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Abstract—This paper proposes to design a robust controller
for a class of nonlinear networked control systems using ape-
riodic feedback information. The parameter variation and sys-
tem nonlinearity are considered as sources of uncertainty. To
tackle uncertainty in system dynamics, a linear robust control
law is derived using optimal control theory. Two different
architectures of closed-loop systems are considered. In the first
one, system and controller are not collocated; instead they are
interconnected by means of a shared communication network.
In the second architecture, however, sensors and controller are
connected through a shared communication channel. In both
architectures, the feedback loop is closed through the network.
To save network bandwidth, the state and input information
are transmitted aperiodically through the feedback loop. To this
aim, the paper adopts an event-triggered control approach to
reduce the transmission overhead. We show that the designed
event-triggered controller achieves a trade-off between control
performance and saving network bandwidth in the presence of
uncertainty. The developed control algorithm is implemented and
validated numerically on a classical nonlinear system.

Index Terms—Robust-optimal control, Event-triggered control,
Bandwidth limitations, Nonlinear systems, Input-to-state stability.

I. INTRODUCTION

In most Cyber-Physical Systems (CPSs) or Networked

Control Systems (NCSs), each physical system shares its own

local information with other subsystems through a communi-

cation network. Given the shared nature of the communicating

channel, controlling such systems with continuous or periodic

control laws implies large bandwidth requirements [1], [2].

Recently, event-triggered control approaches have been intro-

duced to reduce the information requirements while achieving

a stable control strategy, see [3]–[7]. Specifically, in the event-

based control framework, the violation of a prespecified event

This work was partially supported by a grant from the Singapore National
Research Foundation (NRF) under the ASPIRE project, grant No NCR-
NCR001-040.

condition leads to specific sensing and actuation instants at the

sensor/actuator ends.

This event-triggering law primarily depends on the sys-

tem’s present state or outputs. In the event-triggered control

framework, the key issue with the continuous-time form is

the stringent requirement in continuously monitoring the event

condition occurrence. For instance, in [7], the monitoring of

the event-triggering condition is conducted periodically. To

overcome the need for such a continuous/periodic monitoring,

a self-triggered control approach has been proposed in [8].

In this self-triggered control approach, the subsequent time

instant for event occurrence is determined using the system’s

state or output information at the previous sampling instant.

For both classical event-triggering and self-triggering controls,

a reduction in the overall network use can be achieved by

increasing the time interval between triggering events. In the

specific context of CPSs and NCSs, the primary role played by

aperiodic sensing and actuating—for continuous and periodic

event-triggered control—has been reported in [1], [2].

The key deficiency with classical event-triggered control is

the need to have access to an accurate model of the system in

order to devise the event-triggering rule. In practice, system

modeling inevitably simplifies the actual system and thereby

introduces a certain level of inaccuracy, which has nontrivial

practical implications. It is worth highlighting that there is

a vast breadth of problems related to event-triggered control

in the presence of uncertainty. Such uncertainty have several

possible origins: nonlinearities, variations in the system’s

parameters, components unaccounted for in the dynamical

model, and pervasive perturbations. These issues call for the

development of a specific controller. Recently, a robust event-

triggered control algorithm has been developed based on aperi-

odic feedback in order to deal with the presence of uncertainty,

albeit limited to linear system [9], [10]. Specifically, Tripathy

et al. have adopted an optimal control strategy to design such
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a robust control law [9], [10]. Originally, this control law has

been developed in [11], [12] based on concepts belonging to

optimal control theory. The nominal dynamics has been used

to design the control law. To realize the robust control law

in [9] and [10], a prior assumption is made such that the

model of the system is considered to be linear in nature. But

in practice, most systems are nonlinear. Therefore, considering

nonlinear systems is a far more realistic and pertinent control

problem. Moreover, extending robust control results mentioned

in [9], [10] to a class of nonlinear systems in the presence of

bandwidth constraints in the communication channel is not

straightforward.

