
ORIGINAL RESEARCH
published: 21 June 2018

doi: 10.3389/fnbot.2018.00032

Frontiers in Neurorobotics | www.frontiersin.org 1 June 2018 | Volume 12 | Article 32

Edited by:

Timothy P. Lillicrap,

Google, United States

Reviewed by:

Eiji Uchibe,

Advanced Telecommunications

Research Institute International (ATR),

Japan

Önder Tutsoy,

Adana Science and Technology

University, Turkey

*Correspondence:

Thommen George Karimpanal

thommen_george@mymail.sutd.edu.sg

Received: 16 March 2018

Accepted: 31 May 2018

Published: 21 June 2018

Citation:

Karimpanal TG and Bouffanais R

(2018) Experience Replay Using

Transition Sequences.

Front. Neurorobot. 12:32.

doi: 10.3389/fnbot.2018.00032

Experience Replay Using Transition
Sequences
Thommen George Karimpanal* and Roland Bouffanais

Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore

Experience replay is one of the most commonly used approaches to improve the sample

efficiency of reinforcement learning algorithms. In this work, we propose an approach

to select and replay sequences of transitions in order to accelerate the learning of a

reinforcement learning agent in an off-policy setting. In addition to selecting appropriate

sequences, we also artificially construct transition sequences using information gathered

from previous agent-environment interactions. These sequences, when replayed, allow

value function information to trickle down to larger sections of the state/state-action

space, thereby making the most of the agent’s experience. We demonstrate our

approach on modified versions of standard reinforcement learning tasks such as the

mountain car and puddle world problems and empirically show that it enables faster,

and more accurate learning of value functions as compared to other forms of experience

replay. Further, we briefly discuss some of the possible extensions to this work, as well

as applications and situations where this approach could be particularly useful.

Keywords: experience replay, Q-learning, off-policy, multi-task reinforcement learning, probabilistic policy reuse

1. INTRODUCTION

Real-world artificial agents ideally need to be able to learn as much as possible from their
interactions with the environment. This is especially true for mobile robots operating within
the reinforcement learning (RL) framework, where the cost of acquiring information from the
environment through exploration generally exceeds the computational cost of learning (Adam
et al., 2012; Schaul et al., 2016; Wang et al., 2016).

Experience replay (Lin, 1992) is a technique that reuses information gathered from past
experiences to improve the efficiency of learning. In order to replay stored experiences using this
approach, an off-policy (Sutton and Barto, 1998; Geist and Scherrer, 2014) setting is a prerequisite.
In off-policy learning, the policy that dictates the agent’s control actions is referred to as the
behavior policy. Other policies corresponding to the value/action-value functions of different tasks
that the agent aims to learn are referred to as target policies. Off-policy algorithms utilize the
agent’s behavior policy to interact with the environment, while simultaneously updating the value
functions associated with the target policies. These algorithms can hence be used to parallelize
learning, and, thus gather as much knowledge as possible using real experiences (Sutton et al.,
2011; White et al., 2012; Modayil et al., 2014). However, when the behavior and target policies
differ considerably from each other, the actions executed by the behavior policy may only seldom
correspond to those recommended by the target policy. This could lead to poor estimates of the
corresponding value function. Such cases could arise in multi-task scenarios where multiple tasks
are learned in an off-policy manner. Also, in general, in environments where desirable experiences
are rare occurrences, experience replay could be employed to improve the estimates by storing and
replaying transitions (state, actions, and rewards) from time to time.

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2018.00032
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2018.00032&domain=pdf&date_stamp=2018-06-21
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:thommen_george@mymail.sutd.edu.sg
https://doi.org/10.3389/fnbot.2018.00032
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00032/full
http://loop.frontiersin.org/people/538431/overview
http://loop.frontiersin.org/people/72965/overview

Karimpanal and Bouffanais Experience Replay Using Transition Sequences

Although most experience replay approaches store and reuse
individual transitions, replaying sequences of transitions could
offer certain advantages. For instance, if a value function update
following a particular transition results in a relatively large
change in the value of the corresponding state or state-action
pair, this change will have a considerable influence on the
bootstrapping targets of states or state-action pairs that led to
this transition. Hence, the effects of this change should ideally
be propagated to these states or state-action pairs. If instead
of individual transitions, sequences of transitions are replayed,
this propagation can be achieved in a straightforward manner.
Our approach aims to improve the efficiency of learning by
replaying transition sequences in this manner. The sequences
are selected on the basis of the magnitudes of the temporal
difference (TD) errors (Sutton and Barto, 1998), associated with
them. We hypothesize that selecting sequences that contain
transitions associated with higher magnitudes of TD errors allow
considerable learning progress to take place. This is enabled
by the propagation of the effects of these errors to the values
associated with other states or state-action pairs in the transition
sequence.

Replaying a larger variety of such sequences would result
in a more efficient propagation of the mentioned effects to
other regions in the state/state-action space. Hence, in order
to aid the propagation in this manner, other sequences that
could have occurred are artificially constructed by comparing the
state trajectories of previously observed sequences. These virtual
transition sequences are appended to the replay memory, and
they help bring about learning progress in other regions of the
state/state-action space when replayed.

The generated transition sequences are virtual in the sense
that they may have never occurred in reality, but are constructed
from sequences that have actually occurred in the past. The
additional replay updates corresponding to the mentioned
transition sequences supplement the regular off-policy value
function updates that follow the real-world execution of actions,
thereby making the most out of the agent’s interactions with the
environment.

2. RELATED WORK

The problem of learning from limited experience is not new
in the field of RL (Thrun, 1992; Thomas and Brunskill, 2016).
Generally, learning speed and sample efficiency are critical factors
that determine the feasibility of deploying learning algorithms in
the real world. Particularly for robotics applications, these factors
are even more important, as exploration of the environment is
typically time and energy expensive (Bakker et al., 2006; Kober
et al., 2013). It is thus important for a learning agent to be able
to gather as much relevant knowledge as possible from whatever
exploratory actions occur.

