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Abstract—In this paper, we describe the design and evaluate
the performance of Orion, a miniature sized differential drive
robot for performing Intelligent Surveillance and Reconnaissance
(ISR) tasks. The robot has a footprint of 12 x 12 cm and weighs
a total of 150 grams. It is able to navigate over two dimensional
surfaces and perform indoor environment sensing using a custom
build laser based ranging module. It uses log-odd occupancy and
an inverse sensor model for occupancy grid map construction.
We show that with our developed system, the robot is able to
perform mapping in a closed environment. We also show how
multiple of such robots can be extended to perform multi-robot
mapping. This is our first step in the development of a multi-robot
system for indoor space mapping using an embedded system
architecture.

I. INTRODUCTION

The use of robots for the purpose of autonomous Intelligent

Surveillance and Reconnaissance (ISR) is gaining prominence.

The tasks include mapping of objective area, monitoring, de-

tecting targets, tracking, or even search and rescue operations

- with each task requiring robots to have a certain set of

capabilities. Typically, these tasks are achieved through the use

of Unmanned Aerial Vehicles (UAVs) or Unmanned Ground

Vehicles (UGVs) depending on the type of terrain and mission

requirements. However, these robots can prove bulky for any

practical use as soldier systems thus making the use of a

collaborative swarm of micro or miniature robots attractive.

Compared to UAVs, UGVs have the advantage of accurately

locating ground targets [1] and capable of navigating into an

unknown environment over an extended period of time. This

makes them highly suitable for indoor mapping tasks. Various

developments of miniature UGVs for autonomous ISR, each

with its unique capabilities, can be found in the literature.

[2]–[5]. However, these robots are limited to a demonstration

of locomotion innovation. There is not much information

available on the ability to perform mapping tasks of such

robots. This could be due to the complexity and significant

engineering efforts involved in implementing them onto an

embedded system. The type of reliable sensors technology

available that can fit within the footprint of such miniature

UGVs is also important in order to make the system practical

for soldiers to use.

Constructing a representative world model requires the robot

to maintain good localization as it traverses into an unknown

environment. This is challenging due to the localization nature

in a GNSS denied environment where the uncertainty of the

robot grows over time as it explore the unknown enviro-

ment. The common world model for indoor mapping includes

Occupancy Grid Map [6], [7], Line Maps [8], Topological

Maps [9] and Landmark-Based Maps [10], with each having

its own advantages and disadvantages. In our case, we are

interested in using Occupancy Grid Maps as they offer metric

based representation of the static environment. Since they use

probabilistic estimations, they are tolerant towards moving

objects in the environment that may not be a part of the map

of the indoor space. They provide a clear representation of

the known and unknown areas of the environment which can

be further used for any adaptive path planning to explore the

unknown environment.

There have been various initiatives towards designing in-

telligent surveillance systems for indoor environments. The

robots discussed in [11], [12] have large size and weight

footprints. The ranging module on board itself weighs in the

order of kilos. The robot discussed in [13] is a vision-based

surveillance robot that has 3 ultrasonic distance sensors to

measure distance of obstacles from robot. Although ultrasonic

sensors have smaller size and weight footprints, they may have

several disadvantages in comparision to optical sensors such as

the LiDAR ranging module presented in this paper. Ultrasonic

sensors are intrinsically less accurate because sound is more

difficult to focus than laser light. Accuracy is typically several

centimeters and significantly higher in order of magnitude

compared to the few millimeters accuracy of laser sensors.

The accuracy directly affects the mapping results.

In this paper, we seek to display the ability of our miniature

robot to perform multi-robot indoor space mapping. Our

mapping system fuses the information obtained from the robot

localizer and our custom built LiDAR ranging module to

reconstruct a point cloud of the environment. This informa-

tion is used to compute a representation of the environment

through an Occupancy Grid Map [14]. The preliminary results

presented here shows promising results and are the first step

towards the development of a multi-robot robotic system for

indoor space mapping.

II. THE MINIATURE ROBOT: ORION

The developed miniature robot, Orion in Fig. 1, employs a

differential drive locomotion principle with a custom designed
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ranging module and a swarm enabling unit.