In this paper, a robust event-triggered control algorithm is

proposed to stabilize a class of networked nonlinear systems

with aperiodic feedback information. In the networked system

we consider in this paper, the connection between sensor and

controller is established via a communication link, see Figs. 1

and 2. To design controllers, we rewrite the system dynamics

as a linear model plus uncertainty. With this formulation, the

system nonlinearities and parametric variations are considered

as a source of uncertainty. An event-based linear robust control

algorithm is proposed to stabilize this class of nonlinear

systems with aperiodic feedback information. To regulate the

behavior of this system when faced with multiple sources

of uncertainty, two different event-based control algorithms

are introduced. To ensure the closed-loop stability of such

systems, a robust control law is computed using the nominal

dynamics and the prior knowledge of the uncertainty bound.

In addition, the derived controller gain matrix is used to

analyze the closed-loop performance. This paper considers the

input-to-state stability (ISS) theory [14] for analysis. The key

contributions of this work are listed below:

– The nonlinear dynamical systems is divided into two

parts—the linear and nonlinear one. The nonlinear part

and parameter variations of the system model are treated

as a source of matched uncertainty. In the optimal control

framework, the design of a robust controller is based on a

linear control law derived from the solution of a modified

Linear Quadratic Regulator (LQR) problem ensuring the

closed-loop stability of the original nonlinear system. A

novel event-triggering rule is developed to reduce the

amount of information exchange required to stabilize this

class of systems.

– We also propose a robust event-triggered controller for

uncertain systems with optimal event-triggering. To solve

the robust controller and optimal event-triggering law, a

joint optimization problem is formulated by minimizing

a cost-function. The cost-function embodies both control

and communication costs for optimal usage of resources.

It is shown that the design of the robust optimal event-

triggered controller in the optimal control framework is

split in two sub-problems—the design of robust controller

using the modified (LQR) framework and the optimal

event-triggering sequence using a dynamic programming

method.

– A classical nonlinear problem is investigated numerically

to assess the effectiveness of the approach.

Notations and Definitions: The Euclidean norm of a vector

x ∈ R
n is denoted by ‖x‖, Rn refers to the vector space of real

vectors of dimension n, and by extension, Rn×m is the vector

space of real-valued n-by-m matrices. The notation R≥0 refers

to the set of non-negative real numbers. The symbols A ≤
0, AT and A−1 are classically used to specify the negative

semi-definite character of a matrix A, its transpose, and its

inverse respectively. The symbol I denotes the identity matrix

of appropriate dimension. The maximum (resp. minimum)

eigenvalue of a symmetric matrix P ∈ R
n×n is λmax(P ) (resp.

λmin(P )). A continuous function f : R≥0 → R≥0 is said to

be class K∞ if it is strictly increasing and f(0) = 0 and

f(s) → ∞ as s → ∞. A function f : R≥0 → R≥0 is class

K, if it is continuous, strictly increasing and f(0) = 0. A

continuous function β(r, s) : R≥0 × R≥0 → R≥0 is a KL
function, if it is a class-K function with respect to r for a

fixed s, and it is strictly decreasing with respect to s when r
is fixed [16]. We remark that the definitions used throughout

this paper are identical to those found in the literature [14],

[16].

Definition 1 (Input-to-State Stability):
A continuous-time system

ẋ(t) = f(x(t), u(t)), (1)

is input-to-state stable (ISS) if there exists a solution x(t),
∀t ≥ 0 satisfying

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ

(
supτ∈[0,∞)

{‖uτ‖
})

,

for all admissible inputs u(t) and for all initial values x(0),
with β and γ being a KL and K∞ function, respectively.

Definition 2 (ISS Lyapunov Function):
A continuously differentiable function V (x(t)) : Rn → R is

an input-to-state (ISS) Lyapunov function for (1) if there exists

class-K∞ functions α1, α2, α3 and a class-K function γ for all

x ∈ R
n and u ∈ R

m satisfying the following conditions:

α1(‖x(t)‖) ≤ V (x(t)) ≤ α2(‖x(t)‖), (2)

V̇ (t) ≤ −α3(‖x(t)‖) + γ(‖u(t)‖). (3)

II. PROBLEM FORMULATION AND PRELIMINARIES

This section presents the problem and briefly describes some

preliminaries used in the next sections.