Off-policy algorithms are well suited to this need as it enables
multiple value functions to be learned together in parallel. When
the behavior and target policies vary considerably from each
other, importance sampling (Sutton and Barto, 1998; Rubinstein
and Kroese, 2016) is commonly used in order to obtain more

accurate estimates of the value functions. Importance sampling
reduces the variance of the estimate by taking into account the
distributions associated with the behavior and target policies,
and making modifications to the off-policy update equations
accordingly. However, the estimates are still unlikely to be close
to their optimal values if the agent receives very little experience
relevant to a particular task.

This issue is partially addressed with experience replay, in
which information contained in the replay memory is used from
time to time in order to update the value functions. As a result, the
agent is able to learn from uncorrelated historical data, and the
sample efficiency of learning is greatly improved. This approach
has received a lot of attention in recent years due to its utility in
deep RL applications (Adam et al., 2012; Mnih et al., 2013, 2015,
2016; de Bruin et al., 2015).

Recent works (Narasimhan et al., 2015; Schaul et al., 2016)
have revealed that certain transitions are more useful than others.
Schaul et al. (2016) prioritized transitions on the basis of their
associated TD errors. They also briefly mentioned the possibility
of replaying transitions in a sequential manner. The experience
replay framework developed by Adam et al. (2012) involved
some variants that replayed sequences of experiences, but these
sequences were drawn randomly from the replay memory. More
recently, Isele et al. (Isele and Cosgun, 2018) reported a selective
experience replay approach aimed at performing well in the
context of lifelong learning (Thrun, 1996). The authors of this
work proposed a long term replay memory in addition to the
conventionally used one. Certain bases for designing this long-
term replay memory, such as favoring transitions associated
with high rewards and high absolute TD errors are similar to
the ones described in the present work. However, the approach
does not explore the replay of sequences, and its fundamental
purpose is to shield against catastrophic forgetting (Goodfellow
et al., 2013) when multiple tasks are learned in sequence.
The replay approach described in the present work focuses
on enabling more sample-efficient learning in situations where
positive rewards occur rarely. Apart from this, Andrychowicz
et al. (2017) proposed a hindsight experience replay approach,
directed at addressing this problem, where each episode is
replayed with a goal that is different from the original goal of
the agent. The authors reported significant improvements in
the learning performance in problems with sparse and binary
rewards. These improvements were essentially brought about
by allowing the learned value/Q values (which would otherwise
remain mostly unchanged due to the sparsity of rewards) to
undergo significant change under the influence of an arbitrary
goal. The underlying idea behind our approach also involves
modification of the Q−values in reward-sparse regions of the
state-action space. The modifications, however, are not based
on arbitrary goals, and are selectively performed on state-action
pairs associated with successful transition sequences associated
with high absolute TD errors. Nevertheless, the hindsight replay
approach is orthogonal to our proposed approach, and hence,
could be used in conjunction with it.

Much like in Schaul et al. (2016), TD errors have been
frequently used as a basis for prioritization in other RL problems
(Thrun, 1992;White et al., 2014; Schaul et al., 2016). In particular,

Frontiers in Neurorobotics | www.frontiersin.org 2 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Karimpanal and Bouffanais Experience Replay Using Transition Sequences

FIGURE 1 | Structure of the proposed algorithm in contrast to the traditional off-policy structure. Q and R denote the action-value function and reward, respectively.

the model-based approach of prioritized sweeping (Moore and
Atkeson, 1993; van Seijen and Sutton, 2013) prioritizes backups
that are expected to result in a significant change in the value
function.

The algorithmwe propose here uses a model-free architecture,
and it is based on the idea of selectively reusing previous
experience. However, we describe the reuse of sequences of
transitions based on the TD errors observed when these
transitions take place. Replaying sequences of experiences also
seems to be biologically plausible (Buhry et al., 2011; Ólafsdóttir
et al., 2015). In addition, it is known that animals tend to
remember experiences that lead to high rewards (Singer and
Frank, 2009). This is an idea reflected in our work, as only those
transition sequences that lead to high rewards are considered
for being stored in the replay memory. In filtering transition
sequences in this manner, we simultaneously address the issue
of determining which experiences are to be stored.

In addition to selecting transition sequences, we also generate
virtual sequences of transitions which the agent could have
possibly experienced, but in reality, did not. This virtual
experience is then replayed to improve the agent’s learning. Some
early approaches in RL, such as the dyna architecture (Sutton,
1990) also made use of simulated experience to improve the
value function estimates. However, unlike the approach proposed
here, the simulated experience was generated based on models
of the reward function and transition probabilities which were
continuously updated based on the agent’s interactions with
the environment. In this sense, the virtual experience generated
in our approach is more grounded in reality, as it is based
directly on the data collected through the agent-environment
interaction. In more recent work, Fonteneau et al. describe
an approach to generate artificial trajectories and use them to
find policies with acceptable performance guarantees (Fonteneau
et al., 2013). However, this approach is designed for batch RL,

and the generated artificial trajectories are not constructed using
a TD error basis. Our approach also recognizes the real-world
limitations of replay memory (de Bruin et al., 2015), and stores
only a certain amount of information at a time, specified by
memory parameters. The selected and generated sequences are
stored in the replay memory in the form of libraries which
are continuously updated so that the agent is equipped with
transition sequences that are most relevant to the task at hand.

3. METHODOLOGY

The idea of selecting appropriate transition sequences for replay
is relatively straightforward. In order to improve the agent’s
learning, first, we simply keep track of the state, actions, rewards,
and absolute values of the TD errors associated with each
transition. Generally, in difficult learning environments, high
rewards occur rarely. So, when such an event is observed, we
consider storing the corresponding sequence of transitions into
a replay library L. In this manner, we use the reward information
as a means to filter transition sequences. The approach is similar
to that used by Narasimhan et al. (2015), where transitions
associated with positive rewards are prioritized for replay.

Among the transition sequences considered for inclusion in
the library L, those containing transitions with high absolute TD
error values are considered to be the ones with high potential
for learning progress. Hence, they are accordingly prioritized for
replay. The key idea is that when the TD error associated with a
particular transition is large in magnitude, it generally implies a
proportionately greater change in the value of the corresponding
state/state-action pair. Such large changes have the potential to
influence the values of the states/state-action pairs leading to it,
which implies a high potential for learning. Hence, prioritizing
such sequences of transitions for replay is likely to bring about

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Karimpanal and Bouffanais Experience Replay Using Transition Sequences

greater learning progress. Transition sequences associated with
large magnitudes of TD error are retained in the library, while
those with lower magnitudes are removed and replaced with
superior alternatives. In reality, such transition sequences may be
very long and hence, impractical to store. Due to such practical
considerations, we store only a portion of the sequence, based on
a predetermined memory parameter. The library is continuously
updated as and when the agent-environment interaction takes
place, such that it will eventually contain sequences associated
with the highest absolute TD errors.

