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In the study of collective animal behavior, researchers usually rely on gathering empirical
data from animals in the wild. While the data gathered can be highly accurate, researchers
have limited control over both the test environment and the agents under study. Further
aggravating the data gathering problem is the fact that empirical studies of animal groups
typically involve a large number of conspecifics. In these groups, collective dynamics may
occur over long periods of time interspersed with excessively rapid events such as
collective evasive maneuvers following a predator’s attack. All these factors stress the
steep challenges faced by biologists seeking to uncover the fundamental mechanisms and
functions of social organization in a given taxon. Here, we argue that beyond commonly
used simulations, experiments with multi-robot systems offer a powerful toolkit to deepen
our understanding of various forms of swarming and other social animal organizations.
Indeed, the advances in multi-robot systems and swarm robotics over the past decade
pave the way for the development of a new hybrid form of scientific investigation of social
organization in biology. We believe that by fostering such interdisciplinary research, a
feedback loop can be created where agent behaviors designed and tested in robotico can
assist in identifying hypotheses worth being validated through the observation of animal
collectives in nature. In turn, these observations can be used as a novel source of
inspiration for even more innovative behaviors in engineered systems, thereby
perpetuating the feedback loop.

Keywords: collective animal behavior, collective decision-making, collective robotics, multi-robot systems, swarm
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1 INTRODUCTION

Social animal groups offer archetypal examples of collective organization and action, whereby
repeated local interactions among conspecifics produce emergent dynamic patterns and responses at
scales far exceeding the size of the animals involved. Collective animal behavior can be observed over
a wide range of spatial scales, spanning from the aggregation of amoeboid cells to the large-scale
murmurations displayed by flocks of starlings (Sumpter, 2010). Such collective behaviors are in no
way limited to the animal world. Many other disciplines also study the collective actions of what is
generally referred to as multi-agent systems, ranging from voter and opinion dynamics models
(Proskurnikov and Tempo, 2017; Mateo et al., 2017; Proskurnikov and Tempo, 2018; Redner, 2019)
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and herding behavior on social networks (Lim and Bouffanais,
2019) in the social sciences, to collective decision-making in the
field of swarm robotics (Mateo et al., 2019; Prasetyo et al., 2019;
Dorigo et al., 2021). These collective behaviors are the outcome of
complex bottom-up dynamic processes involving repeated local
interactions of actors evolving in unstructured and dynamic
environments filled with stimuli and constraints. Despite the
pervasiveness of collective behaviors, a full understanding of the
underlying mechanisms that govern the emergence of these
complex behaviors is still lacking. As a matter of fact, the
study of collective phenomena, and collective behaviors in
particular, form a highly active field of multi-disciplinary
research (Bouffanais, 2016; Ouellette and Gordon, 2021).

Despite evident common goals across disciplines, biologists
often argue that models of collective behavior should be
constructed with a particular hypothesis in mind. This
hypothesis would then have to be empirically tested and
validated for a given species (Ouellette and Gordon, 2021).
Indeed, the current literature on collective animal behavior
focuses on identifying the underlying motivation or function
for such social organization in a given taxon (Halloy et al., 2007;
Landgraf et al., 2011; Landgraf et al., 2018; Lei et al., 2020). This
overall approach differs from that of physicists and complexity
scientists who seek to focus on commonalities in patterns and
universal characters exhibited during collective operations by
these complex systems. Nonetheless, a more “micro”-approach
is always necessary when hunting for a higher level of detail in a
given collective behavior (Mitri et al., 2013). When focusing on an
individual actor, one can observe a large number of factors, both
internal and external, that affect the local interaction rule, thereby
guiding that individual’s actions (e.g., stress, desire to mate, desire
to conserve energy, etc.) (Katz and Naug, 2015; Li et al., 2021).
These behaviors are further confounded when the actions of one
individual can also be affected by the actions of other individuals.
Ultimately, a full understanding of the collective behaviors
observed in nature can only be achieved by inferring the local
interaction rules among individuals in a vast range of
circumstances. For instance, schooling fish behave differently
and may likely use a different set of rules when faced with a
threat from a predator (Sosna et al., 2019; Lei et al., 2020).
However, unless the behavior of an individual can be
controlled, essentially allowing one to isolate the factors that
influence that individual’s actions, these local interaction rules
can only be described qualitatively (Krause et al., 2011).