Fig. 1. Our miniature robot Orion with the designed LiDAR module static
sensor array

The IMU onboard the robot is a Bosch Sensortec chip

(BNO055). It belongs to a family of Application Specific

Sensor Nodes (ASSN) implementing an intelligent Absolute

Orientation Sensor, which includes the sensors and an on-

board sensor fusion algorithm. We utilize its heading data

(θ) for navigation and mapping purposes. A moving average

bandpass filter is implemented to get an accurate estimate

for the heading. The robot consists of 2 DC motors attached

with encoders. The motors are controlled by a Toshiba motor

controller (TB6612FNG). Pulsed data from the encoders is

used to compute the incremental linear translation of the robot

along the x and y axis. The Light Detection and Ranging

(LiDAR) sensor module returns the point cloud data of the

environment. All these sensors and controllers are interfaced

with a STM32F411 microcontroller unit (MCU). The MCU

chip collects data from sensors and sends it to a embedded

computer in the Swarm Enabling Unit. We use the RaspberryPi

to perform mapping. The RaspberryPi can also be used to

interface with other robots through a ZigBee communication

module and perform decentralized swarming [15].

A. Ranging Module

Conventional LiDAR systems consist of a single statically

placed Laser emitting and sensing unit that scans across

a certain Field of View (FoV) via shooting Laser beams

through a rotating mirror that spans the FoV. They are able to

measure long distances, in the order of 10 - 20 m, however

they exceeded our specifications of size, weight and voltage

consumption for a miniature robot.

To overcome this, we custom design our own ranging

module using VL53L0X sensors. They are chosen due to their

capability to scan a variety of indoor surfaces, small foot-

print, weigh and voltage consumption. The VL53L0X ranging

sensor emits a 940nm Vertical Cavity Surface-Emitting Laser

(VSCEL) and measures well upto 0.8m. The sensors are also

coupled with internal physical infrared filters that enable stable

ranging readings and higher immunity to ambient light. This

makes the sensors ideal for indoor use. This suited our needs

as we are interested in mapping indoor environments using the

robot. Therefore, Orion ranging module is designed using five

statically placed VL53L0X Time-of-Flight ranging sensors as

shown in Fig. 1.

III. MAPPING APPROACH

Our mapping approach fuses the information obtained from

the robot localizer and the ranging module to construct the

point cloud for use in building the occupancy grid map of the

environment. The method called mapping with known poses.

Currently, the localization of Orion relies on the measurements

of the IMU and wheel encoder readings. Future work will

involve localizing Orion by incorporating probabilistic local-

ization algorithms such as Monte Carlo Localization [16] or

Rao-Blackwellized Particle Filters [17], [18].

A. Point Cloud Mapping
To construct the point cloud, we made use of the five

VL53L0X sensors, which are fixed at an interval of π/4 as

shown in Fig. 2. Readings from each sensor is measured in

Fig. 2. The geometry of the LiDAR module static sensor array

the polar coordinate system (Sρi,
Sϕi).

For each sensor i, the range reading is denoted by Sρi and

is associated with an angle Sϕi as shown in Table I.

TABLE I
LIST OF ANGLE SUBTENDED BY EACH SENSOR

Sensor ϕindex Angle (rad)
Right ϕ1 0

Right Diagonal ϕ2 π/4
Front ϕ3 π/2

Left Diagonal ϕ4 3π4
Left ϕ5 π

The reading in the polar coordinate is transformed to

cartesian coordinate (x, y) using:

xi =
Sρi cos(

Sϕi)
yi =

Sρi sin(
Sϕi)

(1)

The coordinate (xi, yi) here represents the point cloud data
SP of the environment with respect to the sensor’s local frame

of reference [S]. If the sensor is placed at a displacement
R[T ]S with respect to the robot’s frame of reference [R], then:

R[T ]S =

⎡
⎣
1 0 0
0 1 dRS

0 0 1

⎤
⎦ (2)
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where dRS is the linear translation between [S] and [R].
In order to represent the point cloud data SP with respect

to a fixed world reference frame [W ], we use the following

coordinate transformation:

WP = W [T ]R
R[T ]S

SP (3)

where

W [T ]R =

⎡
⎣
cos(θ) − sin(θ) x
sin(θ) cos(θ) y

0 0 1

⎤
⎦ (4)

denotes the displacement of the robot relative to the fixed

world frame [W].

B. Occupancy Grid Mapping

The point cloud data obtained from Eq. (3) needs to be

stitched together to represent a map of the environment. We

use a discrete grid of cells called the Occupancy Grid Map

to represent the map of the environment. Each cell in this

discrete grid is assigned a posterior probability of occupancy

based on the pose xt at time t and point cloud data WP at

time t represented as zt.
We assume that a grid m is a matrix with certain number

of rows r and columns c where each cell is represented as

mi as shown in Fig.3. The posterior probability estimate of

occupancy of each cell mi given the sequence of all the poses

x1:t until time t and set of all point cloud data z1:t until time

t is represented as follows:

p(mi = occupied|z1:t,x1:t) (5)

We define a term lt,i ∈ (−∞,∞) as the log-odds occupancy

at time t at cell index i. It is a value that accumulates based on

the occupancy of a cell. An occupied cell has a high lt,i = locc
value and conversely, a free cell has a low lt,i = lfree value.

