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ABSTRACT

In this chapter, we present the overview of our recent studies 
on the electron spectrum and the density of states of long-
wave electrons in curved graphene nanoribbons, based on the 
Dirac equation in a curved space–time. The current–voltage 
characteristics for the contact of nanoribbon–quantum dots 
and nanoribbon–metal have been revealed. The dependence 
of the specimen properties on its geometry was analyzed. 
Also the regions with negative differential conductivity were 
found.

22.1 INTRODUCTION

Few decades ago, it has been well realized that the gauge 
invariance plays a key role in the quantum field theory (QFT) 
description of fundamental interactions between elementary 
particles. The recent comprehensive review by Vozmediano 
et  al. [1] presents a detailed picture of the relation between 
QFT and the condensed matter physics of graphene. In this 
chapter, we only briefly overview certain key points before 
going directly to the matter of our study.

The mathematical concept of a non-Abelian gauge field 
introduced first in QFT for a description of the electroweak 
interaction, followed by the experimental discovery of the W 
and Z bosons, is an example of the most impressive achieve-
ments of theoretical physics. Before introducing the various 
gauge fields associated with the physics of graphene and in 
order to clarify their specific nature, we will make a brief 

description of the classical concept of gauge invariance and of 
the associated gauge fields [1].

The concept of gauge invariance has been naturally intro-
duced in classical electrodynamics. In particular, the electro-
magnetic field (E, B) is expressed in terms of the potentials 
(Φ, A) through

 E t= − ∇ + ∂ = ∇ ×( ), .Φ A B A  (22.1)

The fields do not change under the transformation

 A A→ + ∇ → − ∂χ χ, ,Φ Φ t  (22.2)

where χ is an arbitrary scalar function of coordinate. This 
invariance was shown to remain applicable to the quantum 
mechanics of a charged spinless particle in an electromag-
netic field provided that the wave function was simultaneously 
transformed as

 Ψ Ψ→ exp i( ).e χ  (22.3)

The relativistic wave equation for a spinless particle with 
charge e interacting with electromagnetic fields is derived 
by first performing the substitution pμ → pμ − eAμ, where 
Aμ = (A0 = Φ, A) is the 4-vector electromagnetic potential, and 
then performing the usual substitution pμ → iħ∂μ. A formal 
solution for the wave function of a particle interacting with 
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the electromagnetic potential Aμ can be written in terms of the 
solution without interaction

 
ψ ψµ

µ= −



∫exp .i 0e A dx

 
(22.4)

Quantum dynamics, that is, the form of the quantum equa-
tion, remains unchanged by the transformations (22.2) if the 
wave function of the particle is multiplied by a local (space–
time-dependent) phase.

The first example of a QFT gauge model is four-dimen-
sional quantum electrodynamics (QED). A free spin 1/2 Dirac 
fermion with charge e and mass m is described by the action 
integral

 
S d x mψ

µ
µψ γ ψ= ∂ +∫ 4 [ ] ,

 
(22.5)

which is invariant under the global U(1) group of transformations:

ψ ψ ψ ψ χ( ) ( ), ( ) ( ), exp(i ),*x U x x U x U e→ → =  (22.6)

where χ is a constant. Gauge invariance requires invariance of 
the action under the local group of transformations obtained 
by replacing χ → χ(x). This can be achieved by replacing the 
derivative in (22.5) by the covariant derivative Dμ = ∂μ + ieAμ. 
Under a local U(1) transformation defined by Equation 22.6 
with a space–time dependent function χ(x), Aμ(x) transforms 
as Aμ → Aμ − ∂μχ, a generalization of Equation 22.2.

The invariance of Maxwell’s equations allows a formula-
tion of classical electromagnetism in terms of 4-vectors and 
tensors. The equations can be written in a covariant way by 
introducing the electromagnetic tensor Fμν as follows:

 
F E F Bi i ij ijk k0 = = −, ,ε

 (22.7)

and the 4-current Jμ = (ρ,J) made of charge density and cur-
rent. In terms of these geometric objects, the four Maxwell 
equations reduce to

 
∂ + ∂ + ∂ =λ µν µ νλ ν λµF F F 0,

 (22.8)

 
∂ =µ µν νF J .

 (22.9)

The conservation of the current ∂νJν = 0 follows from the 
antisymmetry of Fμν. The first equation is a Bianchi identity. 
It can be integrated by introducing a gauge field Aμ, such that 
Fμν = ∂μAν − ∂νAμ. It is readily verified that two gauge fields 
related by the gauge transformation A0μ = Aμ − ∂μΩ give rise 
to the same electromagnetic tensor field. Maxwell’s equations 
can be derived from the action

 
S A J d x F F J A( , ) [ ],= +∫ 4

µν
µν

µ
µ

 
(22.10)

which coincides with the full action in quantum electrody-
namics.

The concepts of gauge fields and covariant derivatives 
can be interpreted in the terms of differential geometry. In 
general, the gauge field has a mathematical interpretation as 
a Lie connection and is used to construct covariant deriva-
tives acting on fields, whose form depends on the representa-
tion of the group under which the field transforms. The field 
tensor Fμν is a curvature 2-form given by the commutator of 
two covariant derivatives. It is an element of the Lie algebra 
associated with the gauge group. The gauge connection gen-
erates parallel transport of the geometric objects under gauge 
transformations. The generalization of U(1) to non-Abelian 
groups such as SU(N) is straightforward: the main modifica-
tion arises in the definition of the field strength (22.6) that 
becomes Fμν = ∂μAν − ∂νAμ + [Aμ, Aν].

General relativity can be also interpreted as a gauge theory, 
where gauge invariance is invariance under diffeomorphisms 
(local smooth changes of coordinates) in the space–time 
manifold. The connection, which generates parallel trans-
port, plays the role of the gauge field. Gauge invariance corre-
sponds to the independence of field equations from the choice 
of the local frame. The spin connection plays the role of the 
gauge field.

The gauge invariance allows fixing some conditions on the 
gauge potentials that will not affect the physical properties. 
In classical electromagnetism, the gauge-fixing problem is 
simply the problem of choosing a representative in the class 
of equivalent potentials, convenient for practical calculations 
or most suited to the physical nature of a particular problem 
under consideration. In non-relativistic problems, one of the 
most popular choices is the Coulomb gauge, ∇A(t, x) = 0, 
whose relativistic counterpart is ∂μAμ(t, x) = 0 (μ = {0,1,2,3)}), 
called Landau or Lorentz’s gauge. The freedom of a gauge 
condition choice is related to the full gauge invariance of the 
action. When fictitious gauge fields are generated by analogy 
with the gauge formalism but there is no dynamics associated 
to them it can happen that the gauge potentials are fixed by 
the physics involved and no extra conditions can be imposed. 
Gauge fields were introduced in condensed matter in the early 
works of References 2 and 3, but now this question is very 
popular among many researchers [4–7].