As described earlier, replaying suitable sequences allows the
effects of large changes in value functions to be propagated
throughout the sequence. In order to propagate this information
even further to other regions of the state/state-action space,
we use the sequences in L to construct additional transition
sequences which could have possibly occurred. These virtual
sequences are stored in another library Lv, and later used for
experience replay.

In order to intuitively describe our approach of artificially
constructing sequences, we consider the hypothetical example
shown in Figure 2A, where an agent executes behavior policies
that help it learn to navigate toward location B from the start
location. However, using off-policy learning, we aim to learn
value functions corresponding to the policy that helps the agent
navigate toward location T.

The trajectories shown in Figure 2A correspond to
hypothetical actions dictated by the behavior policy midway
through the learning process, during two separate episodes. The
trajectories begin at the start location and terminate at location
B. However, the trajectory corresponding to behavior policy 2
also happens to pass through location T, at which point the agent
receives a high reward. This triggers the transition sequence
storage mechanism described earlier, and we assume that some
portion of the sequence (shown by the highlighted portion of the
trajectory in Figure 2A) is stored in library L. Behavior policy
1 takes the agent directly from the start location toward the
location B, where it terminates. As the agent moves along its
trajectory, it intersects with the state trajectory corresponding to
the sequence stored in L. Using this intersection, it is possible to
artificially construct additional trajectories (and their associated

2t =

{

[S(0 : k) π(0 : k) R(0 : k) 1(0 : k)] if k ≤ mt

[S((k−mt) : k) π((k−mt) : k) R((k−mt) : k) 1((k−mt) : k)] otherwise
(2)

transition sequences) that are successful with respect to the
task of navigating to location T. The highlighted portions
of the trajectories corresponding to the two behavior policies
in Figure 2B show such a state trajectory, constructed using
information related to the intersection of portions of the two
previously observed trajectories. The state, action, and reward
sequences associated with this highlighted trajectory form a
virtual transition sequence.

Such artificially constructed transition sequences present the
possibility of considerable learning progress. This is because,
when replayed, they help propagate the large learning potential
(characterized by large magnitudes of TD errors) associated with

sequences in L to other regions of the state/state-action space.
These replay updates supplement the off-policy value function
updates that are carried out in parallel, thus accelerating the
learning of the task in question. This outlines the basic idea
behind our approach.

Fundamentally, our approach can be decomposed into three
steps:

1. Tracking and storage of relevant transition sequences
2. Construction of virtual transition sequences using the stored

transition sequences
3. Replaying the transition sequences

These steps are explained in detail in sections 3.1, 3.2, and 3.3.

3.1. Tracking and Storage of Relevant
Transition Sequences
As described, virtual transition sequences are constructed by
joining together two transition sequences. One of them, say
2t , composed of mt transitions, is historically successful—it has
experienced high rewards with respect to the task, and is part of
the library L. The other sequence, 2b, is simply a sequence of the
latestmb transitions executed by the agent.

If the agent starts at state s0 and moves through intermediate
states si and eventually to sj+1 (most recent state) by executing
a series of actions a0...ai...aj, it receives rewards R0...Ri...Rj
from the environment. These transitions comprise the transition
sequence 2b.

2b =

{

[S(0 : j) π(0 : j) R(0 : j)] if j ≤ mb

[S((j−mb) : j) π((j−mb) : j) R((j−mb) : j)] otherwise
(1)

where:

S(x : y) = (sx...si...sy),

π(x : y) = (ax...ai...ay),

R(x : y) = (Rx...Ri...Ry).

We respectively refer to S(x : y), π(x : y), and R(x : y) as the
state, action, and reward transition sequences corresponding to

a series of agent-environment interactions, indexed from x to y
(x, y ∈ N).

For the case of the transition sequence 2t , we keep track of
the sequence of TD errors δ0...δi...δk observed as well. If a high
reward is observed in transition k, then:
where 1(x : y) = (|δx|...|δi|...|δy|).

The memory parameters mb and mt are chosen based on the
memory constraints of the agent. They determine how much of
the recent agent-environment interaction history is to be stored
in memory.

It is possible that the agent encounters a number of transitions
associated with high rewards while executing the behavior policy.

Frontiers in Neurorobotics | www.frontiersin.org 4 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Karimpanal and Bouffanais Experience Replay Using Transition Sequences

Corresponding to these transitions, a number of successful
transition sequences 2t would also exist. These sequences are
maintained in the library L in a manner similar to the Policy
Library through Policy Reuse (PLPR) algorithm (Fernández and
Veloso, 2005). To decide whether to include a new transition
sequence 2tnew into the library L, we determine the maximum
value of the absolute TD error sequence 1 corresponding
to 2tnew and check whether it is τ -close—the parameter τ

determines the exclusivity of the library—to the maximum of
the corresponding values associated with the transition sequences
in L. If this is the case, then 2tnew is included in L. Since
the transition sequences are filtered based on the maximum of
the absolute values of TD errors among all the transitions in
a sequence, this approach should be able to mitigate problems
stemming from low magnitudes of TD errors associated with
local optima (Baird, 1999; Tutsoy and Brown, 2016b). Using the
absolute TD error as a basis for selection, we maintain a fixed
number (l) of transition sequences in the library L. This ensures
that the library is continuously updated with the latest transition
sequences associated with the highest absolute TD errors. The
complete algorithm is illustrated in Algorithm 1.

3.2. Virtual Transition Sequences
Once the transition sequence 2b is available and a library
L of successful transition sequences 2t is obtained, we use
this information to construct a library Lv of virtual transition
sequences 2v. The virtual transition sequences are constructed
by first finding points of intersection sc in the state transition
sequences of 2b and the 2t ’s in L.