A. Problems description

This paper considers a feedback control strategy for net-

worked control systems in the presence of bandwidth con-

straints in feedback path. To deal with channel constraints

in the feedback loop, we formulate a novel robust event-

triggered control algorithm for a class of nonlinear systems.

Two control problems are solved for two different closed-loop

architectures. In Problem 1, we design the robust controller

and event-triggering law using an emulation-based approach

in which controller and triggering law are designed separately.
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Then, a co-design problem (Problem 2) is formulated to

jointly design triggering law and controller.

1) Problem 1: Figure 1 shows the block diagram of the

proposed robust control technique for Problem 1. In this

diagram, the following elements are clearly appearing: (i)

system, (ii) controller, and (iii) a communication network

interconnecting system and controller. The states of the system

are measured continuously by sensors at the system end. Infor-

mation from sensors are shared with the controller through a

communication network. In between sensor and controller, an

event-monitoring unit continuously tracks an event condition.

Specifically, when a predefined triggering event occurs, the

monitoring unit ensures the proper transmission of the state

variable to the controller. This robust control problem is

addressed by means of an equivalent optimal control strategy

based on the linear nominal model or a virtual dynamics of

the original nonlinear system. The gain K of the controller

and aperiodic state datum, x(tk), which is obtained from

the nonlinear system serves to compute this event-triggering

control rule u(tk) = Kx(tk) stabilizing the closed-loop

system in the presence of uncertainty. The input function

is actuated aperiodically at instants t0, t1, · · · , tk, where tk
represents the latest such event. A zero-order hold (ZOH) at

the actuator end holds the most recent actuated input data

until a subsequent triggering event leads to the transmission

of another input data. Here, the actuator is assumed to be

embedded within the system, with an instantaneous update

of the control input at the time of transmission. The primary

�(��) 
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Fig. 1. Architecture I: Schematic block diagram of the developed event-
triggered robust control strategy.

concern of this paper is to propose a robust event-triggering

rule that can withstand the system’s nonlinearities and model

uncertainty for a class of nonlinear systems.

System description: Consider a state-space representation

of the following class of nonlinear systems

ẋ =

[
ẋ1

ẋ2

]
= Ax+B(u1 + h(x)u1) +Bf(x), (4)

where A and B are system matrices. The notations x and

u1 represent the state vector and control input for (4) re-

spectively. The two nonlinear functions h(x) and f(x) are

treated as uncertainty sources. Specifically, h(x) corresponds

to the uncertainty at the input level, while f(x) embodies the

uncertainty at the system’s level. These functions satisfy the

following assumptions:

Assumption 1: There exists a positive definite matrix F1 that

satisfies

f(x)T f(x) ≤ xTF 1x. (5)

Assumption 2: There exists a known function hmax(x) such

that for all x, the function h(x) satisfies

0 ≤ h(x) ≤ hmax(x). (6)

Remark 1: For a given f(x) in (5), ‖f(x)‖2 may not be

quadratically bounded. In many cases, we can find the largest

physically feasible region of x and determine a quadratic

bound for ‖f(x)‖2. Assume such a bound is given by

f(x)T f(x) ≤ xTF1x for some positive definite matrix F1.

Assumption 2 helps to prove that h(x) ≥ 0. In [13], such

Assumptions (1 and 2) are used to compute the upper bound

of uncertainties.

In general, uncertainty in system dynamics is either matched
or mismatched. From (4), it appears that this problem is

afflicted by matched uncertainty since both f(x) and h(x)
are associated with the nominal input matrix B. This means

that the unknown part of (4) can be represented by a vector

Δ(x, u1) defined as

Δ(x, u1) = Bf(x) +Bh(x)u1. (7)

From [4], the closed-loop system (4) with event-triggered

control input u1(tk) can be written as

ẋ(t) = Ax+B{u1(tk) + h(x)u1(tk)}+Bf(x), (8)

u1(tk) = K1x(tk), (9)

where K1 is the controller gain and x(tk) is the state in-

formation of (8) at the kth event-triggering instant. To tackle

aperiodic information x(tk), we introduce an error variable,

e(t), defined as

e(t) = x(tk)− x(t), t ∈ [tk, tk+1). (10)

We remark that (4) encompasses a fairly rich class of nonlinear

problems. For instance, any problem in the form of Euler–

Lagrange can be expressed as (4).