The problem of modified graphene properties has attracted 
a considerable attention (see References 8–12 for instance) 
because “pure” graphene has no energy gap in the band 
structure, and, therefore, the creation of different structures 
(for example, analogs of transistors) is extremely difficult. 
However, the situation becomes more promising when vari-
ous modifications of the specimen are introduced. As an 
example, we consider the modified graphene, for example, 
graphene nanoribbon, which has quantized electron energy 
spectrum due to the limited space in one dimension, which in 
turn can lead to the formation of an energy gap. Furthermore, 
it is well known that graphene has a naturally wave-like 
curved surface due to the instability of the planar structure of 
its sheets [13,14]. All of the above reasons have stimulated the 
study of different modifications of curved graphene [15,16]. 
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329Tunneling Current of the Contact of the Curved Graphene Nanoribbon with Metal and Quantum Dots

The long-wave approximation—widely used to describe the 
properties of electrons in graphene—leads to an analog of the 
Dirac equation, which in turn makes it easy to produce gen-
eralization to the case when the graphene surface is curved. 
Note that, in this case, the degeneracy in the Dirac points 
disappears and, therefore, it becomes possible to create vari-
ous structures with different band gaps. Consideration of the 
Dirac equation for curved graphene [15] also shows a change 
in the density of states of electrons, and, therefore, it makes it 
possible to change the whole set of electrical characteristics of 
a graphene sample. Apparently, the easiest way to experimen-
tally verify those changes in the density of states is to study 
the tunneling current [17], for example, through the contact 
with quantum dots. Reducing the size of the particles leads 
to the manifestation of a very unusual properties of the mate-
rial from which it is made. The reason for this are quantum-
mechanical effects originated from the spatial limitation of 
charge carriers movements: carriers’ energy becomes discrete 
in this case. The number of energy levels depends on the size 
of the potential well, the potential barrier height, and the mass 
of the charge carrier. An increase in the well size leads to an 
increase in the number of energy levels. Movement of charge 
carriers can be restricted in one coordinate (forming quantum 
films), in two coordinates (quantum wires or strands), or in 
all three areas (quantum dots). Quantum dots are still a rather 
“young” object of study, but their use in various fields of sci-
ence and technology is obviously extremely promising (from 
the design of new lasers and the generation of new displays to 
building qubits) [18–21].

22.2 GRAPHENE AND ITS HAMILTONIANS

From the chemical point of view, the main element of any 
graphite compound is a sheet of graphene, which can be 
regarded as benzene hexagons whose hydrogen atoms are 
replaced by carbon atoms in the adjacent cells, hexes. The 
carbon atoms in graphene form a honeycomb-like structure 
according to the sp2 hybridization. This structure cannot be 
regarded as a Bravais lattice, since two adjacent cells are not 
equivalent from the crystallographic point of view.

Let us consider the structure of graphene with two sub-
lattices A and B (Figure 22.1), where a1 and a2 are the basis 

vectors; δ1, δ2, and δ3 are the vectors connecting a site of the 
sublattice A with the nearest neighbor sites of the sublattice B.

This study is required to identify the characteristics of the 
electronic structure of graphene, the presence of a gap, that 
will properly take into account the initial conditions of the 
problem.

Construction of a microscopic model describing the 
interaction of electrons in graphene has been done within a 
framework of the Hückel approximation. The Hamiltonian 
of the electron system was considered in the framework of 
the Hubbard model for a single-layer graphene. The model 
takes into account the Coulomb interaction between elec-
trons, which leads to a substantial change in dispersion, and 
hence in the optical response of the system. Moreover, the 
account of the electron interaction Hamiltonian leads to 
a change in the spectrum of elementary excitations of the 
model:

 
E p

p U
p p U n U( )

( )
( ) ( ) ( ) ,= + − − +ε ε ε

2 2
1
2

2 1 22
0

2∓

 (22.11)

where U is the Coulomb repulsion between electrons trapped 
at a single site; ε( )p  is the dispersion, which describes the 
interaction of electrons and phonons in graphene without the 
Coulomb repulsion, and n0 is the average number of the on-
site electrons.

Account for impurities in the case of doped graphene was 
carried out in the framework of the Anderson model, where 
only the hybridization of electronic subsystems is considered. 
The latter allowed us to avoid the complexities associated with 
the lack of a gap in the graphene. The resulting Hamiltonian 
reads

H H H H

H t a b b a

U a a a

h im hyb

h j j j j

j

j j j

= + +

= − +( )

+

+
+ +

+

+
−

+

∑ ∆ ∆ ∆

∆

σ σ ς σ

σ

σ σ σaa b b b b

H d d d d U d

j j j j j

j

im j j j j j

−
+

−
+

−

+
−

+
−

+

+( )

= + +

∑ σ σ σ σ σ

σ σ σ σ σε ε� � 1 dd d d

H V a d d a

j j j

j

hyb j j j j

j

σ σ σ

σ σ σ σ

σ

−
+

−

+ +

( )

= +( )

∑

∑ ,

 

(22.12)

where a a b bj j j jσ σ σ σ
+ +, , ,  are the creation and annihilation oper-

ators of electrons with spin σ on two mutually dual carbon 
sublattices, so that the electrons jump only between the sub-
lattices; tΔ is the hopping integral between neighboring sites 
in the sublattices; U is the constant of the Coulomb repulsion 
of electrons trapped at a single site; d dj jσ σ

+ ,  are the creation 
and annihilation operators of the impurity electrons with spin 
σ; �ε  is the impurity level energy; U1 is the constant of the 

a2
a1

a = 0.142 nm

Y

X

: Sublattice B: Sublattice A

δ2

δ3

δ1

FIGURE 22.1 Crystal lattice of graphene.
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330 Graphene Science Handbook

Coulomb repulsion of the impurity electrons; V is the overlap 
integral between the wave functions of the impurity electrons 
and the π-electrons of carbon, forming the bands. Estimations 
based on the semi-empirical quantum-chemical method 
MNDO have shown that typical values for these parameters 
are tΔ ≈ 2 eV, U ≈ 12 eV, U ≈ 12 eV, and V ≈ 2 eV.

Since the properties of the model described by the 
Anderson Hamiltonian is quite complicated, we assume that 
U → ∞, and that all the average values are spatially homo-
geneous. It should be noted that the approximation U → ∞ 
is consistent with the quantum-mechanical calculations for 
graphene-like structures. The spectrum of elementary excita-
tions can be represented by

 

E p

p n p n n Vim

σ

σ σ
σε ε ε ε

( )

( ) ( ( ) ) ( ) ,

=

+ − + − + − + −





1
2

4 12 2| |

 (22.13)

where V is the hybridization parameter, ε(p) is the electron 
spectrum for graphene, determined from the diagonalized 
Hamiltonian Hh, nσ, and nim

σ  are the parameters determined 
by the problem stability conditions.

Let us consider the calculation of the energy eigenvalues 
for electrons in the crystal lattice of graphene with adsorbed 
atomic hydrogen [22], which is regarded as an impurity. Such 
a choice of impurity is motivated by the fact that, in this 
case, the Coulomb interaction energy of the electrons in the 
adsorbed atom is zero, as there is only one electron in atomic 
hydrogen. The hybridization potential Vκa in the Anderson 
Hamiltonian can be estimated from a quantum-chemical 
approach, as it is defined by the overlap integral of the wave 
functions of the s-orbital (the hydrogen atom), and pz-orbitals 
(carbon atoms in graphene):

 
V SH C HC= +1

2
( ) ,β β

 
S dHC s pz= ∫Ψ Ψ1 2( ) ( ) ,r r r

 
(22.14)

 

Ψ

Ψ

1
0

3

2

0

2
0

3

2

1
1

1

4 2

s

p

z

a
e

zr

a
z H

z

a
e

z

= 





= =

= 





−

−

π
ρ

π
ρ

ρ, , ( ) ;

ρρ

θ ρ2

0

6cos , , ( ) ;= =zr

a
z C

where SHC is the overlap integral of the wave functions, βH 
and βC are the parameters derived from the semi-empirical 
quantum-chemical method MNDO [23], βH = −6.99 eV, 
βC = −7.93 eV, a0 is the Bohr radius, and z is the atomic charge.