Let us consider the transition sequence 2b:

2b = [S(x : y) π(x : y) R(x : y)],

Algorithm 1Maintaining a replay library of transition sequences

1: Inputs:
τ : Parameter that determines the exclusivity of the library
l : Parameter that determines the number of transition
sequences allowed in the library
1k : Sequence of absolute TD errors corresponding to a
transition sequence 2k

L = {2t0...2t i...2tm} : A library of transition sequences
(m ≤ l)
2tnew : New transition sequence to be evaluated

2: Wnew = max(1tnew)
3: for j = 1 :m do

4: Wj = max(1t j)
5: end for

6: ifWnew ∗ τ > max(W) then
7: L = L ∪ {2tnew}

8: nt =Number of transition sequences in L
9: if nt > l then
10: L = {2tnt−l...2t i...2tnt }

11: end if

12: end if

and a transition sequence 2t :

2t = [S(x′ : y′) π(x′ : y′) R(x′ : y′) 1(x′ : y′)],

Let 2ts be a sub-matrix of 2t such that:

2ts = [S(x′ : y′) π(x′ : y′) R(x′ : y′)], (3)

Now, if σ
y
x and σ

y′

x′ are sets containing all the elements of

sequences S(x : y) and S(x′ : y′), respectively, and if ∃sc ∈ {σ
y
x ∩

σ
y′

x′ }, then:

S(x : y) = (sx, ...sc, sc+1, ...sy),

and

S(x′ : y′) = (sx′ ...sc, sc+1...sy′).

Once points of intersection have been obtained as described
above, each of the two sequences 2b and 2ts are decomposed
into two subsequences at the point of intersection such
that:

2b =

[

21
b

22
b

]

(4)

where 21
b
= [S(x : c) π(x : c) R(x : c)]

and 22
b
= [S((c+ 1) : y) π((c+ 1) : y) R((c+ 1) : y)]

Similarly,

2ts =

[

21
ts

22
ts

]

(5)

where
21

ts
= [S(x′ : c) π(x′ : c) R(x′ : c)]

and
22

ts
= [S((c+ 1) : y′) π((c+ 1) : y′) R((c+ 1) : y′)]

The virtual transition sequence is then simply:

2v =

[

21
b

22
ts

]

(6)

We perform the above procedure for each transition sequence in
L to obtain the corresponding virtual transition sequences 2v.
These virtual transition sequences are stored in a library Lv:

Lv = {2v1...2vi...2vnv},

where nv denotes the number of virtual transition sequences in
Lv, subjected to the constraint nv ≤ l.

The overall process for constructing and storing virtual
transition sequences is summarized in Algorithm 2.
Once the library Lv has been constructed, we replay the
sequences contained in it to improve the estimates of
the value function. The details of this are discussed in
section 3.3.

Frontiers in Neurorobotics | www.frontiersin.org 5 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Karimpanal and Bouffanais Experience Replay Using Transition Sequences

Algorithm 2 Constructing virtual transition sequences

1: Inputs:
Sequence of latestmb transitions 2b

Library L containing nt stored transition sequences
Library Lv for storing virtual transition sequences

2: for t = 1 : nt do
3: Extract 2ts from 2t (Equation 2)
4: Find set of states SI corresponding to the intersection of

the state trajectories of 2b and 2ts

5: if SI is not empty, then
6: for each state si in SI , do
7: Treat si as the intersection point and decompose 2b

and 2ts as per Equations 4 and 5
8: end for

9: Choose sc from SI such that the number of transitions
in 21

b
is maximized

10: end if

11: Use the selected sc to construct the virtual transition
sequence 2v as per Equation 6

12: Use library Lv to store the constructed sequence (Lv =
Lv ∪ {2v})

13: end for

3.3. Replaying the Transition Sequences
In order to make use of the transition sequences described,
each of the state-action-reward triads {s a r} in the transition
sequence Lv is replayed as if the agent had actually experienced
them.

Similarly, sequences in L are also be replayed from time
to time. Replaying sequences from L and Lv in this manner
causes the effects of large absolute TD errors originating from
further up in the sequence to propagate through the respective
transitions, ultimately leading to more accurate estimates of the
value function. The transitions are replayed as per the standard
Q-learning update equation shown below:

Q(sj, aj)← Q(sj, aj)+ α[R(sj, aj)+ γ max
a′

Q(sj+1, a
′)−Q(sj, aj)].

(7)
Where sj and aj refer to the state and action at transition j,
and Q and R represent the action-value function and reward
corresponding to the task. The variable a′ is a bound variable that
represents any action in the action set A. The learning rate and
discount parameters are represented by α and γ respectively.

The sequence 2ts in Equation (6) is a subset of 2t , which
is in turn part of the library L and thus associated with a high
absolute TD error. When replaying 2v, the effects of the high
absolute TD errors propagate from the values of state/state-action
pairs in 22

ts
to those in 21

b
. Hence, in case of multiple points of

intersection, we consider points that are furthest down 2b. In
other words, the intersection point is chosen to maximize the
length of 21

b
. In this manner, a larger number of state-action

values experience improvements brought about by replaying the
transition sequences.

Algorithm 3 Replay of virtual transition sequences from library
Lv
1: Inputs:

α : learning rate
γ : discount factor
Lv = {2v0...2vi...2vnv} : A library of virtual transition
sequences with nv sequences

2: for i = 1 : nv do
3: nsar =number of {s a r} triads in 2vi

4: j = 1
5: while j ≤ nsar do
6: Q(sj, aj)← Q(sj, aj)+α[R(sj, aj)+γ maxa′ Q(sj+1, a′)−

Q(sj, aj)]
7: j← j+ 1
8: end while

9: end for

4. RESULTS AND DISCUSSION

We demonstrate our approach on modified versions of two
standard reinforcement learning tasks. The first is a multi-task
navigation/puddle-world problem (Figure 3), and the second is
a multi-task mountain car problem (Figure 6). In both these
problems, behavior policies are generated to solve a given task
(which we refer to as the primary task) relatively greedily, while
the value function for another task of interest (which we refer to
as the secondary task) is simultaneously learned in an off-policy
manner. The secondary task is intentionally made more difficult
by making appropriate modifications to the environment. Such
adverse multi-task settings best demonstrate the effectiveness of
our approach and emphasize its advantages over other experience
replay approaches.We characterize the difficulty of the secondary
task with a difficulty ratio ρ, which is the fraction of the executed
behavior policies that experience a high reward with respect to
the secondary task. A low value of ρ indicates that achieving the
secondary task under the given behavior policy is difficult. In
both tasks, the Q− values are initialized with random values, and
once the agent encounters the goal state of the primary task, the
episode terminates.

