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Abstract – Based on Maxwell’s equations, we study the propagation of an ultrashort electro-
magnetic pulse through an array of carbon nanotubes with multi-level impurities. The effective
equation for the vector potential of the electromagnetic field is first derived analytically and then
solved numerically. We subsequently analyze the dependence of the pulse shape on the parame-
ters of the energy spectrum of impurities, and more precisely on the impurity levels. Our analysis
predicts a significant decrease in the pulse amplitude during the transient, which is associated
with the competitive effects of dispersion and other nonlinear effects. We also uncover the effects
of the hopping integrals and band gap of deep impurities on the pulse tail decay.
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Introduction. – In this paper we consider the
dynamics of electromagnetic pulses propagating in car-
bon nanotubes (CNTs) with multi-level impurities.
Specifically, our focus is in cases for which transitions
between the conduction band and impurity levels are al-
lowed. The term “multi-level impurity” used here refers
to the impurity whose energy levels are separated from
both the conduction band and valence band of the carbon
nanotube. The study of the influence of such impuri-
ties on the electronic structure —and thus the proper-
ties of semiconductors— has recently been the center of
several scientific investigations [1–3]. Such an interest
to this problem primarily finds its roots in the develop-
ment of opto-, micro-, and especially microwave electron-
ics. Stricter requirements on the quality of semiconductor
materials entails the necessity to control the energy spec-
trum and the additional energy levels induced by the pres-
ence of the impurities. The presence of the latter can lead
to both beneficial and undesirable results. Therefore, it is
essential to study the influence of the presence of such im-
purities in order to minimize the negative consequences,
while maximizing the positive impact on the functional
characteristics of electronic devices.

Similar tasks were previously considered [4–7] for the
“pure” case, where the presence of impurities was ne-
glected. We note, however, that the inclusion of impu-
rities changes notably the electron dispersion law, which
determines the form of the coefficients in the governing
equations derived in the approach by Belonenko et al. [4,5]
and also the one by Leblond et al. [6,7]. Physically, this is
due to transitions of electrons to impurity levels and back.

It is worth noting that, in recent years, CNTs have at-
tracted much attention due to their unique properties that
are widely used in modern micro- and nanoelectronics, as
well as in nonlinear optical devices [8,9]. It is well known
that carbon nanotubes of the zig-zag type possess semi-
conductor conductivity [10,11]. Therefore, it seems appro-
priate to study the influence of multi-level impurities on
the propagation of electromagnetic pulses in this type of
CNTs.

Statement of the problem and governing equa-
tions. – Consider the propagation of extremely short
electromagnetic pulses in an array of carbon nanotubes
with impurities, where we suppose the electric field to be
directed along the nanotubes axes. The matrix form of
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the Hamiltonian can be constructed as [12–14]

H =
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(
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)

, (1)

with

H11 =

(

0 f

f∗ 0

)

and H22 = diag(t1, t2, t3, t4). (2)

Here, |f | gives the energy spectrum of the CNTs; ti is the
energy of the electron localized on the i-th level of the
impurity (for definiteness we consider the impurity with
4 distinct levels —this particular choice being justified and
explained below); and α, β, γ, and ∆ are the hopping inte-
grals for transitions between an impurity level and one of
the CNT sublattices. The Hamiltonian is written in the
electron states basis |ψ⟩ = (φ1, φ2, ψ1, ψ2, ψ3, ψ4)T , where
φ1 and φ2 correspond to states of an electron with a given
momentum for CNT sublattices, and ψi is the state of an
electron localized in the i-th energy level of the impurity.
Note that by writing the Hamiltonian in the form given by
eq. (1), we implicitly use the assumption that impurities
are uniformly distributed throughout the CNT. The latter
implies that the hopping integral is actually simply given
by the quantity n0∆, where ∆ is the hopping integral for
transition between the impurity and the nanotube lattice
site near which the impurity is localized, and n0 is the
impurity concentration.

We can write the effective Hamiltonian in the form [2]

Heff = H11 − H12H−1

22 H21. (3)

Next, we solve the eigenvalue problem based on the above
effective Hamiltonian and find the quantities E1,2 =
E1,2(p, s) which determine the electron spectrum:

E1,2 =
1

2

{

R + Q ±
√

Θ
}

, (4)

where
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)

,
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,
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2
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2
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.