Traditionally, collective behaviors have been studied by
performing observational studies on animal behavior, thus
allowing for the collection of empirical data from animals, as
an individual or a collective, in their natural habitat (Radakov,
1973). However, these methods rely heavily on the animal of
interest naturally performing the behaviors being studied and the
utility of statically placed cameras to record the data (Hughey
et al., 2018). This problem is compounded when studying animal
collectives as multiple individuals need to be observed, possibly
over long periods of time (Berdahl et al., 2018). In addition, the
presence, or absence, of certain unknown external stimuli may
affect the display of the targeted collective behavior (Rosenthal
et al., 2015; Sosna et al., 2019; Sankey et al., 2021). This highlights

another key limitations of solely relying on empirically gathered
data—the slow rate of data collection (Balch et al., 2006; Halloy
et al., 2007; Landgraf et al., 2021).

As such, it can be said that our ability to fully understand
collective animal dynamics is hindered by two main
challenges: 1) the limited capacity to accurately track the
movement of animals and the resultant individual behaviors
stemming from the interactions between them (Hughey et al.,
2018), and 2) the inability to isolate and study the actions of
individual animals that give rise to these collective dynamics,
stemming from other internal and external factors that also
influence the final behavior of an individual (Katz and Naug,
2015; Li et al., 2021). These limitations have been mitigated to a
certain extent by using animals in captivity. Doing so allows
for the study of targeted behaviors in a more controlled
environment (Rosenthal et al., 2015; Sosna et al., 2019) and
also allows experimenters to enjoy a certain degree of control
over the collective behaviors displayed (Balch et al., 2006;
Krause et al., 2011; Rosenthal et al., 2015; Sosna et al., 2019;
Sankey et al., 2021).

However, it can be argued that more can be done to overcome
the various challenges posed by the process of collecting empirical
collection data. Even with the multi-disciplinary interest in
understanding collective behaviors, ideas and hypotheses tend
to flow in one direction—from the realm of biology into the fields
of physics and robotics. Despite the wealth of insight that can be
obtained from the use of alternative methods, such as robotic
experiments and physics simulations, these approaches are often
met with the argument of low result fidelity; simulations and
robotic experiments are often critiqued for being unable to
exactly replicate the movement and communication patterns,
sensing abilities, behaviors of live animals, as well as the effect of
environmental disturbances (Garnier, 2011; Dorigo et al., 2021;
Ouellette and Gordon, 2021).

In this paper, we contend that there is a place for such
alternative methods in the study of collective animal
behaviors. While simulations and models may be relatively
simplistic and lack high fidelity results, they afford
researchers the ability to control various experiment
parameters otherwise constrained by the natural
environment. In addition, experiments carried out in silico
allows for multiple hypotheses to be tested in quick
succession, permitting the fast exploration of vast
parameter spaces. Hypotheses validated by such virtual
simulations can be more thoroughly tested in robotico, by
means of multi-robot experiments allowing for physical
interactions with the environment. We argue that carrying
out such experiments using multi-robot systems functions as
an intermediary between pure simulations and ethological
studies, and is especially important due to the difficulty in
accounting for such physical interactions in the virtual world.
Naturally, the results ultimately need to be validated through
empirically collected data as there may be certain behavioral
intricacies that can only be observed in specific animal
species. This can initially be done using live animals either
within a virtual environment or together with biomimetic
robots in mixed societies to retain a certain degree of
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experimental control before progressing to animal only
observations.

Although simulations have been and are still widely used,
we believe that purely robotic experiments continue to be
underappreciated and employed too rarely in the study of
collective animal behavior. This is despite recent advances in
core robotic hardware components and the explosive growth
in multi-robot system technology which offers a unique
combination of opportunities to expand our research toolkit
(Mitri et al., 2013). In this paper, we propose a new workflow
allowing for the study of collective animal behavior to be
carried out in a quicker manner through a series of tests
with increasing levels of fidelity (see Figure 1). Initially,
simplistic simulations and models can be used to improve
on and rapidly filter out incorrect hypotheses. Subsequently,
experiments can be performed using multi-robot systems,
allowing for hypotheses to be tested in a physical
environment with a high degree of control over the subjects
and environment. Hypotheses can be further refined through
performing hybrid robot-animal experiments and experiments
using animals in captivity before finally validating the most
promising ones through the gathering of empirical data of wild
animals.