An estimate of the hybridization potential gives a value of 
Vκa = −1.43 eV. The energy value is negative, therefore a stable 

state is formed, which is important for practical applications. 
To estimate the energy of adsorbed atoms εa, the method of 
images is used, based on the fact that the surface of the con-
ductor is equipotential [24]. As a result, we obtain

 
�ε

πεa I
e

l
= + 1

4 40

2

,

where I = −13.6 eV is the ionization potential of a hydrogen, e 
is the elementary charge, ε0 is the dielectric constant, l = 1.2 Å 
is the distance from the center of the adatom to the plane of 
its image on the substrate, which is of the order of the atomic 
radius of the adatom (the length of the adsorption bond). To 
describe the spectrum of elementary excitations of graphene, 
we use the classical mathematical technique of Green’s func-
tions. The expression of Green’s function for the lattice with 
adsorbed atomic defect can be written as follows:

 
� �c c

i

V
k k

a

a k ka
σ σ π

ω ε
ω ε ω ε

|
( )

( )( )
,+ = −

− − −2 2| |  
(22.15)

where ckσ, ckσ
+  are the creation and annihilation Fermi opera-

tors, and ω is the energy variable.
The analytical expression for Green’s function of the crys-

tal lattice of graphene (22.15) allows us to determine the 
eigenvalues of the electron energy in the crystal, caused by 
the adsorption of atomic hydrogen. The eigenvalues of the 
electron energy of the crystal lattice with attached atomic 
defects are given by the poles of Green’s function:

 
E k Va k a k ka( ) ( ) ,= + ± − +





1
2

42 2ε ε ε ε
 

(22.16)

where εk is the band structure of the “pure” graphene.
In the case of double-layer graphene, the system has 

been considered in the framework of tight-binding model 
for π-electrons using a nearest-neighbor approximation with 
intraplane and interplane hopping integrals t0, while the elec-
trostatic potential U was applied between the two layers of 
graphene. The band structure of bilayer graphene, obtained 
from this tight binding approximation, gives us the following 
dispersion relation:

 
E U p

t U t
t U pp

±± = ± + + ± + +( ) ( ) ( ) ( ) .ε ε2 0
2 4

0
4

0
2 2 2

2 4 4

 (22.17)

22.3 MATHEMATICAL RULES

In this work, the transition to curvilinear coordinates has 
been used. Therefore, it is necessary to do a little mathemati-
cal retreat, which will contribute to the understanding of the 
calculations made in the following paragraphs.
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331Tunneling Current of the Contact of the Curved Graphene Nanoribbon with Metal and Quantum Dots

We consider the transition from a coordinate system x0, x1, 
x2, x3 to another one x x x x′ ′ ′ ′0 1 2 3, , ,  by means of the following 
transformation [25]:

 x f x x x xi i= ′ ′ ′ ′( , , , ),0 1 2 3

 (22.18)

where f i are some smooth functions. When the coordinates 
are transformed according to Equation 22.18, their differen-
tials transforms read [25]

 
dx

x

x
dxi

i

k
k= ∂

∂ ′
′ .

 
(22.19)

It should be noted that here and below, a repeated index 
implies summation over that index. A contravariant 4-vector 
is any set of four variables Ai, which are defined through their 
differentials at the curvilinear transition

 
A

x

x
Ai

i

k
k= ∂

∂ ′
′ .

 
(22.20)

Derivatives of some scalar after the coordinate conversion 
are calculated as follows:

 

∂
∂

= ∂
∂ ′

∂ ′
∂

ϕ ϕ
x x

x

xi k

k

i .
 

(22.21)

A covariant 4-vector is any set of four variables Ai, which 
are converted as derivatives of a scalar using the coordinate 
transform:

 
A

x

x
Ai

k

i k= ∂ ′
∂

′.
 

(22.22)

Similarly, the 4-tensors of various ranks are defined. Thus, 
the contravariant 4-tensor of the second rank Aik is the set of 
16 variables that transform as the multiplication of two contra-
variant vectors, that is, according to the following law:

 
A

x

x

x

x
Aik

i

l

k

m
lm= ∂

∂ ′
∂
∂ ′

′ .
 

(22.23)

A covariant tensor of the second rank Aik is converted by 
the law:

 
A

x

x

x

x
Aik

l

i

m

k lm= ∂ ′
∂

∂ ′
∂

′ ,
 

(22.24)

and the mixed 4-tensor Ak
i  by the formula:

 
A

x

x

x

x
Ak

i
i

l

m

k m
l= ∂

∂ ′
∂ ′
∂

′ .
 

(22.25)

These definitions are natural extensions of the defini-
tions of 4-vectors and 4-tensors for the Galilean coordinates, 
according to which the differentials dxi are also contravariant 
vectors, and the derivatives ∂ф/∂xi are the covariant 4-vectors.

The construction rules of 4-tensors by the multiplication or 
its simplification by other 4-tensors in curvilinear coordinates 
are the same as for the Galilean coordinates. Definition of 
the unit 4-tensor δk

i  also does not change: its components are 
δk

i = 0 for i ≠ k, and δk
i = 1 for i = k.

The square of the length element in the curvilinear coordi-
nates is a quadratic form of the differentials dxi:

 ds g dx dxik
i k2 = ,  (22.26)

where gik are the coordinate functions; gik are symmetric in 
indices i and k:

 g gik ki= ,  (22.27)

Since the multiplication (simplified) gik on a contravariant 
tensor dxidxk is a scalar, then gik is a covariant tensor, which is 
called the metric tensor. Two tensors Aik and Bik are said to be the 
inverse of each other, if and only if A Bik

kl
i
l= δ . Obviously, the 

only variables which can determine the relationship between 
the one and the other are the components of the metric tensors. 
Such a relationship is given by the following expression

 A = g A A = g Ai ik
k i ik

k, .  (22.28)

In a Galilean coordinates system, this tensor has the 
components:

 

g gik
ik( ) ( ) .0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

= =
−

−
−



















 

(22.29)

Now, we consider the covariant differentiation. We define 
the transformation formula for differentials dAi. Since a 
covariant vector is calculated by the following formula:

 
A

x

x
Ai

k

i k= ∂ ′
∂

′ ,

we readily obtain

 
dA

x

x
dA A d

x

x

x

x
dA + A

x

x x
dxi

k

i k k

k

l

k

i k k

2 k

i l
l= ∂ ′

∂
′ + ′

∂ ′
∂

= ∂ ′
∂

′ ′
∂ ′
∂ ∂

.