Here, we have taken into account that the dispersion
law —which describes the properties of the CNTs— has

the form [11]

ϵ(p, s) ≡ f

= η
{

1 + 4 cos(apx) cos
(πs

m

)

+ 4 cos2
(πs

m

)}1/2

,

(5)

where s = 1, 2 . . .m, η ≈ 2.7 eV, a = 3b/2h̄, and b =
0.142 nm is the nearest-neighbor distance between carbon
atoms. In further calculations we use the solution E1(p, s),
corresponding to the CNT conduction band, and the plus
sign in eq. (4). Here we must emphasize that the Hamilto-
nian formalism we use supposes the ballistic regime. This
means that the electrons are not quick enough to respond
to the applied EM field.

The quantities R and Q describe the change of elec-
tron dispersion due to the transition of an electron from
one sublattice of graphene to the impurity level and back
to the same sublattice, for the first and second sublat-
tices, respectively. The quantity D describes the change
of the electron dispersion due to the transition of an elec-
tron from one sublattice of graphene to the impurity level
and back to the other sublattice. These quantities are ex-
actly equal to zero in the absence of impurities. In general,
they are proportional to both the overlap of the wave func-
tions of electrons situated on the sublattices of graphene
and the ones on the impurities, and the concentration of
impurities.

Note, that as can be seen from eq. (4), the contribution
of the higher energy levels of the impurity to the quantities
R, Q, and D —which determine the influence of impurities
on the spectrum of carbon nanotubes— decreases with in-
creasing level number. Moreover, the rate of decrease is
inversely proportional to the energy level, and is directly
proportional to the square of the hopping integral. This
leads to the fact, that the contribution of multi-level impu-
rities to the electron dispersion of the CNTs is essentially
determined by the structure of the few lower energy levels.

Accounting for the dielectric and magnetic properties of
the CNTs, Maxwell’s equations, for the vector potential A
can be written as [15]

∂2A

∂x2
−

1

c2

∂2A

∂t2
+

4π

c
j = 0, (6)

where A is assumed to have the form A = (0, 0, A(x, t)),
and cE = −∂A/∂t. Let us write the standard expression
for the current density:

j0 = e
∑

qs

vs

(

q −
e

c
A(t)

)

nqs, (7)

where vs(p) = ∂E1(p, s)/∂p, and nqs stands for the aver-
age number of electrons with a momentum q. The lat-
ter is represented through a standard Fermi distribution,
namely nqs = {1 + exp (ϵ(q, s)/kBT )}−1, where ϵ(q, s) is
given by eq. (5) and all the numerical calculations were
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performed for T = 300 K. Let us further expand vs(p) in
a Fourier series:

vs(p) =
∑

k

Aks sin(kp), (8)

with

Aks =

π/a
∫

−π/a

vs(p) sin(kp) dp. (9)

Note that we consider ultrashort pulses of characteristic
duration τp, which satisfies the relation

τp ≪ τrel, (10)

where τrel is the characteristic relaxation time of the elec-
tromagnetic field in the ensemble of carbon nanotubes.
Following ref. [16], τrel ≈ 10−12 s, so we conclude that the
condition (10) is fulfilled if we consider τp in the range
between 10−14 s to 10−13 s. The dimensionless form of
eq. (6) reads

∂2A
∂x′2

−
1

c2

∂2A
∂t′2

+ sign(A1) sin(A)

+
∞
∑

k=2

Ak

|A1|
sin(kA) = 0, (11)

where

A =
ea

c
A, x′ = x

ea

c

√

8πγ,

t′ = t
ea

c

√

8πn0γ|A1|,

A1 =
m

∑

s=1

π/a
∫

−π/a

cos(ap) cos(πs/m)
√

1 + 4 cos2(πs/m)

×
exp (−βϵs(p))

1 + exp (−βϵs(p))
dp,

Ak =
∑

ps

Aks cos(akp)
exp (−βϵs(p))

1 + exp (−βϵs(p))
. (12)

Numerical analysis. – Equation (11) is solved
numerically using the direct difference cross-type
scheme [17,18]. Note that the series in eq. (11) is rapidly
convergent [19], which leads us to initially consider the
first 20 terms of that series. We subsequently decreased
that number of leading order terms considered until no
variation of the solution could be observed in the eighth
decimal place. Eventually, all the calculations were
performed with the obtained lowest number of leading
order terms, which for different nanotubes varied between
12 and 14. Note that the approach developed in [7] is
asymptotic, and works perfectly well on a large time scale
when a steady-state solution is reached. However, when
short time scales are considered, the processes leading

Fig. 1: Time dependence of the electric field for different
values of the distance x traveled perpendicular to the CNT
axis (R = 0.2, Q = 0.3, D = 0.5): (a) x = 1.0 · 10−5 m;
(b) x = 1.5 · 10−5 m; (c) x = 2.0 · 10−5 m.