Example 1: The Euler–Lagrange (EL) system dynamics is

governed by

M(q)q̈ +N(q, q̇) = τ, (11)

where N(q, q̇) = V (q, q̇) +F (q̇) +G(q). The vectors q ∈ R
n

and τ ∈ R
n denote the state variables and generalized forces,

respectively. The inertia matrix, Coriolis vector, gravity vector

and friction vector are also denoted by M(q) ∈ R
n×n, V (q, q̇),

G(q) and F (q̇) ∈ R
n, respectively. In EL system, Assumptions

1 and 2 would translate into the following two conditions.

Condition 1: There exist positive matrices M0(q) and

Mmin(q) such that the following inequalities hold

Mmin(q) ≤M(q) ≤M0(q).
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Condition 2: There exists a function nmax(q, q̇) and vector

N0(q, q̇) such that the following inequality holds

‖N(q, q̇)−N0(q, q̇)‖ ≤ nmax(q, q̇).

As a result of uncertain load variations and unmodeled dis-

sipative effects, the terms M(q) and N(q, q̇) in (11) carry

some levels of uncertainty. With uncertainty accounted for

and letting the state vector x = [q, q̇]T , the state-space

representation reads as (4) with A =

[
0 I
0 0

]
and B =

[
0
I

]
.

For EL systems, the two nonlinearity sources at the input and

system level are given by

h(x) = M(q)−1M0(q)− I ≥ 0, (12)

f(x) = M(q)−1(N0(q, q̇)−N(q, q̇)). (13)

�
To regulate the closed-loop behavior of (8) with limited

control actions, the following problem is formulated.

P1− Problem Statement: Design the robust event-triggered

state feedback control law (9) to regulate the closed-loop

behavior of the event-triggered system (8) such that it is input-

to-state stable with respect to its measurement error e(t) in the

presence of uncertainty (7).

2) Problem 2: In Problem 1, a robust control problem

has been considered for a class of nonlinear systems in the

presence of communication constraints. In Problem 2, we

consider both communication cost and system uncertainty, and

propose an optimal control framework jointly optimizing the

two costs—communication cost and the cost associated with

system uncertainty.

To derive the results, a finite-horizon optimal control prob-

lem for linear systems is proposed. Such a finite-horizon

control is considered as it constitutes a more realistic scenario

in practical problems. In addition, the approach taken in

Problem 1 considers a zero-order hold (ZOH) at the actuator

end, such that the last transmitted state and control input are

held constant until new information is transmitted (see Fig. 1).

Therefore, for Problem 2 we consider a ZOH-free robust
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System

Uncertainties

Actuators

Sensors

Optimal event-
triggering  law

Network

Controller block

Nominal
System

Cost-
functional 

(J)
Riccati

equation (P)
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�(�)

�(��)
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Fig. 2. Architecture II: Block diagram of proposed finite-horizon robust
control technique with event-triggered feedback.

control technique with optimal event-triggered feedback. The

block diagram of the proposed control technique is shown

in Fig. 2. The state of the uncertain system is measured by

sensors and each sensor has a copy of the nominal model

as originally proposed in [18], [19]. The presence of nominal

model at sensor end helps to compute the error between actual

state x(t) and nominal state xn(t):

ê(t) = xn(t)− x(t). (14)

The variable ê(t) measures the deviation of actual closed-loop

performance form the nominal behavior of the system. The

event-triggering unit computes ê(t)1 and solves an optimiza-

tion problem considering the communication cost to obtain

the optimal transmission sequence. Based on the obtained

optimal transmission sequence, the actual state is transferred

through the communication channel. A dynamic programming

based technique is used to solve the optimization problem. In

the previous approach, the triggering condition depends on

the growth of e(t) = x(tk) − x(t). Here, the time instant

tk represents the event-triggering instants as mentioned in

Problem 1. The measurement transmitted to the controller

end remains unchanged until new information is received. Yet,

here, the nominal model is available at the controller end to

estimate the nominal behavior of the system. At the event-

triggering instant tk, the state of the nominal model within the

controller is replaced by the new measurement x(t) available

from the original uncertain system. The nominal system state

is used to compute the control law u2(t) = K2xn(t), where

K2 is the controller gain. Hence, within two consecutive event-

triggering instants, the control input is generated by using the

nominal model state

ẋn(t) = (A+BK2)xn(t), ∀ t ∈ [tk, tk+1). (15)