4.1. Navigation/Puddle-World Task
In the navigation environment, the simulated agent is assigned
tasks of navigating to certain locations in its environment. We
consider two locations, B and T, which represent the primary and
secondary task locations respectively. The environment is set up
such that the location corresponding to high rewards with respect
to the secondary task lies far away from that of the primary
task (see Figure 3). In addition to this, the accessibility to the
secondary task location is deliberately limited by surrounding it
with obstacles on all but one side. These modifications contribute
toward a low value of ρ, especially when the agent operates with
a greedy behavior policy with respect to the primary task.

The agent is assumed to be able to sense its location in
the environment accurately, and can detect when it “bumps”
into an obstacle. It can move around in the environment at a
maximum speed of 1 unit per time step by executing actions to

Frontiers in Neurorobotics | www.frontiersin.org 6 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Karimpanal and Bouffanais Experience Replay Using Transition Sequences

FIGURE 2 | (A) Trajectories corresponding to two hypothetical behavior policies are shown. A portion of the trajectory associated with a high reward (and stored in L)
is highlighted. (B) The virtual trajectory constructed from the two behavior policies is highlighted. The states, actions, and rewards associated with this trajectory

constitute a virtual transition sequence.

FIGURE 3 | Navigation environment used to demonstrate the approach of

replaying transition sequences.

take it forwards, backwards, sideways, and diagonally forwards
or backwards to either side. In addition to these actions, the agent
can choose to hold its current position. However, the transitions
resulting from these actions are probabilistic in nature. The
intended movements occur only 80% of the time, and for the
remaining 20%, the x- and y-coordinates may deviate from their
intended values by 1 unit. Also, the agent’s location does not
change if the chosen action forces it to run into an obstacle.

The agent employs Q-learning with a relatively greedy policy
(ǫ = 0.1) that attempts to maximize the expected sum of primary
rewards. The reward structure for both tasks is such that the
agent receives a high reward (100) for visiting the respective
goal locations, and a high penalty (−100) for bumping into
an obstacle in the environment. In addition to this, the agent
is assigned a living penalty (−10) for each action that fails to
result in the goal state. In all simulations, the discount factor
γ is set to be 0.9, the learning rate α is set to a value of 0.3
and the parameter τ mentioned in Algorithm 1 is set to be 1.

Although various approaches exist to optimize the values of the
Q−learning hyperparameters (Garcia and Ndiaye, 1998; Even-
Dar and Mansour, 2003; Tutsoy and Brown, 2016a), the values
were chosen arbitrarily, such that satisfactory performances were
obtained for both the navigation as well as the mountain-car
environments.

In the environment described, the agent executes actions to
learn the primary task. Simultaneously, the approach described
in section 3 is employed to learn the value functions associated
with the secondary task. At each episode of the learning process,
the agent’s performance with respect to the secondary task is
evaluated. In order to compute the average return for an episode,
we allow the agent to execute nga(= 100) greedy actions from
a randomly chosen starting point, and record the accumulated
reward. The process is repeated for ntrials(= 100) trials, and
the average return for the episode is reported as the average
accumulated reward per trial. The average return corresponding
to each episode in Figure 4 is computed in this way. The mean
of these average returns over all the episodes is reported as
Ge in Table 1. That is, the average return corresponding to the
kthepisode gk is given by:

gk =

ntrials
∑

i = 1

nga
∑

j = 1
Rij

ntrials

and

Ge =

NE
∑

k = 1
gk

NE

Where Rij is the reward obtained by the agent in a step
corresponding to the greedy action j, in trial i, and NE is the
maximum number of episodes.

Figure 4 shows the average return for the secondary task
plotted for 50 runs of 1,000 learning episodes using different
learning approaches. The low average value of ρ (= 0.0065 as
indicated in Figure 4) indicates the relatively high difficulty of
the secondary task under the behavior policy being executed. As
observed in Figure 4, an agent that replays transition sequences

Frontiers in Neurorobotics | www.frontiersin.org 7 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Karimpanal and Bouffanais Experience Replay Using Transition Sequences

FIGURE 4 | Comparison of the average secondary returns over 50 runs using different experience replay approaches as well as Q-learning without experience replay

in the navigation environment. The standard errors are all <300. For the different experience replay approaches, the number of replay updates are controlled to be the

same.

TABLE 1 | Average secondary returns accumulated per episode (Ge) using
different values of the memory parameters in the navigation environment.

A

mb Ge

10 1559.7

100 2509.7

1,000 2610.4

B

mt Ge

10 1072.5

100 1159.2

1,000 2610.4

C

nv Ge

10 2236.6

50 2610.4

100 2679.5

With regular Q-learning (without experience replay), Ge = 122.9

manages to accumulate high average returns at a much faster rate
as compared to regular Q-learning. The approach also performs
better than other experience replay approaches for the same
number of replay updates. These replay approaches are applied
independently of each other for the secondary task. In Figure 4,
the prioritization exponent for prioritized experience replay is
set to 1.

Table 1 shows the average return for the secondary task
accumulated per episode (Ge) during 50 runs of the navigation
task for different values of memory parameters mb, mt and
nv used in our approach. Each of the parameters are varied

separately while keeping the other parameters fixed to their
default values. The default values used for mb, mt , and nv are
1,000, 1,000, and 50, respectively.

Application to the Primary Task

In the simulations described thus far, the performance of our
approach was evaluated on a secondary task, while the agent
executed actions relatively greedily with respect to a primary
task. Such a setup was chosen in order to ensure a greater
sparsity of high rewards for the secondary task. However, the
proposed approach of replaying sequences of transitions can
also be applied to the primary task in question. In particular,
when a less greedy exploration strategy is employed (that is,
when ǫ is high), such conditions of reward-sparsity can be
recreated for the primary task. Figure 5 shows the performance
of different experience replay approaches when applied to
the primary task, for different values of ǫ. As expected, for
more exploratory behavior policies, which correspond to lower
probabilities of obtaining high rewards, the approach of replaying
transition sequences is significantly beneficial, especially at the
early stages of learning. However, as the episodes progress, the
effects of drastically large absolute TD errors would have already
penetrated into other regions of the state-action space, and
the agent ceases to benefit as much from replaying transition
sequences. Hence, other forms of replay such as experience replay
with uniform random sampling, or prioritized experience replay
were found to be more useful after the initial learning episodes.

