). Future studies can
most likely achieve more significant results by improving one
or more of these categories to obtain a more accurate and
general detection of VDA.

Lastly, aggregated VDA data analysis by population
groups/segments has revealed rich details about the anticipated
differences in the daily activity profiles between late-teens and
younger children. The uncovered patterns of vertical human
mobility enabled us to accurately quantify, for the first time,
the distance traveled and time spent in vertical transportation
in a densely built urban environment. It has also revealed some
unique patterns of activity related to vertical transportation that
is present in many aspects of our human lives. There is no
doubt that a more systematic analysis of the non-aggregated
data would provide important new details and unique infor-
mation about the dynamics of vertical mobility across several
dimensions, including gender, age, and socioeconomic status.

APPENDIX

A. Localization & Interpolation
The location data is obtained using an API from a

third-party company called Skyhook based on the available
Wi-Fi APs. It requires a minimum number of APs to trian-
gulate a given location. As the density of Wi-Fi APs varies
from place to place, accurate localization may not always be
achievable with insufficient data. This is especially pronounced
in transportation modes—such as underground subway rides,
by-pass roads, tunnels, and bridges.—where Wi-Fi APs are
sparse or non-existent, even in highly dense cities. In our
dataset, a per-person average of 8% data points are missing
location information due to failed localization.

An interpolation method is used to predict the missing
values to complete the Wi-Fi localization data. As the first step,
successfully localized time-series are selected and a fraction
of its data is removed randomly. Next, the Root Mean Squared
Error (RMSE) value between original and randomly removed
data is calculated for three distinct interpolation methods:
(1) linear (2) cubic spline, and (3) piece-wise cubic spline to
identify the best method. The linear interpolation consistently
outperforms other methods under consideration with the lowest
RMSE values for a fraction (10 ∼ 50%) of the data removed.
For example, for fraction> 20% of the data removed, RMSE
measured in the degree of latitude/longitude is ∼ 0.0001 for
linear interpolation while RMSE (degree)∼ 0.005 for other
methods.

B. Regression
The Wi-Fi localization data has a low spatial resolution of

±400 meters. The travel velocity estimation based on this data
reveals high local errors. A regression model is applied to
find the best fit to reduce local fluctuations. To analyze the
model performance, RMSE is used to estimate the residuals,
and the R-squared value quantifies the proportion of variance
explained by the model. The regression model performs poorly
when applied to the entire time-series sequence. This is due
to the different regions of variability in data. The time series
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location data is segmented into a series of local (temporary)
variable and global (long-term) variable sequences. The regres-
sion model is then applied with different window sizes or knot
placements to each of these sequences, a higher number of
knots for a global variable sequence and a lower number of
knots for a local variable sequence.

A local variable sequence is defined as Si,n = {i, i +
1, . . . , n} where the location of index − n is at distance ≤
distance_cut-off from index − i . A global variable sequence
is created by combining several local variable sequences of
length < 10 (∼ 2.5 minutes) to reflect long term changes in
location.

Two regression models: (1) piece-wise polynomial and
(2) natural piece-wise cubic regression spline are considered
as well as three smoothing models: (3) Savitzky-Golay
smoothing, (4) LOESS model, (5) Exponential smooth-
ing model. These five options are compared against
different window sizes or knot placements (local vari-
able = [5, 15, 30], global variable= [5, 15, 30]) and dis-
tance_cut_off = [0.1, 0.3, 0.5] km). The natural piece-wise
Cubic regression spline and Savitzky-Golay show the lowest
RMSE and highest R-Squared values for all knot place-
ments/window sizes and distance_cut_off. Either of these
methods will suitably reduce the local errors in location
data. A low RMSE and high R-squared value can also point
to over-fitted data; hence, additional considerations should
support model selection. The optimal knot placements should
be sparse for local variable data to reduce local fluctuations
and denser for global variable data where location varies
long-term. Here, Natural Piece-wise cubic regression spline
method is selected with knot placements at (local variable,
global variable)= (15, 1) of the segmented data using dis-
tance_cut_off = 0.3 km. Essentially, the knot placements are
designed to smooth the local variable data while leaving the
global variable sequences intact.