Applying the control input u2 in (4) leads to

ẋ(t) = Ax+B{u2(t) + h(x)u2(t)}+Bf(x), (16)

u2(t) = K2xn(t) = K2(x(t) + ê(t)), (17)

with ê(t) defined in (14). In (15), at every event-triggering

instant tk, the nominal state xn(t) is replaced by the original

state x(t) and it resets the error ê(t) to zero. To describe

the network constraints, consider a variable δt which decides

whether the state information is transmitted or not. The

variable δt is defined as

δt =

{
1 when x(t) is transmitted,

0 if no information transmitted.
(18)

The switch of this binary decision variable from 0 to 1 depends

on the selection of a particular event-triggering law. Let Ξ be a

triggering law whose evolution depends on the error variable

ê(t). The design objective is to define the robust controller

1Here we have used two error variables as e(t) and ê(t). The variable e(t)
is used to compute the difference between last transmitted state x(tk) and
current state x(t) that is e(t) = x(tk)− x(t) where t ∈ [tk, tk+1). On the
other hand, ê(t) measures the difference between nominal state xn(t) and
the state of uncertain system x(t), that means ê(t) = xn(t)− x(t).
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K2 and the event-triggering law Ξ that minimizes a certain

cost-functional. Here, we consider the cost-functional

J2 =

∫ T

0

(xTQx+ xTF1x+ uT
2 u2 + λδt)dt, (19)

where λ > 0 is a penalty due to any exchange of information

between sensor, controller and actuator over the transmission

network and T denotes the final time of execution. To regulate

the state of (16) by event-triggered feedback with the trans-

mission cost
∫ T

0
λδtdt, the following problem is introduced.

Problem statement (P2): Design a finite-horizon, linear,

robust state feedback control law u2(t) = K2xn(t) and an

optimal event-triggering law Ξ∗(ê(t)) for (16) that ensures

stability in the presence of uncertainty (7).

Proposed solution: To solve problems P1 and P2, two

different steps are adopted. First, results from optimal control

theory are used to develop a robust control strategy. As

a next step, an event-triggering criterion is established to

ensure input-to-state stability of (8) or (16). This criterion is

obtained from the assumption of the existence of an ISS-stable

Lyapunov function V (x) = xTPx, P ≥ 0.

B. Controller design

To determine the state feedback gains for Problems P1

and P2, this paper adopts both emulation and co-design

approaches. Within the emulation approach, initially, the gain

matrices are derived assuming that feedback information is

continuously available. Next, some techniques are developed

to consider network effects. Within the co-design approach,

first, a robust controller gain is designed for (16), and sub-

sequently, an optimal event-triggering law is introduced to

reduce the number of data transmissions over the network.

The controller design process is discussed next.

Aim: Design state feedback controllers K1 and K2 such that

system (4) and (16) remain stable in the presence of bounded

uncertainty (7).

To solve this robust control problem, an optimal control

approach using a robust control algorithm is adopted. The

main idea is to design the optimal control input for the linear

nominal system that minimizes a modified cost function. The

term “modified” is used here to characterize the cost function

given its dependence on the maximum variation (i.e. upper

bound) of uncertainty. Then, it is shown that this derived

optimal input is also a robust solution to the original system

in the presence of uncertainty. For the uncertain system (4), its

corresponding nominal system and cost function are derived

in what follows.

• For Problem P1: The nominal dynamical law for sys-

tem (4) in the presence of uncertainty becomes

ẋ = Ax+Bu1, (20)

and the modified cost function for this matched uncertain

system (4) is given by

J1 =

∫ ∞

0

(xTF1x+ xTQx+ uT
1 u1)dt, (21)

with Q ≥ 0. The matrix F1 ≥ 0 is the upper bound of

the uncertainty defined in (5).

• For Problem P2: To design the robust controller gain

for (16), we adopt the optimal control framework.