We now undertake the definition of a tensor which in cur-
vilinear coordinates plays the same role as ∂Ai / ∂xk in Galilean 
coordinates. In other words, we must transform ∂Ai/∂xk from 
Galilean to curvilinear coordinates. In curvilinear coordinates, 
in order to obtain a differential of a vector which behaves like 
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332 Graphene Science Handbook

a vector, it is necessary that the two vectors to be subtracted 
from each other be located at the same point in space. In other 
words, we must somehow “translate” one of the vectors (which 
are separated infinitesimally from each other) to the point 
where the second is located, after which we determine the dif-
ference of the two vectors which we now refer to as one and the 
same point in space. The operation of translation itself must 
be defined so that in Galilean coordinates the difference shall 
coincide with the ordinary differential dAi. The difference in 
the components of the two vectors after translating one of them 
to the point where the other is located will not coincide with 
their difference before the translation (i.e., with the differential 
dAi) [25]. Therefore, to compare two infinitesimally separated 
vectors we must subject one of them to a parallel translation 
to the point where the second is located. Let us consider an 
arbitrary contravariant vector; if its value at the point xi is Ai, 
then at the neighboring point xi + dxi is equal to Ai + dAi. We 
subject the vector Ai to an infinitesimal parallel displacement 
to the point xi + dxi. We denote the change in the vector which 
results from this by δAi. Then, the difference DAi between the 
two vectors which are now located at the same point is

 DA dA Ai i i= − δ ,  (22.30)

 δA A dxi i
kl

k l= −Γ ,  (22.31)

where Γkl
i  are some functions of coordinates, whose form 

depends on the choice of the coordinate system. In a Galilean 
coordinate system all of Γkl

i  are equal to zero.
From this, it is already clear that the quantities Γkl

i  do not 
form a tensor, since a tensor which is equal to zero in one 
coordinate system is equal to zero in every other one. In a cur-
vilinear space, it is of course impossible to make all Γkl

i  van-
ish over all of space. But we can choose a coordinate system 
for which Γkl

i  become zero over a given infinitesimal region 
(see the end of this section). The quantities Γkl

i  are called 
Christoffel symbols. In addition to the quantities Γkl

i , we shall 
later also use quantities Γi kl, , defined as follows:

 Γ Γi kl im kl
m

, .= g  (22.32)

Conversely,

 Γ Γkl
i im

m klg= , .  (22.33)

It is also easy to relate the changes in the components of 
a covariant vector under a parallel displacement to the 
Christoffel symbols. To do this, we note that under a parallel 
displacement, a scalar is unchanged. In particular, the scalar 
product of two vectors does not change under a parallel dis-
placement. Let Ai and Bi are some covariant and contravariant 
vectors. Then from δ(Ai Bi) = 0, we have

 B A A B B A dxi
i i

i
kl
i k

iδ δ= − = Γ 1.

Hence, in view of the arbitrariness of Bi, we obtain that

 δA A dxi il
k

k
l= Γ ,  (22.34)

which determines the change of the covariant vector.
Substituting (22.31) and dAi = (∂x′k/∂xl)xl in formula (22.32), 

we obtain

 

DA
A

x
A dxi

i

l kl
i k l= ∂

∂
+







Γ .

 
(22.35)

Similarly, we find for the covariant vector

 
DA

A

x
A dxi

i
l il

k
k

l= ∂
∂

−





Γ .
 

(22.36)

Tensors defined by the following formulas (22.35) and 
(22.36) are called covariant derivatives of the vectors Ai and 
Ai. We will denote them by A k

i
;  and Ai;k. Thus,

 DA A dx DA A dxi
l
i

i i l
l= =; ;, ,1

 (22.37)

while the covariant derivatives themselves are

 
A

A

x
Al

i
i

l kl
i k

; ,= ∂
∂

+ Γ
 

(22.38)

 
A

A

x
Ai l

i
l il

k
k; .= ∂

∂
− Γ

 
(22.39)

In a Galilean coordinate system, all coefficients Γkl
i = 0 and 

covariant derivatives are reduced to ordinary differentiation.
It is also easy to calculate the covariant derivative of a 

tensor. To do this, we must determine the change in the ten-
sor under an infinitesimal parallel displacement. For exam-
ple, let us consider any contravariant tensor, expressible as 
a product of two contravariant vectors AiBk. Under parallel 
displacement,

 δ δ δ( ) .A B A B B A A B dx B A dxi k i k k i i
lm
k l m k

lm
i l m= + = − −Γ Γ

By virtue of the linearity of this transformation we must 
also have, for an arbitrary tensor Aik,

 δA A A dxik im
ml
k mk

ml
i l= − +( ) .Γ Γ  (22.40)

Hence, we find covariant derivative of the tensor in the fol-
lowing form:

 
A

A

x
A A;l

ik
ik

l ml
i mk

ml
k im= ∂

∂
+ +Γ Γ .

 
(22.41)
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333Tunneling Current of the Contact of the Curved Graphene Nanoribbon with Metal and Quantum Dots

Quite similarly, we obtain the covariant derivative of the 
mixed tensor Ak

i  and the covariant tensor Aik in the form

 

A
A

x
A A

A
A

x
A A

k;l
i k

i

l kl
m

m
i

ml
i

k
m

ik;l
ik
l il

m
mk kl

m
im

= ∂
∂

− +

= ∂
∂

− −

Γ Γ

Γ Γ ..
 

(22.42)

One can similarly determine the covariant derivative of a 
tensor of arbitrary rank. In doing so, one finds the follow-
ing rule of covariant differentiation: to obtain the covariant 
derivative of the tensor A::: with respect to xl, we add to the 
ordinary derivative ∂A:::/∂xl for each covariant index i(A:i:) a 
term – Γil

k . One can easily verify that the covariant derivative 
of a product is found by the same rule as for ordinary differen-
tiation of products. In doing so, we must consider the covari-
ant derivative of a scalar as an ordinary derivative, that is, as 
the covariant vector фk = ∂ф/∂x, in accordance with the fact 
that for a scalar δф = 0, and therefore Dф = dф. For example, 
the covariant derivative of the product Ai Bk is given by

 ( ) .; ; ;A B A B A Bi k l i l k i k l= +

If in a covariant derivative we raise the index signifying 
the differentiation, we obtain the so-called contravariant 
derivatives:

 A g A A g Ai
k kl

i l
i k kl

l
i;

;
;

;, .= =

Now, we have the formulas for transforming the Christoffel 
symbols from one coordinate system to another. These formu-
las can be obtained by comparing the laws of transformation 
of the two sides of the equations defining the covariant deriva-
tives, and requiring that these laws be the same for both sides. 
It is straightforward to get [25]

 
Γ Γkl

i
np
m

i

m

n

k

p

l

2 m

k l

i

m

x

x

x

x

x

x

x

x x

x

x
= ′

∂
∂ ′

∂ ′
∂

∂ ′
∂

+ ∂ ′
∂ ∂

∂
∂ ′

.
 

(22.43)

It can be seen that values Γ kl

i  behave like a tensor only 
under linear transformations of the coordinates (when the 
second term disappears in the expression (22.43)). The rela-
tionship between the Christoffel symbols and the metric ten-
sor, and its first coordinate derivatives can be written in the 
following form [25]:

 
Γµν

α αβ µβ
ν

βν
µ

µν
β=

∂
∂

+
∂
∂

−
∂
∂







1
2

g
g

x

g

x

g

x
.
 