4.2. Mountain Car Task
In the mountain car task, the agent, an under-powered vehicle
represented by the circle in Figure 6 is assigned a primary task
of getting out of the trough and visiting point B. The act of
visiting point T is treated as the secondary task. The agent is
assigned a high reward (100) for for fulfilling the respective
objectives, and a living penalty (−1) is assigned for all other

Frontiers in Neurorobotics | www.frontiersin.org 8 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Karimpanal and Bouffanais Experience Replay Using Transition Sequences

FIGURE 5 | The performance of different experience replay approaches on the primary task in the navigation environment for different values of the exploration

parameter ǫ, averaged over 30 runs. For these results, the memory parameters used are as follows: mb = 1, 000, mt = 1, 000, and nv = 50.

FIGURE 6 | Mountain car environment used to demonstrate off-policy learning

using virtual transition sequences.

situations. At each time step, the agent can choose from three
possible actions: (1) accelerating in the positive x direction, (2)
accelerating in the negative x direction, and (3) applying no
control. The environment is discretized such that 120 unique
positions and 100 unique velocity values are possible.

The mountain profile is described by the equation y =
e−0.5x sin(4x) such that point T is higher than B. Also, the average
slope leading to T is steeper than that leading to B. In addition
to this, the agent is set to be relatively greedy with respect to
the primary task, with an exploration parameter ǫ = 0.1. These
factors make the secondary task more difficult, resulting in a low
value of ρ (= 0.0354) under the policy executed.

Figure 7 shows the average secondary task returns for 50
runs of 5, 000 learning episodes. It is seen that especially during
the initial phase of learning, the agent accumulates rewards at
a higher rate as compared to other learning approaches. As in
the navigation task, the number of replay updates are restricted
to be the same while comparing the different experience replay
approaches in Figure 7. Analogous to Table 1, Table 2 shows the
average secondary returns accumulated per episode (Ge) over 50
runs in the mountain-car environment, for different values of the
memory parameters. The default values formb,mt , and nv are the

same as those mentioned in the navigation environment, that is,
1,000, 1,000, and 50, respectively.

From Figures 4, 7, the agent is seen to be able to accumulate
significantly higher average secondary returns per episode
when experiences are replayed. Among the experience replay
approaches, the approach of replaying transition sequences is
superior for the same number of replay updates. This is especially
true in the navigation environment, where visits to regions
associated with high secondary task rewards are much rarer, as
indicated by the low value of ρ. In the mountain car problem,
the visits are more frequent, and the differences between the
different experience replay approaches are less significant. The
value of the prioritization exponent used here is the same as that
used in the navigation task. The approach of replaying sequences
of transitions also offers noticeable performance improvements
when applied to the primary task (as seen in Figure 5), especially
during the early stages of learning, and when highly exploratory
behavior policies are used. In both the navigation and mountain-
car environments, the performances of the approaches that replay
individual transitions—experience replay with uniform random
sampling and prioritized experience replay—are found to be
nearly equivalent. We have not observed a significant advantage
of using the prioritized approach, as reported in previous studies
(Schaul et al., 2016; Hessel et al., 2017) using deep RL. This
perhaps indicates that improvements brought about by the
prioritized approach are much more pronounced in deep RL
applications.

The approach of replaying transition sequences seems to be
particularly sensitive to the memory parameter mt , with higher
average returns being achieved for larger values ofmt . A possible
explanation for this could simply be that larger values of mt

correspond to longer 2t sequences, which allow a larger number
of replay updates to occur in more regions of the state/state-
action space. The influence of the length of the 2b sequence,
specified by the parameter mb is also similar in nature, but
its impact on the performance is less emphatic. This could be
because longer 2b sequences allow a greater chance for their
state trajectories to intersect with those of 2t , thus improving
the chances of virtual transition sequences being discovered,
and of the agent’s value functions being updated using virtual
experiences. However, the parameter nv, associated with the size

Frontiers in Neurorobotics | www.frontiersin.org 9 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Karimpanal and Bouffanais Experience Replay Using Transition Sequences

FIGURE 7 | Comparison of the average secondary returns over 50 runs using different experience replay approaches as well as Q-learning without experience replay

in the mountain-car environment. The standard errors are all <85. For the different experience replay approaches, the number of replay updates are controlled to be

the same.

TABLE 2 | Average secondary returns accumulated per episode (Ge) using
different values of the memory parameters in the mountain car environment.

A

mb Ge

10 221.0

100 225.1

1,000 229.9

B

mt Ge

10 129.9

100 190.5

1,000 229.9

C

nv Ge

10 225.6

50 229.9

100 228.4

With regular Q-learning (without experience replay), Ge = 132.9

of the library Lv does not seem to have a noticeable influence on
the performance of this approach. This is probably due to the fact
that the library L (and consequently Lv) is continuously updated
with new, suitable transition sequences (successful sequences
associated with higher magnitudes of TD errors) as and when
they are observed. Hence, the storage of a number of transition
sequences in the libraries becomes largely redundant.

Although the method of constructing virtual transition
sequences is more naturally applicable to the tabular case, it
could also possibly be extended to approaches with linear and
non-linear function approximation. However, soft intersections

between state trajectories would have to be considered instead
of absolute intersections. That is, while comparing the state
trajectories S(x : y) and S(x′ : y′), the existence of sc could be
considered if it is close to elements in both S(x : y) and S(x′ : y′)
within some specified tolerance limit. Such modifications could
allow the approach described here to be applied to deep RL.
Transitions that belong to the sequences 2v and 2t could then
be selectively replayed, thereby bringing about improvements in
the sample efficiency. However, the experience replay approaches
(implemented with the mentioned modifications) applied to the
environments described in section 4 did not seem to bring
about significant performance improvements when a neural
network function approximator was used. The performance of
the corresponding deep Q-network (DQN) was approximately
the same even without any experience replay. This perhaps,
reveals that the performance of the proposed approach needs
to be evaluated on more complex problems such as the Atari
domain (Mnih et al., 2015). Reliably implementing virtual
transition sequences to the function approximation case could be
a future area of research. One of the limitations of constructing
virtual transition sequences is that in higher dimensional spaces,
intersections in the state trajectories become less frequent, in
general. However, other sequences in the library L can still be
replayed. If appropriate sequences have not yet been discovered
or constructed, and are thus not available for replay, other
experience replay approaches that replay individual transitions
can be used to accelerate learning in the meanwhile.