2 SIMULATING COLLECTIVE BEHAVIOR

With the various challenges and difficulties associated with
gathering empirical data from the observations of animal
collectives in the wild (Hughey et al., 2018; Lei et al., 2020;
Li et al., 2021), models and simulations present themselves as
quick and easy alternatives to test the viability of hypotheses.
Given the long list of questions that biologists wish to have
answered, the use of computer simulations will allow for more
promising theories to be developed and identified faster, and
then later verified with empirical data collection. In addition,
these models and simulations are crucial when attempting to
predict the collective behavior of animals over many
generations (Guttal and Couzin, 2010; Hein et al., 2015; Lei
et al., 2020).

The key advantage granted by the use of simulations is one’s
ability to identify and isolate a set of parameters that can be tested
systematically—a task nearly impossible when dealing with live
animal collectives (Eriksson et al., 2010; Krause et al., 2011;
Berdahl et al., 2018; Li et al., 2021). This stems from the
bottom-up construction of simulations that allow for the
precise description of individuals and their interactions with
other conspecifics within animal groups (Ouellette and
Gordon, 2021). While the identification of these parameters
can yield valuable insights into why and how various collective
behaviors occur, there is no method of differentiating results of
significance from artifacts of the simulations. These simulation
artifacts arise from the fact that it is very difficult and
computationally expensive to create simulations that take into
account all of the complexities of the agents interacting with the
physical environment, necessitating the simplification of certain
model parameters (Webb, 2001). Small changes in a simulated
agent’s behaviors due to these simplifications made may be
further amplified in the study of collective behavior, where
interactions take place between a large number of individuals
and the environment, as well as the interactions between the
individuals themselves, leading to the manifestation of such
artifacts (Dorigo et al., 2021). As such, there is a critical need
to test the validity of parameters in experiments of increasing
fidelity (see Figure 1).

The simulations used to validate hypotheses can range from
simplistic models, such as the self-propelled particles (SPP)
studied by (Vicsek et al., 1995) or the boids developed by
(Reynolds, 1987), to the various eRobotics simulation
platforms that include more accurate agent dynamics, such as
ARGoS (Pinciroli et al., 2012) and ROS (Yan et al., 2017). While
testing and experimenting with simple models will cause some
loss of accuracy when compared to the data collected from the
observation of live animals, such models offer vast amounts of
control over the test parameters. Despite the lower level of fidelity,
the use of relatively simplistic simulations and mathematical
modeling provides a useful tool for a faster iteration cycle
than experiments carried out in robots, or observational
studies in animals, allowing for the quick rejection of incorrect
hypotheses. Indeed, such simple models have helped to explain

FIGURE 1 | Types of collective behavior experiments. Experiments withmodels and simulations provide high levels of experimental control while coming at the cost
of reduced fidelity. Conversely, performing high fidelity experiments comes at the cost of lower levels of control.
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certain behaviors observed in animal collectives. For example, the
SPP model was used by Yates et al. (2009) to show how noise
affects the level of coherence in locust swarms and by Polverino
et al. (2021) to study the movements of animal groups when
threatened by a predator. Similarly, the Ising model was also used
by Feinerman et al. (2018) to study the transport of food by ants.

The progression from experimenting with simplistic models to
more complex robotic simulations offers the opportunity to test
various hypotheses in more realistic scenarios, albeit still with
lower fidelity compared to physical robotic experiments and the
observation of live animals. This increased realism comes at the
price of reduced control over the experiments; robot dynamics
need to be accounted for when developing behaviors and the
collective behaviors expected from a system may be obscured by
noise. One must also be mindful of the available finances and
potential logistics challenges when designing such experiments.
We believe that many new hypothesis can be found by increased
use of systematic experimentation with multi-agent robotic
systems in high fidelity environments.

As already mentioned, when testing hypotheses in
progressively realistic environments, certain theories may
inevitably be proven infeasible or false. However, this does not
mean that the research effort has been wasted; these observations
can still be re-purposed for applications in computing and
engineering. For example, while the agents used by the
Particle Swarm Optimization (PSO) algorithm proposed by
Kennedy and Eberhart (1995) only mimic the movement
patterns of flocks of birds or schools of fish crudely, the PSO
algorithms are a popular method for solving certain optimization
problems (Wang et al., 2018) and often serve as the starting point
for multi-robot systems carrying out target search tasks (Couceiro
et al., 2014; Kwa et al., 2020; Kwa et al., 2021).