C. Classification Model Parameters
1) XGBoost: Gradient boosting allows an ensemble of weak

learners to build models that depend on the gradient descent
algorithm to optimize an objective function. The objective
function measures the model fitness of the training data and
consists of training loss and regularization [84]. Training loss
quantifies the model’s predictive capability, and the regular-
ization parameters help reduce overfitting by controlling the
complexity of the model. The balance between these two
terms is commonly known as the bias-variance trade-off [84].
XGBoost classifier model encompasses several parameters
that are categorized as general, booster, and learning task
parameters [85]. The tree booster parameters allows the speci-
fication of learning rate (eta), minimum loss reduction to make
a split (gamma), maximum depth of a tree (max_depth),
minimum sum of weights of all observations in a child
(min_child_weight), fraction of observations to be sampled
randomly (subsample), fraction of columns to be sampled
randomly in each tree (colsample_bytree), control of class
imbalance (scale_pos_weight), L2 regularization term on
weights (reg_alpha), and L1 regularization term on weights
(reg_lambda) [84], [85]. Learning task parameters allows

choosing an objective function (objective) for optimization
against a specified evaluation metric (eval_metric). The num-
ber of trees or estimators (n_estimators) required depends on
the learning rate eta. Optimizing the tree booster parameters
based on the evaluation metric allows the objective function
to look for values that avoid over-fitting. Model over-fitting
can be further controlled by reducing the learning rate and
increasing the number of estimators [85].

2) Random Forest: The Random Forest classifier is an
ensemble learning algorithm that tries to create a range
of uncorrelated trees by randomly selecting features for
each tree and randomly (with replacement) assigning train-
ing data to each tree. Both of these properties of Random
Forest helps control over-fitting [86], [87]. The parame-
ter n_estimators gives the number of trees, and the
maximum number of features considered for splitting a
node is given by max_ f eatures. The maximum num-
ber of levels in each tree is controlled by the parameter
max_depth. The samples given to the tree are controlled
by the following parameters: bootstrap, min_sample_spli t ,
min_weight_ f raction_lea f , and min_sample_lea f . The
parameter bootstrap can be set to T rue to allow ran-
dom sampling with replacement. The minimum number of
data points assigned to a node before splitting is given by
min_sample_spli t , and the parameter min_sample_lea f is
used to control the minimum number of data points allowed
in a leaf node. The sample weight can be adjusted using
the parameter min_weight_ f raction_lea f . Finally, the class
imbalance in a data set can be controlled by setting the
parameter class_weight to balanced .

3) Naive-Bayes: The Naive-Bayes model is a probabilistic
learning algorithm based on Bayes’ theorem. This study uses
the Gaussian Naive-Bayes algorithm that assumes Gaussian
distribution for each class [87], [88]. Other Naive-Bayes
models such as Multinomial and Bernoulli are defined for
discrete data values and hence not suitable for our prob-
lem [87]. Gaussian Naive-Bayes model has only two para-
meters: var_smoothing and priors. The prior probability of
the classes can be assigned through priors. Since there is no
prior probability available for our classes, this parameter is
unspecified in this work so that the priors can be learned from
the data. The parameter var_smoothing is used to adjust the
weight given to data points far from the mean distribution.
This is the only parameter tuned for the Naive-Bayes model
here.

4) k-Nearest Neighbors: k-Nearest Neighbors classifier is a
class of Nearest Neighbors algorithm that identifies k-nearest
training data points based on their similarity [87]. The number
of neighbors k is given by the parameter n_neighbors. The
neighbors can be weighed uniformly or differently using the
parameter weight . The distance metric used can be controlled
by the parameter p, which denotes the power of the Minkowski
distance ( p = 1 denotes Euclidean and p = 2 denotes Man-
hattan). The speed of finding the nearest neighbors depends on
the parameter algori thm that can be set to brute-force or faster
methods such as tree-based search algorithms. The tree-based
search can be controlled by the parameter lea f _si ze that can
be adjusted for faster construction and queries.