This value is typically computed from a sensor model of the

ranging sensors using

lt,i = log
p(mi|z1:t,x1:t)

1− p(mi|z1:t,x1:t)
(6)

but we find that good results can still be obtained by setting

locc and lfree empirically without using Eq. (6). Thus, for our

case, the posterior probabilities are recovered from lt,i in the

following way:

p(mi|z1:t,x1:t) = 1− 1

1− exp{lt,i} (7)

Note that, the main advantage of using the log-odds occupancy

lt,i over directly using the posterior probability to compute

occupancy is that numerical instabilities for probabilities near

zero or one are avoided.

The OccupancyGridMapping function as shown in

Algorithm 1 loops through all grid cells i and updates the

cells that are within the perceptual Field-of-View of the sensor

with values returned by the InvSensor function as shown

in Algorithm 2.

A graphical display of the OccupancyGridMapping
procedure is shown in Fig.3. Let us consider an r×c occupancy

Algorithm 1 Occupancy Grid Mapping

1: procedure OCCUPANCYGRIDMAPPING({lt−1,i},xt, zt)
2: for all cells mi do
3: if mi is in the perceptual FoV of the sensor then
4: lt,i ← lt−1,i + InvSensor(mi,xt, zt)− l0
5: else
6: lt,i ← lt−1,i

7: end if
8: end for
9: return {lt,i}

10: end procedure

grid map m. Each cell in the grid mi is a posterior probability

estimate of occupancy that is computed by assigning a log-

odds occupancy value lt,i at a given time t. As such, the prior

of occupancy represented as log-odds occupancy is lprior = 0
for all the cells in m since there is no information whether a

cell is occupied or free.

Let us assume that the real world is walled on the north

and west side. These would correspond to the first row

(m1,m2 . . .m6) and first column (m1,m7 . . .m31) on the

occupancy grid map. We will run a single Orion robot in

this environment across a time space of 3 time steps. The

robot begins from cell m36 at t = 1 and move to cell m35 at

t = 2 and to cell m34 at t = 3. To show the effectiveness of

occupancy grid mapping, we will assume that at t = 1 there

is exists a dynamic obstacle at m10. It vanishes from m10 for

t = 2, 3.

By knowing the pose xt and the point cloud measurement

zt, it is possible to determine the cells that are within the

perceptual Field-of-View of the sensor. This is done by first

determining the cells that will correspond to xt and zt in the

occupancy grid map m. This can be computed by a function

called GRID.

Let’s say the mi corresponding to xt is denoted by x and the

mi corresponding to zt is denoted by z. As shown in Fig.3(a),

let us consider the robot position x at m36 and the RIGHT
sensor measurement z of the LiDAR module hitting the cell at

m10. A ray casting algorithm such as the Bresenham algorithm

[19] is used to find the cells that form a ray between x and z.

In our case, the cells are m29,m23,m17 and m16. These cells

are within the perceptual Field-of-View of the RIGHT sensor.

At t = 2, the robot moves to cell m35, the dynamic obstacle

at m10 disappears rendering m10 to be a free cell. The value

of l2,10 lowers and the p(m10 = occupied) moves away from

1. The RIGHT sensor detects the wall at m4 thus l2,4 is set at

a positive value making p(m10 = occupied) → 1. Meanwhile,

the wall at m19 is detected by the RIGHT DIAGONAL sensor.

At t = 3, robot moves to m34, the RIGHT sensor detects

the wall again at m4 thus l3,4 accumulates a higher positive

value. At cell m10, the value l3,4 further depreciates and thus

the p(m10 = occupied) → 0. Meanwhile, the wall at m13

and m31 are detected by the RIGHT DIAGONAL and FRONT
sensors respectively.

2018 3rd International Conference on Advanced Robotics and

Mechatronics (ICARM) 

 978-1-5386-7066-8/18/$31.00 ©2018 IEEE 416



Fig. 3. Occupancy Grid Map consisting of r rows and c columns: (a) At t = 1, robot starts at m36 detects a dynamic obstacle at m10 and a wall at m19.
(b) At t = 2, robot moves to m35, dynamic obstacle at m10 disappears making m10 a free cell, wall at m4 is detected. (c) At t = 3, robot moves to m34,
probability of occupancy at m10 inclines towards representing a free cell, wall at m13 and m31 detected.