3 TESTING COLLECTIVE BEHAVIOR WITH
ROBOTS

Simulations provide a fast and highly controllable way of
exploring hypothesis of collective behaviors. However, their
lack of fidelity—in terms of modeling the complex physical
interactions with the environment and detailed modeling of
the agents (Webb, 2001; Li et al., 2020; Dorigo et al., 2021)—
may result in various inaccuracies when used to predict the
behavior of real-world systems. This is especially true in the
case of collective behaviors where the interaction between all the
agents plays a large role in the behavior of any individual agent.
Here, even small errors in modeling an agents physical
interactions with the environment and other agents amplifies
the simulation-reality gap greatly in these complex systems
(Dorigo et al., 2021).

These limitations can be partially overcome by the use of
experiments involving robotic agents. Indeed, there are several
examples of robotic platforms built expressly for the purpose of
studying animal behavior, such as the SCARAB platform to study
collective transport in ants (Berman et al., 2011), the robots
developed by Abaid et al. (2012) to study collective motion in
zebrafish, and the robotic honeybees used by Landgraf et al.

(2011) to study the waggle dance in honeybees. Experiments
involving robots can range from purely robotic approaches
(Webb, 2001; Fu et al., 2007; Waibel et al., 2009; Gravish and
Lauder, 2018; Li et al., 2020) to those that integrate robots with
live animals in hybrid robot-biological systems, also known as
mixed societies (Halloy et al., 2007; Krause et al., 2011; Halloy
et al., 2013; Bierbach et al., 2018; Sankey et al., 2021). As an
intermediate between robotic experiments and those involving
live animals, certain groups have also employed the use of virtual
reality, where animals are exposed to stimuli in a simulated
environment to elicit targeted behaviors, allowing researchers
to decouple the behavior and the morphology of the stimulus
(D’Eath, 1998; Baldauf et al., 2008; Krause et al., 2011; Polverino
et al., 2012; Naik et al., 2020). These different experimental
methods have different associated levels of control and fidelity
(see Figure 1.)

The increase in fidelity when compared to simulations and
models stems from the robotic agents’ need to interact with the
physical world where they are subject to the disturbances of the
environment (e.g., nonuniform friction or soft surfaces to
traverse, delays in communications, noisy identification of
other agents, directionality of sensors, the movement of other
agents etc.). Often, simplifications are made when modeling these
disturbances in simulation, which diminish their fidelity at the
gain of iteration time. As stated by Hamann, (2018): “Abstract
mathematical or computational models as well as simulations
may be efficient but have limited credibility and may miss
important features of reality.” As such, it is key to clearly
identify the intended purpose and limitations of such models
and simulations to determine the situations in which they are
applicable and when their use is inappropriate (Ouellette and
Gordon, 2021). By implementing the collective behaviors in
multi-robot systems, many of the physical interactions with
the environment—and between agents distributed in
space—are integral part of the system, thereby yielding a
higher level of fidelity (Gravish and Lauder, 2018; Dorigo
et al., 2021).

Furthermore, in comparison to observing live animal
behaviors, such multi-robot systems provide experimenters
with a much greater level of control over the behavior of the
agents and their display of collective behavior. This provides
certain benefits over purely behavioral observations that are
obtained when observing wild animals, allowing one to
quantify the strength and influence of certain interaction rules
and behavioral patterns (Romano et al., 2019; Horsevad et al.,
2022). It is worth stressing that even without the level of control
afforded by multi-robot systems, it would still be possible to infer
certain rules and strategies from behavioral observations.
However, these inferences are bound to remain at a qualitative
and descriptive level (Krause et al., 2011). The added flexibility
over pure animal observations, combined with the potential for
many more observations, especially of rare events, adds great
value to the use of robotic agents in the study of collective
behavior. Nonetheless, the level of experimental flexibility does
decline when the robotic agents are made to replicate the exact
behavior of particular animals, such as in the case of hybrid
experiments, where robotic agents interact with real-life animal
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groups to study the response of the collective (Krause et al., 2011;
Sankey et al., 2021).

The increased fidelity of robotic methods compared to that of
simulations comes at the cost of longer iteration times when
conducting collective behavior experiments with multi-robot
systems, for which establishing quantitative and reproducible
results can be challenging (Dharmawan et al., 2019; Kit et al.,
2019). In addition, experiments involving such multi-robot
systems tend to happen on a smaller scale, with physical
experiments utilizing a smaller number of agents compared to
their virtual counterparts. These problems stem from the
significant work needed to maintain such multi-robot testbeds,
as well as the financial and logistical challenges faced when
designing robotic testbeds and experiments. Furthermore,
since the robots are not able to replicate all aspects of the
animals themselves, they can lack the agility and sensing
abilities of their natural and virtual counterparts, leading to
possible discrepancies in the obtained results (Webb, 2001;
Kwa et al., 2021).