(22.44)

At this point, we turn back to the main goal of our study. 
The Dirac equation in a carbon nanosystem (CNS), taking into 
account the curvature of the surface, can be obtained as fol-
lows. We introduce a set of orthogonal vectors eα on the mani-
fold, described by the metric tensor gμν, transforming on the 

group SO(2): g e eµν µ
α

ν
β

αβδ= , where eµ
α is the dyadic coefficients 

[26], α,β = 1,2 are the orthonormal indices, and μ,ν = 1,2 are 
the coordinate indices. Dyads can be selected with certain 
gauge freedom, resulting in the emergence of a SO(2)-field ωμ, 
which is a spin connection. It should be subjected to a condi-
tion analogous to the metric tensor without torsion:

 
D e e e eµ ν

α
µ ν

α
µν
λ

λ
α

µ β
α

ν
βω: = ∂ − + =Γ ( ) 0

(elongated derivative of the expression, which has metric and 
spin indices can be formally written in the following form: 
Dμ = ∂μ + Гμ + ωμ), then the spin connection can be defined as

 
( ) .ωµ

αβ
ν
α

µ
βν= e D e

Thus, the Dirac equation, taking into account the curva-
ture of the surface, takes the form:

 
i e ia iW Ek k kγ ψ ψα

α
µ

µ µ µ( ) ,∇ − − =

where a k K Kk
µ , ,= − are the Dirac points, Wμ are the gauge 

fields (defect fields), γα are the SU(2)-matrices (special unitary 
matrices of the second order) 2 × 2, which can be selected as 
γi = −iσi, and ∇μ = ∂μ + Ωμ, where Ωµ µ

αβ
α βω γ γ= ( ) [ , ]1 8/ .

22.4  BASIC EQUATIONS AND 
SPECTRUM OF ELECTRONS

We consider a graphene nanoribbon, which is curved along 
the toroidal and the helical surfaces, as represented in Figure 
22.2. Properties of electrons in graphene nanoribbons in the 
long-wave approximation and in the vicinity of the Dirac 
points will be described on the basis of the Dirac equation 
generalized for the case of a curved space–time [1]:

 
γ µ

µ µ( ) ,∂ − =Ω Ψ 0
 

(22.45)

where ∂μ is the partial derivative with respect to coordinate 
μ, Ωμ is the component of the spin connection, Ψ = (ϕ/φ) is 
the wave function (column vector) consisting of wave func-
tions describing the electrons from different sublattices near 
the Dirac point.

As is well known [1,27], if we are given the metric tensor

 

ds g dx dx

g g

2 =

=

αβ
α α

αβ
βγ

α
γδ ,  

(22.46)

(δα
γ —delta is the Kronecker symbol) then we can define 

the field frames (tetrads):

 

g e e

g e e

a b
ab

a b
ab

ab
bc

a
c

αβ α β

αβ α β

η

η

η η δ

=

=

= ,  

(22.47)
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334 Graphene Science Handbook

where for the two-dimensional curved surfaces, we have 
ηab = diag(1, −1, −1). Then

 

Ω Γ

Γ

µ λ
λσ

µ σ µσ
λ

λ

µσ
λ λν

σν µ νµ σ µσ ν

γ γ= ∂ −

= + −

1
4

1
2

a b
a b be g e e

g g g g

( )

( , , , ))

.γ γµ µ= ea a  

(22.48)

Using the torus and the helical parameterization

 

x R r x x

y R r x x

z r x

= +

= +

=

( cos )cos

( cos )sin

sin ,

1 2

1 2

1  

(22.49)

 

x x x

y x x

z h x

=

=

= ⋅










1 2

1 2

2

cos

sin ,

 

(22.50)

we find that the metrics on the torus surface and the helicoid 
are given by

 ds dx r dx R r x dx2
0

2 2
1
2

1
2

2
2= − − +( cos ) ,  (22.51)

 ds dx dx h x dx2
0

2
1
2 2

1
2

2
2= − − +( ) .  (22.52)

Note that all the Christoffel symbols are equal to zero, 
except Γ12

2  and Γ22
1 . For the torus, we have Ω0 = 0; Ω1 = 0; 

Ω2 = (1/2)γ1γ2f ′/r ( f = R + r cos x1; f ′ = ∂f/∂x1), while in the 
case of the helicoid Ω0 = 0; Ω1 = 0;

 
Ω2 1 2

1
2

1
2 1 2

1
2

=
+

γ γ x

h x( )
./

Choosing γ0 = σ3; γ1 = −iσ2; γ2 = −iσ1, where σ are the Pauli 
matrices, we obtain the following system of equations:

 

V
r

i

f

f

f r

V
r

i

f

F t x x

F t x x

−

−

∂ = − ∂ − ∂ + ′

∂ = − ∂ + ∂ + ′

1
2 2 2

1
2 2

1
2

1

1 2

1 2

ϕ

ϕ ϕ ϕ

Ψ Ψ Ψ

ff

f r2 2 ϕ











,

 

(22.53)

V
i

h x

x

h x

V
i

h

F t x x

F t x

−

−

∂ + ∂ +
+

∂ −
+

=

− ∂ − ∂ +

1
2

1
2

1
2

1
2 3 2

1

1 2

1

2
0ϕ

ϕ

Ψ Ψ Ψ

Ψ

( ) /

22
1
2

1
2

1
2 3 22 2

0
+

∂ −
+

=









 x

x

h x
x ϕ ϕ

( )

.

/

 (22.54)

Here, VF is the Fermi velocity for planar graphene, 
∂ = ∂−

0
1VF t. Note that since the metrics (22.51) and (22.52) 

admit two Killing vectors corresponding to the translations 
along x0, x2, the solutions (22.53) and (22.54) can be found in 

the form 
ϕ ϕ
Ψ Ψ







→






−( )

( )

x

x
eiEt ikx1

1

2 , which finally gives

  

′′ = − +






+ ′ ′

+ ′ + ′′ − ′

Ψ Ψ ΨE r

V

k r

f

rf

f

k r f

f

rf

f

rf

f

n

n

2 4

2

2 4

4 2

2

3 2

2

2
2

22

3

2 2

44f

r f

f
− ′





Ψ,
 

(22.55)

  

′′ = − +
+







+ −
+

+
+

Ψ Ψε2

2

2

2
1
2 2

1
2

1
2 5 2

1
2

2
1
24

V

k

h x

kx

h x

x

h x

f ( )

( ) ( )/ 33







Ψ.
 

(22.56)

Note that the wave vector k is found from the boundary con-
ditions at the ends of the nanoribbon. In our particular case, we 
have chosen the armchair-type ribbon [9], and therefore

Qdots Qdots

x x

y

z
(a) (b)

z

y

FIGURE 22.2 Geometry of a problem: (a) toroidal nanoribbon, (b) helical nanoribbon. (Adapted from M.B. Belonenko et al. J. Nanotechnol. 
2011, ID 161849, 2011.)
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k

a

M n

M
n = + +

+






2
3

2 1
2 10

π
,
 

(22.57)

where a0 is the distance between the atoms in the carbon lat-
tice, M is the number of atoms along the nanoribbon axis, and 
n is the quantum number. We can consider Equations 22.55 
and 22.56 as Schrödinger equations with perturbation

 

V̂
k r f

f

rf

f

rf

f

r f

f

rf

f
n

xTorus = ′ + ′′ − ′ − ′





+ ′ ∂




2
2 4 2

2

3 2

2

3

2 2

4 2







,

 

ˆ
( ) ( )

./V
kx

h x

x

h x
Helicoid = −

+
+

+






1
2

1
2 5 2

1
2

2
1
2 34

In this particular case, the spectrum of perturbation reads

 
E k kn y= ± +2 2 .