C. Inverse Sensor Model

The Inverse Sensor Model InvSensor as shown in Algo-

rithm 2 assigns a log-odds value of occupancy for cells that

are within the perceptual Field-of-View of the sensor. For cells

that are classified as occupied, the locc is set a high positive

value and for the cells classified as free the lfree is set at a

significantly lower value than locc, ideally a negative number.

Algorithm 2 Inverse Sensor Model

procedure INVSENSOR(mi,xt, zt)
2: z ← ManhattanDistance(GRID(xt)− GRID(zt))

r ← ManhattanDistance(GRID(xt)−mi)
4: if |r − z| < 1 then

return {locc} � locc is set a high positive value

6: end if
if r < z then

8: return {lfree} � lfree is set a negative value

end if
10: end procedure

D. Multi-Robot Mapping

The true power of swarm robotics lies in the ability to

breakdown a task such that it is performed by multiple systems

for a fraction of cost and resources spent by a single system

to perform the task on its own.

Given our task to map indoor environments, we can leverage

on the mapping abilities of multiple Orion robots. Each robot

will store a map of the environment it traverses. Knowing the

initial start positions of these robots, the maps stored in each

robot can be assimilated and aligned to create a global map.

Knowing the start positions of the robots gives us information

about the relative pose between robots. This relative pose

information between each robot can be used to perform planar

transformations of the point cloud data and trajectory data

from each robot’s initial position frame of reference to a

common frame of reference. All the data in this common frame

of reference can now be used to construct an Occupancy Grid

Map using the OccupancyGridMapping algorithm.

IV. EXPERIMENT

In the following, we will now show the mapping results of

our Orion robot.

A. Single Robot Run

The Orion robot was made to run inside a rectangular

shaped space as shown in Fig. 4. Multiple waypoints were

assigned inside this space such that the robot finishes a loop

and maps the space. Raw sensor value was obtained from the

LiDAR module. The point cloud data output of the LiDAR

module was processed offline and the result was plotted and

overlayed on the rectangular shaped space as shown in Fig. 5.

The point cloud data measurements from the LiDAR module

was used to compute an occupancy grid map and the result is

as shown in Fig. 6. The grey colored cells in the occupancy

grid represent unknown regions of the map and have a prior

p(mi = occupied) = 0.5. The white colored cells represent

free regions and the darker colored cells represent occupied

regions. This map can be further improvised by doing multiple

runs of the same space using different waypoints. A significant

advantage of using occupancy grid maps is they are great

in ignoring dynamic obstacles which may not be permanent

features of the map.

B. Multi-Robot Run

To display the ability of Orion to perform multi-robot

mapping, 2 Orion robots, Robot 1 and Robot 2, were made to

run inside two distinct spaces, Space 1 and Space 2, as shown
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Fig. 4. Rectangular space

Fig. 5. LiDAR output with trajectory of robot overlayed on rectangular space

in Fig. 7. Space 1 consisted of varied shaped walls and Space

2 consisted of a rectangular shaped space. Robot 1 was made

to run inside Space 1 and Robot 2 was made to run insider

Space 2. Similar to the single robot run experiment, multiple

waypoints were inside the spaces such that the robots finish a

loop and map the spaces.

Fig. 6. Occupancy Grid Map

Fig. 7. Multiple Space Environment

We may consider the common reference frame [C] coincid-

ing with the frame of reference at the initial position of Robot

1 [R1]. The initial position of Robot 2 [R2] was measured to

be at a position (2150mm, 1450mm, 14π
9 rad) relative to [R1].

The point cloud data and trajectory data of Robot 2 relative

to [R2] is transformed to [C] using C [T ]R2 as described in

Eq. (8). The result of this transformation is shown in Fig. 8.

C [T ]R2 =

⎡
⎣
cos(14π/9) − sin(14π/9) 2150
sin(14π/9) cos(14π/9) 1450

0 0 1

⎤
⎦ (8)

The transformed point cloud and trajectory value from both

the robots is now used to construct an Occupancy Grid Map

as shown in Fig. 9. This approach can be extended for any

number of robots.
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Fig. 8. Data from the two robots transformed to a common reference frame
[C]

Fig. 9. Occupancy Grid Map of multiple spaces stitched into a common map

V. CONCLUSION

This paper presented Orion, a miniature robot with an

embedded system architecture that is able to perform map-

ping in closed indoor environments. Multiple such robots

can be made to operate in a swarm to perform multi-robot

mapping of indoor environments and construct an occupancy

grid map. Some future objectives include running the robot

autonomously and performing Simultaneous Localization and

Mapping. These are currently under development and will be

presented at a later stage.
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