Besides the challenges associated with longer experimentation
times and inconsistent results, hybrid animal-robot experiments
withmixed societies and experiments involving virtual reality also
face the additional problem of ensuring that the used stimuli
trigger the desired response in the targeted group of animals.
Despite these difficulties, the conduct of such experiments is still
important, especially in the case of gregarious animals and is an
aspect of collective behavior that cannot be studied using
simulations and mathematical models alone (Romano et al.,
2019). In light of these concerns, a large amount of work has
gone into studying the different factors that allow a robot to be
socially accepted by a group (Abaid et al., 2012; Polverino et al.,
2012; Cazenille et al., 2018a; Cazenille et al., 2018b; Li et al., 2021).
Similar work has also been done to investigate an animal’s
response to stimuli in virtual environments (Baldauf et al.,
2008; Stowers et al., 2017; Naik et al., 2020). However, this
problem also presents an opportunity to study the cues that
trigger certain behaviors and determine what affects the strength
of social interactions. Depending on the species studied, an
animal’s behavior can be triggered through a stimulus’ visual
appearance or movement patterns (Abaid et al., 2012; Marras and
Porfiri, 2012; Li et al., 2021), pheromones (Halloy et al., 2007), or
physical touch (Anstey et al., 2009).

While there are conflicting goals in the way different
disciplines study collective behaviors (Ouellette and Gordon,
2021), having collective behaviors embodied in multi-robot
systems provides knowledge of what is possible with different
types of behavior. While there are many examples of this in the
literature, here we only mention a few examples on different uses
of robots in the study of collective behavior. In Vallegra et al.
(2018) and Zoss et al. (2018), a heterogeneous autonomous buoy
system was used to perform experiments in a physical
environment. These were, among other things, used to study
how the amount of connectivity affects the response of the
collective system in order to find theoretical reasons why
many animal groups operate with a limited connectivity or
modulate it depending on different factors (Attanasi et al.,
2014). The embodiment of the agents in physical space makes

the analytical findings more robust due to the physical
interactions with the environment. High fidelity robots that
mimicked fish were used in (Li et al., 2020; Li et al., 2021) to
study how fish position themselves while swimming to exploit the
generation of vortices. In their article, the authors commented on
the challenges of carrying out experiments with live fish schools
and the difficulty in replicating the complex hydrodynamics and
relevant Reynolds numbers while using computational
simulations (Li et al., 2021). This indicates that an approach
with robots was uniquely suited to study this particular problem.
High fidelity robots were also recently employed in (Sankey et al.,
2021) where a drone, disguised as a falcon, was used to induce a
response in a flock of pigeons when close to a predator. This was
used to test the selfish herd hypothesis in pigeons—of whether the
pigeons will flock together for selfish protection or align to flee
faster—for which ambiguous results were found using a purely
simulation andmodeling approach. In Krause et al. (2011) hybrid
experiments are also described, with a controlled fish being used
to induce a fleeing response in a school of fish and of robots that
can integrate into groups of cockroaches and be used to steer their
collective behavior. In addition to these examples, there are many
other possibilities in the usage of robotics in the study of collective
behaviors, with many considerations for particular problems
(Webb, 2001; Halloy et al., 2007; Gravish and Lauder, 2018;
Ouellette and Gordon, 2021). The incorporation of such multi-
robot experiments as a staple into the exploration of collective
behavior hypotheses is bound to bring value to the endeavor,
especially when ideas flow in both directions between robotics
and biology.

4 DISCUSSION

In the quest to fully understand the underlying mechanisms that
govern collective animal behavior, many researchers rely on the
tried and tested method of gathering empirical data in
observational studies of animal collectives in the wild.
However, due to the limitations of current technology and the
difficulty in observing the targeted set of behaviors, the collection
of such observational data happens slowly and can be a time
consuming process. To avoid this, physicists and complexity
scientists rely on abstract simulations that model the emergent
collective behaviors stemming from the repeated interactions
between individuals. Powerful abstraction such as complex
network theory are also considered to analyze the collective as
a superorganism at the system level (Sekunda et al., 2016).
Despite the lack of specificity in such models, commonalities
in patterns and universal characters exhibited by these complex
systems collective operations can be gleaned from the results.
This can be done thanks to the highly controlled nature of the
simulations, allowing the key variables that influence the targeted
behavior to be rapidly pinpointed. In addition, due to such forms
of experimentation being virtual, multiple theories and
hypotheses can be tested and validated in quick succession.