To obtain a robust controller in this optimal control approach,

we use the following Lemma stated in [11], [12].

Lemma 1: The optimal control solutions for nominal sys-

tems (20) and (15) with modified cost functions (21) and (19)

respectively is robust for the original systems (4) and (16) in

the presence of all bounded variations of uncertainty (7).

A proof for Lemma 1 can be found in [11], [12].

Based on Lemma 1, the robust controller gain matrices

can be obtained by solving the LQR problem. According to

optimal control theory [17], the optimal control signal for (20)

minimizing the cost function (21) is

u1 = −BTP1︸ ︷︷ ︸
K1

x, (22)

where P1 satisfies the following Riccati equation

P1A+ATP1 − P1BBTP1 + F1 +Q = 0. (23)

Similarly, for system (15), we consider the optimal input

u2 = −BTP (t)︸ ︷︷ ︸
K2(t)

xn(t), (24)

where P (t) is the solution of the following differential Riccati

equation (DRE)

−Ṗ = ATP + PA− PBBTP +Q+ F1. (25)

For simplicity of notation, in what follows, we omit the

argument t in P (t). The steps to obtain the numerical solution

of (25) are discussed in [21].

Here K1 and K2 are gain matrices. The aperiodic state

information x(tk), xn(t) and controller gain matrices are used,

respectively to derive the event-triggered control law, which is

discussed next.

III. MAIN RESULTS

This section presents event-triggering conditions and stabil-

ity results of (8) and (16), in the presence of uncertainty (7).

The solution of problems P1 is described in the following

Theorem.

Theorem 1: Let σ ∈ (0, 1) and the optimal controller

gain K1 derived for the nominal system (20) with cost

function (21). The event-triggered control law (9) ensures ISS

of the uncertain system (8) if the control input actuation instant

satisfies the following sequence

t0 = 0, tk+1 = inf {t ∈ R|t > tk ∧ μ1‖x‖2 − ‖e‖2 ≤ 0},
(26)

where the variable μ1 is defined as

μ1 =
σλ2

min(Q)

8(1 + ‖hmax‖2)‖KT
1 K1‖2 . (27)

Proof: To prove the ISS-stability of uncertain system (8) with

control input (9), it is necessary to reformulate V̇ (x) such that
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it satisfies (3). Consider the Lyapunov function for (8) in the

form of a positive smooth function V (x) = xTP1x. To ensure

the stability of (8), V̇ (x) is recast as

V̇ (x) =

(
∂V

∂x

)T

(Ax+B{(K1x+K1e) + h(x)(K1x

+K1e)}+Bf(x)). (28)

The function V (x) is a Lyapunov function for (20) that

satisfies the Hamilton–Jacobi–Bellman (HJB) equation

min
u1

(
xTF1x+ xTQx+ uT

1 u1 + V T
x (Ax+Bu1)

)
= 0, (29)

where matrix Vx denotes ∂V
∂x . For a selection of Lyapunov

function V (x) = xTP1x, the HJB equation (29) reduces to a

Riccati equation (23). The optimal input u1 must satisfy (29);

that means

xTF1x+ xTQx+ uT
1 u1 + V T

x (Ax+Bu1) = 0, (30)

2uT
1 = −V T

x B. (31)

Using (30) and (31), Eq. (28) is simplified as

V̇ (x) ≤ −xTF1x+ f(x)T f(x)− xTQx− 2uT
1 K1e

− 2uT
1 hu1 − 2uT

1 hK1e− (u1 + f(x))T (u1 + f(x))

≤ −λmin(Q)

2
‖x‖2 + 4

λmin(Q)(‖KT
1 K1‖+ ‖KT

1 K1‖2‖hmax‖2
) ‖e‖2 (32)

The inequality (32) ensures the ISS of (8) with respect to

measurement error e. From (3) and (32), it is observed that the

actuation of control input is solely required upon violation of

the event-triggering criterion (26). The procedure to realize the

control law designed for Problem 1 is presented in Algorithm

1; see Appendix A.