Perhaps another limitation of the approach described here is
that constructing the library L requires some notion of a goal
state associated with high rewards. By tracking the statistical
properties such as the mean and variance of the rewards
experienced by an agent in its environment in an online manner,
the notion of what qualifies as a high reward could be automated
using suitable thresholds (Karimpanal and Wilhelm, 2017). In

Frontiers in Neurorobotics | www.frontiersin.org 10 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Karimpanal and Bouffanais Experience Replay Using Transition Sequences

FIGURE 8 | The variation of computational time per episode with sequence

length for the two environments, computed over 30 runs.

addition to this, other criteria such as the returns or average
absolute TD errors of a sequence could also be used to maintain
the library.

It is worth adding that the memory parameters mb, mt , and
nv have been set arbitrarily in the examples described here.
Selecting appropriate values for these parameters as the agent
interacts with its environment could be a topic for further
research. Figure 8 shows the mean and standard deviations of
the computation time per episode for different sequence lengths,
over 30 runs. The figure suggests that the computation time
increases as longer transition sequences are used, and the trend
can be approximated to be linear. These results could also be
used to inform the choice of values for mb and mt for a given
application. The values shown in Figure 8 were obtained from
running simulations on a computer with an Intel i7 processor
running at 2.7 GHz, using 8 GB of RAM, running a Windows
7 operating system.

The approach of replaying transition sequences has direct
applications in multi-task RL, where agents are required to learn
multiple tasks in parallel. Certain tasks could be associated with
the occurrence of relatively rare events when the agent operates
under specific behavior policies. The replay of virtual transition
sequences could further improve the learning in such tasks. Such
as robotics, where exploration of the state/state-action space is
typically expensive in terms of time and energy. By reusing
the agent-environment interactions in the manner described
here, reasonable estimates of the value functions corresponding

to multiple tasks can be maintained, thereby improving the
efficiency of exploration.

5. CONCLUSION

In this work, we described an approach to replay sequences of
transitions to accelerate the learning of tasks in an off-policy
setting. Suitable transition sequences are selected and stored
in a replay library based on the magnitudes of the TD errors
associated with them. Using these sequences, we showed that
it is possible to construct virtual experiences in the form of
virtual transition sequences, which could be replayed to improve
an agent’s learning, especially in environments where desirable
events occur rarely. We demonstrated the benefits of this
approach by applying it to versions of standard reinforcement
learning tasks such as the puddle-world and mountain-car tasks,
where the behavior policy was deliberately made drastically
different from the target policy. In both tasks, a significant
improvement in learning speed was observed compared to
regular Q-learning as well as other forms of experience replay.
Further, the influence of the different memory parameters used
was described and evaluated empirically, and possible extensions
to this work were briefly discussed. Characterized by controllable
memory parameters and the potential to significantly improve
the efficiency of exploration at the expense of some increase
in computation, the approach of using replaying transition
sequences could be especially useful in fields such as robotics,
where these factors are of prime importance. The extension of
this approach to the cases of linear and non-linear function
approximation could find significant utility, and is currently
being explored.

AUTHOR CONTRIBUTIONS

TK conceived the idea, coded the simulations, performed the
experiments, authored the manuscript. RB reviewed and edited
the manuscript, provided advice regarding the presentation of
some of the ideas, prepared some of the figures and authored
some parts of the manuscript.

ACKNOWLEDGMENTS

This work is supported by the President’s graduate fellowship
(MOE, Singapore) and TL@SUTD under the Systems
Technology for Autonomous Reconnaissance & Surveillance
(STARS-Autonomy & Control) program. The authors thank
Richard S. Sutton from the University of Alberta for his feedback
and many helpful discussions during the development of this
work.

REFERENCES

Adam, S., Busoniu, L., and Babuska, R. (2012). Experience replay for real-time
reinforcement learning control. IEEE Trans. Syst. Man Cybern. Part C 42,
201–212. doi: 10.1109/TSMCC.2011.2106494

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P.,
et al. (2017). “Hindsight experience replay,” in Advances in Neural Information

Processing Systems (Long Beach, CA), 5048–5058.
Baird, L. C. (1999). Reinforcement Learning Through Gradient Descent. Robotics

Institute, 227.

Frontiers in Neurorobotics | www.frontiersin.org 11 June 2018 | Volume 12 | Article 32

https://doi.org/10.1109/TSMCC.2011.2106494
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Karimpanal and Bouffanais Experience Replay Using Transition Sequences

Bakker, B., Zhumatiy, V., Gruener, G., and Schmidhuber, J. (2006). “Quasi-
online reinforcement learning for robots,” in ICRA 2006. Proceedings 2006

IEEE International Conference onRobotics and Automation, 2006 (Orlando, FL),
2997–3002.

Buhry, L., Azizi, A. H., and Cheng, S. (2011). Reactivation, replay, and preplay:
how it might all fit together. Neural Plast. 2011:203462. doi: 10.1155/2011/
203462

de Bruin, T., Kober, J., Tuyls, K., and Babuška, R. (2015). “The importance of
experience replay database composition in deep reinforcement learning,” in
Deep Reinforcement Learning Workshop, NIPS (Montreal).

Even-Dar, E., and Mansour, Y. (2003). Learning rates for q-learning. J. Mach.

Learn. Res. 5, 1–25. doi: 10.1007/3-540-44581-1_39
Fernández, F., and Veloso, M. (2005). Building a Library of Policies Through Policy

Reuse. Technical Report CMU-CS-05-174, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA.