Authorized licensed use limited to: University of Ottawa. Downloaded on April 16,2022 at 14:36:27 UTC from IEEE Xplore.  Restrictions apply. 



8026 IEEE SENSORS JOURNAL, VOL. 22, NO. 8, APRIL 15, 2022

5) Multilayer Perceptron: The multilayer perceptron is a
class of feed-forward artificial neural network models. This
supervised learning model uses the backpropagation method
that calculates the gradient of a loss function concerning the
weights of the network to train the model [89]. It consists
of a single input and single output layer and at least one
hidden layer. The number of hidden layers and the number
of neurons in each hidden layer can be selected using the
parameter hidden_layer_si zes. The neurons can be activated
or not using the activation function defined by the parameter
activation. The weights of the network can be optimized by
the solver (e.g., stochastic gradient descent) with the parameter
solver . Similar to the XGBoost model, the L2 regularization is
controlled by alpha. Another important parameter for MLP is
the learning_rate that can be a given constant value, scaling
value, or an adaptive parameter.

D. Classifier Model Tuning
The four classifier models follow an overall procedural

structure for model tuning. The optimal model hyperparame-
ters are selected by grid search and a 5-fold cross-validation
using the metric – Area Under the Receiver Operating Charac-
teristic Curve (ROC AUC). The grid search is initialized with
hyperparameter values, which are fine tuned until no further
change in the results is noticed. The 5-fold cross-validation is
used to reduce the bias and efficiently uses the training set to
understand the model’s predictive power on new data during
the tuning procedure. Due to the specific nature of the classifier
models, some differences in the procedure exist. For example,
all the hyperparameters for the Random Forest, Naive-Bayes,
and k-Nearest Neighbors are tuned using a single grid search.
In contrast, the hyperparameters for XGBoost are tuned in
a series of grid searches. The following steps thus tune the
XGBoost model:

XGBoost Model Tuning Steps: The optimal parameter values
are calculated in a series of steps, where each step progresses
by estimating the parameter under consideration based on the
parameters calculated from the preceding step. The steps taken
to tune the model are as follows: (1) Set a high learning
rate and find the optimal number of estimators, (2) For the
given learning rate and the number of estimators, find optimal
max_depth and min_child_weight , (3) Find the optimal
value of gamma (4) Re-calibrate the optimal number of esti-
mators, (5) find optimal values for the parameters subsample
and colsample_bytree, (6) find the optimal values for
the regularization parameters reg_alpha and reg_lambda,
(7) Re-calibrate the optimal number of estimators, (8) Reduce
the learning rate and find the optimal number of estima-
tors [85].

The cross-entropy loss for binary classification is set as
the objective function. The above steps are followed for an
initial learning rate of 0.3 from (1) to (7). As the final step
(8), the learning rate is reduced considerably (from 0.3 to
0.2 for feature set-I, to 0.1 for both feature set-II and feature
set-III) to control over-fitting while keeping the F1 score of
VDA classification higher. The optimal number of estimators
is then found to be 43, 125, and 72 for feature set-I, II, and III,
respectively, from 5-fold cross-validation for the given learning

rate. The class imbalance is acknowledged by setting the
parameter scale_pos_weight to 1 for faster convergence.

E. Pressure-Altitude Relation
The fundamental equation for fluids at rest dictates the

relationship between atmospheric pressure and altitude [90].
The change in altitude is indeed given by

z2 − z1 = − p2 − p1

γ
, (2)

where γ = ρg is the specific weight of air with density
ρ = 1.225 kg/m3 and g is the acceleration due to gravity
g = 9.81 m/s2 at standard sea-level conditions. The fluid is
assumed to be incompressible and in isothermal conditions.
This pressure-altitude equation is valid for data collected for
elevation less than 10 km from sea level [90], which is always
the case in our study.
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