Solution of P2 (Optimal event-triggering law):
From the event-triggering law Ξ(ê(t)), it can be stated that

the variable ê(t) influences the number of transmissions over

the network. In order to design the optimal event-triggering

law, it is necessary to define the dynamics of ê(t). Using (15)

and (16), ê(t) evolves based on the following dynamics

˙̂e(t) = A(xn(t)− x(t))−Bf(x)−Bh(x)u2.

Neglecting the uncertain terms f(x) and h(x), the nominal

error dynamics reads

˙̂e(t) = Aê(t), ∀ t ∈ [tk, tk+1). (33)

At event-triggering instant tk, ê(t) is zero as the nominal state

xn(t) is replaced by actual state x(t). To obtain the optimal

event-triggering, the following optimization problem is solved:

δ∗t = argmin
δt

J(ê(t), δt)=

∫ T

0

{(1− dt)ê
TKT

2 K2ê+ λδt}dt,
(34)

subject to: (33) and ê(t) ∈ Ω, (35)

where

Ω = {ê(t) ∈ R
n| ‖ê(t)‖2 ≤ ξ}. (36)

The scalar ξ > 0 is computed from the stability results.

Remark 2: The term uT
2 (t)u2(t) in (19) can be rewritten

as (K2x + K2ê(t))
T (K2x + K2ê(t)) using (14). This helps

to rewrite the cost-functional (19). To compute the optimal

controller u2(t) for the nominal system, the terms δt and

ê(t) can be neglected from the minimization, since δt is

constant and controller gain design is independent of error

ê(t). However, the triggering condition design depends on the

variable δt and ê(t).
To obtain the robust controller and optimal event-triggering

law, the following Theorem is proposed

Theorem 2: The optimal state feedback gain K2 derived

in (24) robustly stabilizes (16) in the presence of uncertainty

(7) if control inputs are actuated based on the optimal event

triggering sequence δ∗t obtained from (34) and (35).

Proof: Consider the Lyapunov function V (x) = xTP (t)x.

Then V̇ is computed as

V̇ (x) = xT (ATP + PA+ Ṗ )x− 2uT
2 u2 − uT

2 h
Tu2

−uT
2 hu2 − f(x)Tu2 − uT

2 f(x) + êTKT
2 B

TPx

+xTPBK2ê+ xTPBhK2ê+ êTKT
2 h

TBTPx.

Using (24) and (25), the above equality is simplified as

V̇ (x) ≤ −xTQx− (xTF1x− f(x)T f(x))

−(u2 + f(x))T (u2 + f(x))

+êTKT
2 K2x+ xTKT

2 hK2ê

+xTKT
2 K2ê+ êTKT

2 h
TK2x. (37)

Applying (5) and (6), the inequality (37) reduces to

V̇ (x) ≤ −λmin(Q)

2
‖x‖2 + 4

λmin(Q)

( ∥∥KT
2 K2

∥∥2

+
∥∥KT

2 K2

∥∥2 ‖hmax‖2
) ‖ê‖2 . (38)

This ensures that the closed-loop system (16) is ISS with

the event-triggering law Ξ∗. The threshold ξ in (36) can be

computed from (38) as

ξ ≤ μ2‖x‖2. (39)

where μ2 =
σλ2

min(Q)

8(1+‖hmax‖2)‖KT
2 K2‖2 and σ ∈ (0, 1). The

steps to realize the robust control law for (16) with optimal

event-triggering law Ξ∗(ê(t)) are detailed in Algorithm 2 (see

Appendix A).

Remark 3: Although μ1 and μ2 appear identical—implying

that event-triggering conditions are the same for both prob-

lems, they actually correspond to different conditions since

the controller gains K1 and K2, Riccati solutions P1 and P
and the error variables e and ê are not identical.

IV. SIMULATION RESULTS

This section tests the theoretical results derived in Sec-

tion III for a class of nonlinear system. Let us consider system

(4) with state and system matrices given by x = [x1 x2]
T ,

A =

[
0 1
0 0

]
, and B =

[
0
1

]
.
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TABLE I
EVENT-TRIGGERED CONTROL VS. CONTINUOUS CONTROL

Control Strategy τmax (sec) τmin (sec) utotal

Continuous control 0.008 0.008 500

Event-triggered control 0.27 0.008 316

The nonlinearities correspond to h(x) =
2w1x

2
1

(x2
1+1)

and f(x) =

2w2x1 sin
2(x1) cos(x2), with w1 and w2 being scalar param-

eters which are uncertain and can vary in the interval [0, 1].
The upper bound of hmax is considered as ‖hmax‖ = 2. The

controller gain is computed using (22) which minimizes (21).