Fonteneau, R., Murphy, S. A., Wehenkel, L., and Ernst, D. (2013). Batch mode
reinforcement learning based on the synthesis of artificial trajectories. Ann.
Oper. Res. 208, 383–416. doi: 10.1007/s10479-012-1248-5

Garcia, F., and Ndiaye, S. M. (1998). “A learning rate analysis of reinforcement
learning algorithms in finite-horizon,” in Proceedings of the 15th International

Conference on Machine Learning (ML-98 (Madison, WI: Citeseer).
Geist, M., and Scherrer, B. (2014). Off-policy learning with eligibility traces: a

survey. J. Mach. Learn. Res. 15, 289–333. Available online at: www.jmlr.org
Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. (2013).

An empirical investigation of catastrophic forgetting in gradient-based neural
networks. arXiv preprint arXiv:1312.6211.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., et
al. (2017). Rainbow: combining improvements in deep reinforcement learning.
arXiv preprint arXiv:1710.02298.

Isele, D., and Cosgun, A. (2018). Selective experience replay for lifelong learning.
arXiv preprint arXiv:1802.10269.

Karimpanal, T. G., and Wilhelm, E. (2017). Identification and off-policy learning
of multiple objectives using adaptive clustering. Neurocomputing 263, 39–47.
doi: 10.1016/j.neucom.2017.04.074

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics: a
survey. Int. J. Robot. Res. 32, 1238–1274. doi: 10.1007/978-3-642-27645-3_18

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning,
planning and teaching.Mach. Learn. 8, 293–321.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T.,
et al. (2016). “Asynchronous methods for deep reinforcement learning,” in
International Conference on Machine Learning (New York, NY).

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
et al. (2013). Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning.Nature 518,
529–533. doi: 10.1038/nature14236

Modayil, J., White, A., and Sutton, R. S. (2014). Multi-timescale
nexting in a reinforcement learning robot. Adapt. Behav. 22, 146–160.
doi: 10.1177/1059712313511648

Moore, A. W., and Atkeson, C. G. (1993). Prioritized sweeping: reinforcement
learning with less data and less time.Mach. Learn. 13, 103–130.

Narasimhan, K., Kulkarni, T. D., and Barzilay, R. (2015). “Language understanding
for text-based games using deep reinforcement learning,” in Proceedings of the

2015 Conference on Empirical Methods in Natural Language Processing, EMNLP

2015, eds L. Màrquez, C. Callison-Burch, J. Su, D. Pighin, and Y. Marton
(Lisbon:The Association for Computational Linguistics), 1–11.

Ólafsdóttir, H. F., Barry, C., Saleem, A. B., Hassabis, D., and Spiers, H. J.
(2015). Hippocampal place cells construct reward related sequences through
unexplored space. Elife 4:e06063. doi: 10.7554/eLife.06063

Rubinstein, R. Y., and Kroese, D. P. (2016). Simulation and the Monte Carlo

Method. Hoboken, NJ: John Wiley & Sons.
Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). “Prioritized experience

replay,” in International Conference on Learning Representations (Puerto Rico).
Singer, A. C., and Frank, L. M. (2009). Rewarded outcomes enhance

reactivation of experience in the hippocampus. Neuron 64, 910–921.
doi: 10.1016/j.neuron.2009.11.016

Sutton, R. S. (1990). “Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming,” in Proceedings of the Seventh

International Conference on Machine Learning (Austin, TX), 216–224.
Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press
Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., et al.

(2011). “Horde: a scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction,” in The 10th International Conference

on Autonomous Agents andMultiagent Systems-Volume 2 (Taipei: International
Foundation for Autonomous Agents and Multiagent Systems), 761–768.

Thomas, P. S., and Brunskill, E. (2016). “Data-efficient off-policy policy evaluation
for reinforcement learning,” in International Conference on Machine Learning

(New York, NY).
Thrun, S. (1996). “Is learning the n-th thing any easier than learning the first?,” in

Advances in Neural Information Processing Systems (Denver, CO), 640–646.
Thrun, S. B. (1992). Efficient Exploration in Reinforcement Learning. Technical

report, Carnegie Mellon University, Pittsburgh, PA.
Tutsoy, O., and Brown, M. (2016a). An analysis of value function learning

with piecewise linear control. J. Exp. Theor. Artif. Intell. 28, 529–545.
doi: 10.1080/0952813X.2015.1020517

Tutsoy, O., and Brown, M. (2016b). Chaotic dynamics and convergence analysis of
temporal difference algorithms with bang-bang control. Optim. Control Appl.

Methods 37, 108–126. doi: 10.1002/oca.2156
van Seijen, H., and Sutton, R. S. (2013). “Planning by prioritized sweeping with

small backups,” in Proceedings of the 30th International Conference on Machine

Learning, Cycle 3, Vol. 28 of JMLR Proceedings (Atlanta, GA), 361–369.
Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., et al.

(2016). Sample efficient actor-critic with experience replay. arXiv preprint

arXiv:1611.01224.
White, A., Modayil, J., and Sutton, R. S. (2012). “Scaling life-long off-policy

learning,” in IEEE International Conference on Development and Learning and

Epigenetic Robotics (ICDL) (San Diego, CA), 1–6.
White, A., Modayil, J., and Sutton, R. S. (2014). “Surprise and curiosity for big data

robotics,” in AAAI-14 Workshop on Sequential Decision-Making with Big Data

(Quebec City, QC).

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Karimpanal and Bouffanais. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 12 June 2018 | Volume 12 | Article 32

https://doi.org/10.1155/2011/203462
https://doi.org/10.1007/3-540-44581-1_39
https://doi.org/ 10.1007/s10479-012-1248-5
www.jmlr.org
https://doi.org/10.1016/j.neucom.2017.04.074
https://doi.org/10.1007/978-3-642-27645-3_18
https://doi.org/10.1038/nature14236
https://doi.org/10.1177/1059712313511648
https://doi.org/ 10.7554/eLife.06063
https://doi.org/10.1016/j.neuron.2009.11.016
https://doi.org/10.1080/0952813X.2015.1020517
https://doi.org/10.1002/oca.2156
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Experience Replay Using Transition Sequences
	1. Introduction
	2. Related Work
	3. Methodology
	3.1. Tracking and Storage of Relevant Transition Sequences
	3.2. Virtual Transition Sequences
	3.3. Replaying the Transition Sequences

	4. Results and Discussion
	4.1. Navigation/Puddle-World Task
	Application to the Primary Task

	4.2. Mountain Car Task

	5. Conclusion
	Author Contributions
	Acknowledgments
	References