The use of robotics stands at the intersection between the
gathering of empirical data and abstract modeling and can serve
as a promising intermediary between the two. While the
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development and validation of theories with robotic experiments
will naturally have a longer iteration time compared to models
and simulations, testing collective behavior hypotheses in such a
manner will result in an increase in the fidelity of the data
obtained. This is due to the fact that robotic experiments
allow for an individual’s interaction with the physical
environment to be more realistically considered in addition to
the multiple interactions between agents. Of course care should
be taken to ensure the robots employed capture the specific
dynamics under consideration in a sufficient capacity. As such,
the use of robot systems allows for theories and hypotheses
developed in virtual simulations to be validated in a controlled
physical setting before being further confirmed in live animals.
Even when theories are proven to be false through the process of
validation, they may still be found useful and serve as the
inspiration for the approaches used by roboticists and artificial
intelligence practitioners. For example, based on the simple
physics models developed by Berman et al. (2011) and
Rubenstein et al. (2013), robotic tests were carried out by
Wilson et al. (2018) showing that the maximum transport
speed of a group of ants is based on the maximum speed of
the slowest group member. These results were then validated by
correlating them with observations of live ants carried out by
Buffin et al. (2018). The initial findings by Berman et al. (2011)
and Rubenstein et al. (2013) also served as inspiration for
Christensen et al. (2016), who developed a robot platform
capable of collectively pulling large loads.

The use of robotic experiments to explore collective
behaviors does not need to happen in purely engineered
multi-robot systems. Biomimetic robots can be used to
trigger targeted behaviors in hybrid robot-animal
experiments. In addition to developing robots that mimic
the morphology and behaviors of the targeted animal, intra-
species interactions can also be studied. For example Sankey
et al. (2021), carried out an experiment involving live pigeons
together with a falcon UAV, allowing them to demonstrate
that pigeons turn away from the flock when in the vicinity of a
predator. With such hybrid experiments, the study of
collective behaviors move from being a mainly descriptive
endeavor, to have the ability to manipulate the collective
behavior and gain some degree of control over the
experiment, and being able to test specific hypotheses
(Krause et al., 2011). Besides the triggering of targeted
behaviors, animal mimicking robots can also be used for
data gathering. Such robots can be embedded within animal
groups, facilitating more accurate data collection of the animal
collective such as accurate GPS position information or
detailed postural information of different individuals.
Gathering such information could permit a better
quantification of behavioral states and enhance the
understanding of how social interactions affect these
collective behaviors (Krause et al., 2011; Halloy et al., 2013;

Hughey et al., 2018). In this era of explosive growth of deep
learning methods, such vast troves of data can also be further
used to feed artificial neural network methods aimed at
identifying “hidden” correlations and patterns. Given their
need for very large data sets, the full power of these deep
learning methods cannot be harnessed with sparse empirical
data sets.

Currently, observations made by biologists often serve as
the inspiration for the strategies developed by roboticists
(Dharmawan et al., 2019), while the reverse flow of ideas is
significantly smaller. This one-way flow of ideas still has the
potential to be extended to smaller scales—in relation with
self-organization at the micro- or nano-scales by active matter,
cells and bacteria—owing to recent progress in
miniaturization. However, we believe that closer multi-
disciplinary research between these two fields will yield
benefits and many noteworthy developments to members of
both communities. Recently Gravish and Lauder (2018),
coined the phrase robotics-inspired biology, where
discoveries made in the realm of robotics have served to
develop theories and hypotheses to be validated with wild
animal observations. With the increasing interest and
accessibility of multi-robot systems (Dorigo et al., 2021), it
is our hope that such interdisciplinary research can be fostered,
leading to the creation of a similar feedback loop where
observations in nature can be used as the starting point for
strategies used by collective robot systems. Human-designed
agent behaviors can then serve as a point from which
hypotheses can be generated for validation in biological
systems, thereby perpetuating, and possibly amplifying the
feedback loop.
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