We consider the matrices F1 = 4I and Q = 10I . To compute

K1, the Riccati equation (23) is solved. The positive definite

solution P1 of (23) is used to compute the optimal input

u = − [
10 10.4

]
x.

To realize the event-triggering sequence (26), the design

parameter σ is selected to be 0.6. The numerical simulation

runs for 4 time units with the initial condition [0.1,−0.1]T .

For all simulations, we extracted 100 random samples of w1

and w2 within the interval [0, 1] and tested the performance of

the designed controller. Figure IV shows the convergence of

state trajectories for different values of w1 and w2. As it can

be seen from Fig. IV, all states converge to zero for various

samples extracted from the set of uncertainty which confirms

the robustness of the designed controller. Figure IV shows the

inter-event time of execution instants, and reveals that the num-

ber of computed control inputs is drastically reduced, thereby

confirming the reduction in the ensuing communication cost.

A comparative study with the conventional continuous control

approach is shown in Table I. It confirms that the total number

of actuations utotal for the event-triggered case is far less than

that of the continuous control technique. The symbols τmax and

τmin denote the maximum and minimum inter-event time—the

time between two consecutive events—of event generation.

To realize the optimal event-triggered control approach

proposed in Section III, we consider the same example

discussed above. The control law is computed for a finite-

horizon T = 4 seconds. The control law (17) is computed

numerically using the solution of DRE (25). To obtain the

optimal event-triggering law Ξ∗, the dynamic programming

based optimization problem is formulated which generates

the optimal triggering instants δ∗t . Sensors at the system end

transmit state x based on δ∗t . The convergence of states when

the optimal triggering law Ξ∗ has been used, is shown in Fig.

IV. The scalar λ is selected to be 0.4. Figure IV shows the

evolution of the switching variable δ∗t for a given run-time.

Table II compares the total number of transmission between

event-triggered control technique with optimal triggering and

the conventional continuous approach. Again, we observe that

the total number of transmissions is significantly reduced

thereby confirming the efficacy of the proposed approach.

TABLE II
COMPARISON OF ROBUST EVENT-TRIGGERED CONTROL WITH OPTIMAL

TRIGGERING VS. CONTINUOUS CONTROL

Control Strategy τmax(sec.) τmin(sec.) utotal

Continuous control 0.04 0.04 100

Finite-horizon
event-triggered control 1.8 0.04 36

V. CONCLUSIONS

In this paper, we present a robust event-triggered controller

for a class of nonlinear systems. The nonlinearity in the system

dynamics and parameter variations are considered as a source

of uncertainty. To stabilize such systems, the linear part of the

system model is considered to design the controller gain. Then,

a linear robust control law is derived to stabilize such systems

with aperiodic feedback information. The robust control law

is derived adopting the optimal control framework with both

infinite and finite-horizon costs. To deal with aperiodicity

of feedback information, this paper introduces two different

triggering laws. The triggering condition and stability results

are derived based on the Input-to-State Stability theory. The

derived triggering laws optimally manage the network band-

width in the presence of uncertainty. The effectiveness of the

proposed control laws is illustrated through numerical simula-

tions. The numerical results confirms the effectiveness of the

developed control strategies against the classical continuous

feedback control approach.

APPENDIX

Algorithm 1 Robust Event-Triggered Control for Problem P1

1: Initialization: x← x(0) , x(tk)← x(0).
2: Using A, B, F1, σ, ε, η compute K1 from (22).

3: Compute ‖x(t)‖, ‖e(t)‖ and μ1 using (27).

4: if ‖e‖2 ≥ μ1‖x‖2 then
5: Send x(tk) from sensor to controller.

6: Compute and update the control laws (9)—for the

system (8).

7: else
8: Hold the previous input

9: end if
10: Return to line 3
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