 
(22.58)

Expanding the functions in the denominator as a Taylor 
series up to the second order, we calculate the first perturbation 
correction term to the spectrum, V̂Torus and V̂Helicoid, as follows

 
E V dx A k xn n1 1= = ⋅∫Ψ Ψ Ψ* , ( ).� Sin

The integration is performed from 0 to L = (3M + 1)a0 and 
the corrections are as follows:

E
L

r

R
L

r

R k

k L

k

r

n

n

n

1

2

2

2

2

2

2
4 8

1
1

2 1
2 1

= − + −









−
−

+

Sin

Sin

( )

( )
( ) 88

1
1 2 1

2 12R k

k L

kn

n

n

+





+
+





Sin( )
( )

,

 
(22.59)

 

E
L

kL

h

k

h k

h L

k L
kL

h k
h

n

n
n

1

2

5 5 2

2 3 3

5
22

4 4 24

2
4

=

− + +






+ +

−

−

/

Sin( ) /33
3

2

5 4

2 3

2

1
32 16

2
4 16

k

L

k

k L
k

h k

h L

k

n n

n
n n

−













+ − +
 −

Cos( )
/







































.

 (22.60)

The dependence of the perturbations on the atom numbers 
along the nanoribbons M is presented in Figure 22.3.

The dependence shown in Figure 22.3a is rather complex, 
which is associated with the quantization of the electron spec-
trum in graphene nanoribbons in relation with Equation 22.57. 
It should be noted that the dependence of the energy gap in 
carbon nanotubes of zigzag type is pretty similar, which also 
arises from the quantization of the electron spectrum in the 
direction along the circumference of the nanotube. The cal-
culations show (Figure 22.3a) that the value of the helicoids 
parameterization h influences most strongly the correction to 
the energy (as well as its sign). The dependence of the energy 
correction on the ratio r/R is demonstrated in Figure 22.3.

As expected, the dependence shown in Figure 22.4 shows 
that with increasing curvature of the graphene nanoribbon 
(i.e., with increasing ratio r/R), the absolute value of the cor-
rection to the energy of the electrons increases [28].

22.5 TUNNELING CHARACTERISTICS

The Hamiltonian of the system of electrons can be written in 
the following form:

H a a E b b T a b b ap
A

p p q
B

q q pq p q q q

pqqp

= + + ++ + + +∑∑∑Ε ( ),

 
(22.61)

0 10 20 30 40 500

0

5

(a)

10 20 30 40 50

−5
−2

−3

−1

0

M M

V 
(r.

u.
)

V 
(r.

u.
)

(b)

FIGURE 22.3 Dependence of the correction to the energy V caused by the perturbation 
�
V  on atoms number along nanoribbon axis M: (a) 

for torus (r/R = 0.1, n = 1); (b) for helicod (h = 1.5): (i) n = 1—solid line; (ii) n = 2—dotted line; (iii) n = 3—dashed line. (Adapted from M.B. 
Belonenko et al. J. Nanotechnol. 2011, ID 161849, 2011.)
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336 Graphene Science Handbook

where a ap p
+;  are the electron creation and annihilation oper-

ators with momentum p in the carbon nanoribbons; Ep
A is 

the electron spectrum of the carbon nanoribbons (22.58) 
while taking into account Equations 22.59 and 22.60; Tpq 
is the matrix element of the tunneling operator between p 
and q states; b bq q

+;  are the electron creation and annihila-
tion operators with momentum q in a substance which is in 
contact with a carbon nanoribbon; Ep

B is the electron spec-
trum of another substance. It should be noted that p and q 
are multi-indices in formula (22.61). Hence, for graphene 
nanoribbon (further, we consider an arm-chair nanoribbon 
only) p = (py,n), n = 0,1,…,M − 1. Multi-index q is deter-
mined by the substance which is in contact with the carbon 
nanoribbon, and, for example, for quantum dots q = (px, py, 
pz), whereas for graphene q = (px, py). A consideration of the 
external electric field 

�
E  (and choosing 

� �
E c A t= − ∂ ∂( )( ))1/ /  can 

be carried out by the canonical transformation p → p − eA/c.
The tunneling current is considered to be given by

 

J e a b b ap q q p

pq

= −+ +∑i ( ).

 
(22.62)

With a gauge transformation [29,30], we have

 

a S a S

S eVt a a

p p

p p

p

→

=












−

+∑

1

exp ,i

where V is the applied voltage, and e is the electron charge. 
Formally, it is possible to reduce a problem of calculation of 

the current–voltage characteristics to the calculation of the 
operator response

 

J ie a b e b a et

pq

p q
ieVt

q q
ieVt= −∑ + + −( )

on the external influence [29,30]

 

H T a b e b a et pq p q
ieVt

q q
ieVt

pq

= +( )+ + −∑ .

The solution was obtained within the framework of the 
Kubo theory:

 

J e T dE E eV E n E n E eV

E E E

A B f f

A p
A

p

= + − +

= −

−∞

∞

∫4
2π ν ν

ν δ

( ) ( )( ( ) ( ),

( ) ( );∑∑ ∑= −ν δB q
B

q

E E E( ) ( );

 

(22.63)

where δ(x) is the Dirac delta function, νA(B)(E) is the tunneling 
density of states; nf(E) is the equilibrium number of fermi-
ons with energy E. The approximation of a “rough” contact 
is used thereafter, so that Tpq = T (this imposes certain restric-
tions on the contact geometry, i.e., the case discussed below 
means that nanoribbon should be perpendicular to the contact 
material surface). For definiteness, we choose the dispersion 
law for the graphene nanoribbons given by Equations 22.58 
through 22.60, and the dispersion law for the quantum dots as 
the contact material being

 
E E pq

A = −0 ∆ cos( ),
 

(22.64)

where E0 is the electron energy of a quantum well, Δ is the 
tunneling integral determined by the overlap of electron 
wave functions in the adjacent wells, and the momentum p is 
directed along the axis Z.

Equation 22.63 under study has been solved numerically. 
The current–voltage characteristic of the contact is presented 
in Figure 22.5.

Figure 22.5 shows the asymmetric behavior of current 
versus voltage applied to the contact. This is due to both the 
peculiarities of the electronic structure (density of states) of 
the metal and graphene nanoribbons, and the processes of 
carrier recombination in the transition contact, which dom-
inate over the thermal processes when V > 0. The resulting 
dependence may have important practical applications in the 
study of nanocontacts and the design of tunnel diodes based 
on graphene nanoribbons. Also, the region with negative dif-
ferential resistance was observed for some values of V. The 
presence of such region allows the use of a tunnel diode as a 
high-speed switch.

Ratio of the radii of curvature (r/R)

En
er

gy
 co

rr
ec

tio
n 

V 
(r.

u.
)

2

1.5

1

0.5

0
0.25 0.5

FIGURE 22.4 Dependence of the energy correction V, caused by 
the perturbation 

�
V , on the ratio of the radii of curvature r/R (M = 20, 

n = 1). (Reprinted from Sol. State Commun., 151, M.B. Belonenko, 
N.G. et al., 1147, Copyright 2011, with permission from Elsevier.)
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337Tunneling Current of the Contact of the Curved Graphene Nanoribbon with Metal and Quantum Dots

22.6 FRIEDMANN MODEL

Now, we consider graphene nanoribbons in the Friedmann 
model of non-stationary universe [25,31]. Properties of elec-
trons in the graphene nanoribbon in the long-wave approxi-
mation in the vicinity of the Dirac point will be described 
on the basis of the generalized Dirac equation for a curved 
space–time [1] (see Equation 22.45).