Fig. 2: Time dependence of the electric field for different values
of the parameter R (Q = 0.3, D = 0.5, x = 1.0 · 10−5 m):
R = 0.2 (solid); R = 0.4 (dashed); R = 1.0 (dotted).

to the transition from the initial shape of the pulse to
the steady one are of great importance, and hence the
imperative need to resort to our numerical approach.

The problem was originally considered on the infinite
line with the condition that the electric field tends to
zero at infinity. In practice, we have implemented absorb-
ing boundary conditions in the numerical scheme. More
specifically, the computational domain was gradually sup-
plemented by layers in which the pulse is absorbed. In
this study, our focus is on results for which pulse shape
changes are observable.

The initial condition is chosen as

A(x, t) = A0 arctan {exp (x − vt) /γ} , (13)

where A0 is the pulse amplitude, γ =
(

1 − v2/c2
)1/2

, and
c is the speed of light.

Figure 1 shows that there is a significant change in the
pulse shape over time depending on the passed distance.
It is worth noting that there is a decrease in amplitude
of the pulse, which can be associated with the formation
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Fig. 3: Time dependence of the electric field for different values
of the parameter D (R = 0.2, Q = 0.3, x = 1.0 · 10−5 m):
D = 0.1 (solid); D = 0.4 (dashed); D = 0.6 (dotted).

of a stable pulse shape, for which the “decay” of a pulse,
defined by dispersion, is compensated by the nonlinear-
ity. Such a formation of the stable pulse leads also to the
appearance of the “tail” of zero area following the main
pulse.

Now, we look into the effects of the parameters R, Q,
and D on the propagation of pulses in the CNT. A typical
dependence on the parameter R is shown in fig. 2, reveal-
ing the significant influence of the energy spectrum param-
eters on the behavior of a pulse propagating in the CNT.
Note that the parameters R and Q carry the same weight,
that is, their influence on the dynamics of the pulse is
equal; this fact is consistent with the symmetry of the two
sublattices. It is important to note that this behavior has
important practical applications. In particular, by dop-
ing CNTs with various types of impurities, we can reduce
losses during the passage of extremely short pulses in an
array of carbon nanotubes. Also, it follows from the cal-
culations and from the dependence on R shown in fig. 2,
that doping should be done with the multi-level impuri-
ties having significant overlap (hopping) integrals with the
carbon atoms forming the carbon nanotubes.

Figure 3 displays the time dependence of the electric
field, determined by the potential in eq. (11), for different
values of D. The influence of the parameter D is more
important quantitatively —as compared to the influence of
R and Q— and can be traced to its physical origin. Indeed,
the value of D determines the interaction of two impurity
sublattices and their influence on the electrons of the CNT.
Note also that the closer the energy levels of impurities
to the CNT Fermi level, the greater are the values of R,
Q, and D; therefore, the smaller is the magnitude of the
“tail” formed by the propagation of extremely short pulses
in the system of CNTs. Physically this can be attributed
to the change of the effective mass of the electron in the
conduction band of CNTs due to a greater interaction with
the impurity, changing nonlinearities in the system, which
in turn leads to a change in the pulse shape.

Thus, the introduction of impurities can significantly af-
fect the behavior of the pulse propagating in a system of

carbon nanotubes. This is due, primarily, to the change of
the electron dispersion. Physically, the dispersion change
is due to the fact that in the presence of impurities, not
only the direct transition of an electron from one carbon
atom to another is possible, but also processes mediated
by the impurity can take place (governed by the parame-
ter D), as well as processes associated with the transition
to an impurity atom and back to the same carbon atom
(described by the parameters R and Q). Our calculations
show that the first process is more important, which phys-
ically is quite clear: an additional current flowing through
a carbon nanotube appears. Therefore, one can relate the
changes in the shape of ultrashort pulses to variations in
certain parameters of the impurity system.

Conclusions. – i) The effective equation for the dy-
namics of ultrashort optical transitions between the levels
of deep impurities and conduction bands of CNT has been
derived.

ii) It is shown that the resulting change in a pulse shape
is due to the influence of the impurity levels on the electron
dispersion of CNTs.

iii) We predict a decrease in the amplitude of the pulse
due to transition processes in a nonlinear system, namely
to the competition between dispersion and nonlinearity
during the formation of a stable pulse shape.

iv) We reveal the influence of hopping integrals and
band gaps of deep impurities on the form of an pulse,
which is manifested in the decay of the “tail” following
the main pulse.

v) The predicted effects can apparently be tested ex-
perimentally in a relatively straightforward manner using
successfully proved techniques (see ref. [20] and references
therein).
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