For a strained/curved graphene, constantly under the influ-
ence of an external variable mechanical force, the effect of 
this force leads to a periodic change in the distance between 
the atoms of graphene, which, in turn, leads to a change in the 
Fermi velocity, vF. Using the analogy with a curved space–
time, we can say that this force leads to a periodic change 
of spatial intervals, which, as is well known, is adequately 
described in the frame of the Friedmann non-stationary 
model. The metrics in the Friedmann non-stationary model of 
the universe has the form:

 ds dt e dx dyf t2 2 2 2= − +( )( ),  (22.65)

where ef(t) = 1 + a sin (ω0t).
Here, a stands for the relative amplitude of the strain, while 

ω0 is the characteristic frequency of oscillatory deformation. 
There are only four non-zero Christoffel symbols:

 
Γ Γ Γ Γ11

0
22
0

01
1

02
21

2
1
2 2 2

= ′ = ′ = ′ = ′
e f e f

f ff f; ; ; .

Thus

 
Ω Ω Ω0 1

0 1
2

2
0 2

2

0
4 4

= = − ′ = − ′
; ; .

/ /γ γ γ γf e f ef f

Let us choose γ0 = σ3; γ1 = −iσ2; γ2 = −iσ1, where σ are 
the Pauli matrices. Then, we obtain the following system of 
equations:

 

V e
f e

ie
if e

V e

F t
f

x

f
f

x

f

F t
f

− −
−

−
−

− −

∂ + ∂ + ′ + ∂ − ′ =

∂ −

1
2 2

1

1 24 4
0ϕ ψ ϕ ψ ϕ

ψ

/ /

∂∂ − ′ + ∂ − ′ =
−

−
−

x

f
f

x

ff e
ie

if e
1 2

2 2

4 4
0ϕ ψ ϕ ψ

/ /

 (22.66)

(here, we explicitly introduced the Fermi velocity for the flat 
graphene via ∂ = ∂−

0
1VF t). It should be noted that the solution 

of the system (22.66) can be found in the form:

 

ϕ
ψ

ϕ
ψ







→






+eip x ip yx y ,

then

 

V ip e
f e

p e
if e

V ip e

F t x
f

f

y
f

f

F t x

− −
−

−
−

− −

∂ + + ′ − − ′ =

∂ −

1
2 2

1

4 4
0ϕ ψ ϕ ψ ϕ

ψ

/ /

ff
f

y
f

x

ff e
p e

if eϕ ψ ϕ ψ− ′ − ∂ − ′ =
−

−
−/ /

.
2 2

4 4
02

 (22.67)

From the Equation 22.67, it is easy to obtain the following 
equation for the function φ:

 

ϕ ϕ

α α

t

F
f

g

g V f e
i

+ =

= ′ = −−

0

1
4

2

,

, ./

Then the substitution: ϕ ϕ→ ⋅ ∫−
e

gdt
 applied in the set of 

Equation 22.67 yields the non-linear Shrödinger equation 
with the excitation term (second one), known as the Mathieu 
equation:

 ϕ ϕ ϕtt t
ff g g p e+ ′ + − + =−( ) .* | |2 2 0

Let us choose the trial unexcited function in the form: 
φ(t) = φ0eiωt, and besides f = 0. In the non-perturbed case, we 
obtain the spectrum:

 ω2 2= | |p .  (22.68)

Let us calculate the first energy correction, V̂ :

 

E V dx A k x

V f g g

n n

t

1 1= = ⋅

= ′ + − ∂

∫ �
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FIGURE 22.5 Current–voltage characteristic of the contact: 
curved graphene nanoribbon–quantum dots: (a) for torus; (b) for 
helicoid. (Adapted from M.B. Belonenko et al. J. Nanotechnol. 
2011, ID 161849, 2011.)
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The integration is done from 0 to L = (3M + т1)a0 and 
results in

 

E
L

k k t a t

a t a t
n n

1
0 0

0 0

2 2
4 1

1
1

1
= ⋅

+
+

+




sin( ) cos( )

sin( ) sin( )

ω ω
ω ω 












.

 (22.69)

The dependence of the energy correction on the atom num-
bers M is demonstrated in Figure 22.6.

This dependence has a step-like form, which is associated 
with the quantization of the electron spectrum in graphene 
nanoribbons according to Equation 22.69. Note that this is 
similar to the dependence of the energy gap in zigzag-type 
carbon nanotubes [32], which also arises from the quantiza-
tion of the electron spectrum in the direction along the cir-
cumference of the nanotube.

Furthermore, it is worth characterizing the dependence of 
V on the parameters ω0 and n. This dependence is shown in 

Figure 22.7, and it demonstrates that with the increase of the 
characteristic frequency ω0, we observe a periodic change of 
the correction to the energy of the electrons. With increas-
ing quantum number n, we observe a shift to the right and a 
remarkable increase in the amplitude [31].

Also, we constructed the current–voltage characteristics of 
the contact between a curved nanoribbon and a metal. This 
dependence shows the asymmetric behavior of current versus 
voltage applied to the contact, as in the case where we do not 
take into account the Friedmann model.

22.7 CONCLUSION

In this chapter, we first briefly overviewed the formal rela-
tion between the quantum field theory, the general relativity, 
and the condensed matter of graphene-based nanostructures. 
Proceeding to the more practical applications, we summa-
rized our studies on the tunnel characteristics between a 
curved/strained graphene and a metal, considering different 
geometrical configurations of a graphene sheet. As a result, 
we have demonstrated that the above contacts behave simi-
larly to classical diodes, which may have important practi-
cal applications in the study of nanocontacts and the design 
of tunnel diodes based on graphene nanoribbons. Moreover, 
applying the non-stationary Friedmann model leads us to the 
same qualitative conclusion.

ACKNOWLEDGMENTS

This work was partially supported by the Russian Foundation 
for Basic Research under Project No. 08-02-00663, No. 
12-02-31654 and by the Federal Target Program “Scientific 
and pedagogical manpower” for 2010–2013. A. V. Zhukov 
and R. Bouffanais are financially supported by the SUTD-
MIT International Design Centre (IDC).

REFERENCES

 1. M.A.H. Vozmediano, M.I. Katsnelson, F. Guines. Gauge 
fields in graphene. Phys. Rep. 496, 109, 2010.

 2. I. Dzyaloshinskii, G.E. Volovik. On the concept of local invari-
ance in the theory of spin glasses. J. de Phys. 39, 693, 1978.

 3. I. Dzyaloshinskii, G.E. Volovik. Poisson brackets in con-
densed matter. Ann. Phys. 125, 67, 1980.

 4. A.A. Pacheco Sanjuan, Z. Wang, H. Pour Imani, M. Vanević, 
S. Barraza-Lopez. Graphene’s morphology and electronic 
properties from discrete differential geometry. Phys. Rev. B. 
89, 121403(R), 2014.

 5. F.M.D. Pellegrino, L. Chirolli, Rosario Fazio, V. Giovannetti, 
Marco Polini. Theory of integer quantum Hall polaritons in 
graphene. Phys. Rev. B. 89, 165406, 2014.

 6. J.V. Sloan, A.A. Pacheco Sanjuan, Z. Wang, C. Horvath, 
S. Barraza-Lopez. Strain gauge fields for rippled graphene 
membranes under central mechanical load: An approach 
beyond first-order continuum elasticity. Phys. Rev. B. 87, 
155436, 2013.

 7. D.-W. Zhang, C.-J. Shan, F. Mei, M. Yang, R.-Q. Wang, S.-L. 
Zhu. Valley-dependent gauge fields for ultracold atoms in 
square optical superlattices. Phys. Rev. A. 89, 015601, 2014.

1

0.5

0

−0.5

−10 2 4 6 8 10
ω0

En
er

gy
 co

rr
ec

tio
n 

V 
(r.

u.
)

a

b

FIGURE 22.7 Dependence of the energy correction V, caused by 
the perturbation, on the parameter ω0 for M = 20. (a) n = 1; (b) n = 3. 
(Adapted from A.V. Zhukov et al. JETP Lett. 97, 400, 2013.)

0.02

0.015

0.01

0.005

00 5 10 15 20
M

En
er

gy
 co

rr
ec

tio
n 

V 
(r.

u.
)

FIGURE 22.6 Dependence of the energy correction V, caused by 
the perturbation, on the number of atoms M along the axis of the 
nanoribbon (n = 1) in Friedman model.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

Si
ng

ap
or

e 
U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y 

an
d 

D
es

ig
n]

 a
t 1

9:
29

 0
2 

N
ov

em
be

r 
20

16
 



339Tunneling Current of the Contact of the Curved Graphene Nanoribbon with Metal and Quantum Dots

 8. Y. Zhang, J.W. Tan, H.L. Stormer, P. Kim. Experimental 
observation of the quantum Hall effect and Berry’s phase in 
graphene. Nature 438, 201, 2005.

 9. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, 
E.J. Zimney, E.A. Stach, R. D. Piner, S.T. Nguyen, R.S. Ruoff. 
Graphene-based composite materials. Nature 442, 282, 2006.

 10. A. Zhang, Z. Dai, L. Shi, Y. Ping Feng, C. Zhang. Energy gap 
opening and quenching in graphene under periodic external 
potentials. J. Chem. Phys. 133, 224705, 2010.

 11. J. Dauber, B. Terrés, C. Volk, S. Trellenkamp, C. Stampfer. 
Reducing disorder in graphene nanoribbons by chemical edge 
modification. Appl. Phys. Lett. 104, 083105, 2014.

 12. S. Dubey, V. Singh, A.K. Bhat, P. Parikh, S. Grover, R. 
Sensarma, V. Tripathi, K. Sengupta, M.M. Deshmukh. 
Tunable superlattice in graphene to control the number of 
Dirac points. Nano Lett. 13, 3990, 2013.

 13. A. Cortijo, M.A.H. Vozmediano. Effects of topological defects 
and local curvature on the electronic properties of planar gra-
phene. Nucl. Phys. B. 763, 293, 2007.

 14. A. Cortijo, M.A.H. Vozmediano. Electronic properties of 
curved graphene sheets. EPL. 77, 47002, 2007.

 15. D.V. Kolesnikov, V.A. Osipov. Electronic structure of nega-
tively curved graphene. JETP Lett. 87, 419, 2008.

 16. L. Brey, H.A. Fertig. Electronic states of graphene nanorib-
bons studied with the Dirac equation. Phys. Rev. B. 73, 
235411, 2006.

 17. M.B. Belonenko, N.G. Lebedev, N.N. Yanyushkina. Tunneling 
through the carbon nanotube/graphene interface exposed to a 
strong oscillating electric field. J. Nanophotonics. 4, 041670, 
2010.

 18. N. Cobayasi. Introduction in Nanotechnology. Moscow: 
BINOM, 2007.

 19. X. Gao, E. Nielsen, R.P. Muller, R.W. Young, A.G. Salinger, 
N.C. Bishop, M.P. Lilly, M.S. Carroll. QCAD simulation and 
optimization of semiconductor quantum dots. J. Appl. Phys. 
114, 164302, 2013.

 20. D. Solenov, S.E. Economou, T.L. Reinecke. Excitation spec-
trum as a resource for efficient two-qubit entangling gates. 
Phys. Rev. B. 89, 155404, 2014.

 21. A. Ayachi, W. Ben Chouikha, S. Jaziri, R. Bennaceur. 
Telegraph noise effects on two charge qubits in double quan-
tum dots. Phys. Rev. A. 89, 012330, 2014.

 22. M.B. Belonenko, A.S. Popov, N.G. Lebedev, A.V. Pak, A.V. 
Zhukov. Extremely short optical pulse in a system of nano-
tubes with adsorbed hydrogen. Phys. Lett. A. 375, 946, 2011.

 23. N.F. Stepanov. Quantum Mechanics and Quantum Chemistry. 
Moscow: Mir, 2001.

 24. G.A. Mironova. Condensed Matter. From Structural Units to 
Living Matter. Moscow: MGU, 2004.

 25. L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields. 
4th Ed. Oxford: Butterworth-Heinemann, 2000.

 26. V.A. Osipov, E.A. Kochetov, M. Pudlak. Electronic structure 
of carbon nanoparticles. J. Exp. Theor. Phys. 96, 140, 2003.

 27. N.D. Birrel, P.C. W. Davies. Quantum Fields in Curved Space. 
Cambridge: Cambridge University Press, 1982.

 28. L.S. Levitov, A.V. Shitov. Green’s Functions. Tasks with 
Answers. Moscow: Fizmatlit, 2003, 392 p.

 29. M.B. Belonenko, N.G. Lebedev, A.V. Zhukov, N.N. 
Yanyushkina. Electron spectrum and tunneling current of 
the toroidal and helical graphene nanoribbon-quantum dots 
contact. J. Nanotechnol. 2011, ID 161849, 2011.

 30. M.B. Belonenko, N.G. Lebedev, N.N. Yanyushkina, A.V. 
Zhukov, M. Paliy. Electronic spectrum and tunneling current 
in curved graphene nanoribbons. Sol. State Commun. 151, 
1147, 2011.

 31. A.V. Zhukov, R. Bouffanais, N.N. Konobeeva, M.B. 
Belonenko. On the electronic spectrum in curved graphene 
nanoribbons. JETP Lett. 97, 400, 2013.

 32. M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Carbon 
Nanotubes: Synthesis, Structure, Properties, and 
Applications. Berlin: Springer, 2001.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

Si
ng

ap
or

e 
U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y 

an
d 

D
es

ig
n]

 a
t 1

9:
29

 0
2 

N
ov

em
be

r 
20

16
 

http://www.crcnetbase.com/action/showLinks?crossref=10.1063%2F1.3511782
http://www.crcnetbase.com/action/showLinks?crossref=10.1209%2F0295-5075%2F77%2F47002
http://www.crcnetbase.com/action/showLinks?crossref=10.1063%2F1.4866289
http://www.crcnetbase.com/action/showLinks?crossref=10.1134%2FS0021364008080067
http://www.crcnetbase.com/action/showLinks?crossref=10.1038%2Fnature04235
http://www.crcnetbase.com/action/showLinks?crossref=10.1134%2FS0021364013070126
http://www.crcnetbase.com/action/showLinks?crossref=10.1038%2Fnature04969
http://www.crcnetbase.com/action/showLinks?crossref=10.1134%2F1.1545393

	22: Tunneling Current of the Contact of the Curved Graphene Nanoribbon with Metal and Quantum Dots
	Abstract
	22.1 Introduction
	22.2 Graphene and Its Hamiltonians
	22.3 Mathematical Rules
	22.4 Basic Equations and Spectrum of Electrons
	22.5 Tunneling Characteristics
	22.6 Friedmann Model
	22.7 Conclusion
	Acknowledgments
	References




