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Abstract. We present a theoretical study of the propagation of extremely short electromagnetic pulses in
a Bragg medium containing an immersed array of carbon nanotubes. With this unique configuration, we
establish the possible stable propagation of such light bullets. In particular, our results suggest these light
bullets can carry information about the Bragg medium itself.

1 Introduction

The concept of multidimensional solitons that are local-
ized in both space and time, also known as “light bul-
lets”, was introduced in pioneering works [1,2], and has
since then been investigated in various nonlinear optical
media, with emphasis on the specific issue of the stability
of solitons [3]. This emerging field of research has led to
numerous interesting developments (see, e.g., Refs. [4,5]).
One can say that the concept of light bullets is a natural
generalization of well-known one-dimensional electromag-
netic solitons [6] to cases of higher dimensions. It is worth
adding that by the very nature of light bullets, all the
energy is concentrated in a finite and bounded region of
space.

In addition to its intrinsic scientific interest, the study
of spatiotemporal solitary electromagnetic waves should
open new avenues for the development of powerful optical
information-processing systems. Specifically, in the case of
ultrashort pulses, the determining factor is the fact that
the electromagnetic pulse shape cannot be classically de-
composed into an envelope and a carrier. This leads to
the fact that the governing Maxwell’s equations cannot be
solved by the well-established method of multiscale expan-
sions, and thus one needs to solve them without discarding
any derivatives [7,8]. Note that in the case of an optical
medium characterized by a given dispersion law – either
normal or anomalous, the occurrence of highly-localized
energy solutions requires the consideration of nonlinear
effects, even in the one-dimensional case. Widely used in
applications, carbon nanotubes (CNTs) are considered as
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one of the most promising building blocks in modern na-
noelectronics [9–13]. Among their very many peculiar fea-
tures, the nonlinearity of the electron dispersion in nan-
otubes leads to a wide range of properties, which could
be used to design a medium enabling the propagation of
light bullets. This problem has attracted significant atten-
tion in the one-, two- and three-dimensional cases [14–21],
leading to a confirmation of the possible propagation of
light bullets in environments with CNTs. A thorough and
comprehensive review of recent progress in this field can
be found in reference [22].

The above studies, however, have dealt with systems
where the speed of propagation of light bullets is deter-
mined solely by the refractive index of the medium and
thus cannot be changed in a fairly wide range. The so-
lution to this kind of problem is well known: it requires
modulating the refractive index in one way or another so
as to form a so-called Bragg grating environment. In this
case, the speed of propagation of a wave packet – due to
its partial reflection and interference – is thereby governed
by both the period and amplitude of the refractive index
modulation. In practice, the refractive index modulation
is possible with the use of an external DC field in an any
environment that allows for either Kerr or Faraday effects,
and which contains CNTs.

Note that the simple considerations reported in refer-
ence [15] about the existence of light bullets do not apply
in the present case given the lack of translational invari-
ance. Furthermore, It is not obvious that the additional
dispersion – introduced by the properties of the Bragg
medium – does not lead to a breakdown or collapse of
light bullets. The importance of practical applications in
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Fig. 1. Geometry of the problem with carbon nanotubes
aligned along the z-direction and contributing to generating
a Bragg grating along the x-direction.

modern optoelectronics as well as the above considerations
have stimulated the present study.

2 Governing equations

The study of the electronic structure of CNTs is usu-
ally performed under the strong-coupling approximation
and in the framework of the analysis of the dynamics of
π-electrons. The dispersion relation for a zigzag-type CNT
(m, 0) reads as [10]

E(p) = ±Δ
{
1+4 cos(apz) cos(πs/m)+4 cos2(πs/m)

}1/2
,

(1)
where Δ = 2.7 eV, a = 3b/2�, and b = 0.152 nm is the
distance between neighboring carbon atoms. Note that
the quasimomentum p is represented here as (pz , s), s =
1, 2, . . .m.

The precise geometry of the problem considered here
is presented in Figure 1. When constructing a model for
the propagation of ultrashort optical pulses in a Bragg en-
vironment – taking into account the presence of the sys-
tem of nanotubes – we will describe the electromagnetic
field pulse based on Maxwell’s equations, using Coulomb’s
gauge E = −∂A/c∂t [19]. The vector-potential is thereby
expected to take the reduced form A = (0, 0, Az(x, y, t)).
Consequently, the governing propagation equation can be
cast as:

∂2A
∂x2

+
∂2A
∂y2

− n2(x)
c2

∂2A
∂t2

+
4π

c
j = 0, (2)

where n(x) represents the spatial variations of the refrac-
tive index, i.e., the Bragg grating; j is the vector current
density that originates from the influence of the electric
field pulse onto the electrons in the conduction band of
the CNTs. Here, we neglect the diffraction spreading of the
laser beam in the direction along the axis of the nanotubes.
Also, the electric field eventually induced by the substrate
itself is not considered in this proposed formalism. One

additional simplifying assumption has been considered in
our model construction, and it consists in discarding pos-
sible intergap jumps. This latter simplifying assumption
results in restricting the possible frequencies of laser pulses
to the near-infrared region. Moreover, we note that the
typical size of CNTs and the distance between them are
both much smaller than the spatial scale of the region
where ultrashort pulses are localized. This means that we
can appropriately work under the continuous-medium ap-
proximation, and thus consider the current density as ho-
mogeneously distributed over a given volume. The char-
acteristic length scale associated with spatial variations of
the refractive index in the Bragg medium is even larger,
and therefore does introduce any further restriction to our
modeling framework.

Since a typical relaxation time for electrons in CNTs
can be estimated at 3×10−13 s, the electron ensemble – on
time scales of the order of 10−14 s, which is typical for ul-
trashort EM pulses – can be described by the collisionless
Boltzmann equation,

∂f

∂t
− q

c

∂Az

∂t

∂f

∂pz
= 0, (3)

where f = f(pz, s, t) is the electron distribution function,
which implicitly depends on the spatial coordinates (x, y)
through the vector potential A(x, y, t); q is the electron
charge, and c is the speed of light in vacuum. At the
initial instant – right before creating the first ultrashort
pulse – f is classically given by the equilibrium Fermi-
Dirac distribution

f0 = {1 + exp (E(p)/kBT )}−1 ,

where T is the temperature, and kB is the Boltzmann
constant. The current density j = (0, 0, jz) is given by [23]

jz =
q

π�

∑
s

∫
f(pz)vz dpz, (4)

where we have introduced the group velocity vz =
∂E(p)/∂pz. Solving equation (3) by means of the method
of characteristics allows us to obtain

jz =
q

π�

∑
s

∫ q0

−q0

dpzvz

{
p − q

c
Az(t)

}
f0(p). (5)

The integration in equation (5) is performed over the first
Brillouin zone with q0 = 2π�/3b. The group velocity –
through which some of the effects of the inhomogeneous
dispersion law are imposed to create a Bragg grating –
can conveniently be expanded as a Fourier series,

vz(s, x) =
∑
m

ams sin(mx),

where

ams =
1
π

∫ π

−π

vz(s, x) sin(mx) dx.
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Fig. 2. Propagation of a light bullet in a Bragg medium generated by regularly distributed carbon nanotubes at four different
instants in time: (A) t = T0, (B) t = 2T0 (C) t = 3T0 (D) t = 4T0, where T0 = 2.5 × 10−12 s is the initial period of the light
bullet. Values of the field intensity are mapped on a color scale, where the maximum values correspond to red and the minimum
ones to purple.

The propagation equation for the vector potential can be
recast as

∂2Az

∂x2
+

∂2Az

∂y2
−n2(x)

c2

∂2Az

∂t2
+

q

π�

∑
m

cm sin
(maq

c
Az

)
=0,

(6)
where

cm =
∑
m

amsbms, with bms =
∫ q0

−q0

dpz cos(mapz)f0(p).

When computing equation (6), as cm decreases with in-
creasing m, we can restrict ourselves to the first ten terms,
and subsequently increase the number of terms depending
on the required accuracy.

3 Results and discussion

For the numerical solution of equation (6), we have imple-
mented an explicit finite-difference scheme for hyperbolic
equations [24]. The step sizes both in time and space were
iteratively decreased by a factor of two, until the obtained
solution became unchanged to the eighth decimal place.
Initial conditions for the vector potential have been chosen
to have the following form:

Az(x, y, t = 0) = A0 exp
{
−x2

γ2

}
exp

{
−β (y − y0)

2
}

,

(7)

dAz

dt

∣∣∣∣
t=0

=
2vx

γ
A0 exp

{
−x2

γ2

}
exp

{
−β (y − y0)

2
}
,

(8)

where y0 stands for the center of the bullet, and β
is the parameter determining the width of the pulse.
The refractive index of the medium has been modeled

as n(x) = n0(1 + α(2πx/χ)). Here, α is the modulation
depth, and χ is the period of the Bragg grating, where we
have taken α = 0.05 and χ = 3 × 10−5 m. Note, that we
have no grating in the lateral direction.

The simulated shape of the light bullet is shown in
Figure 2 at four consecutive instants in time – ti = iT0

(i = 1, . . . , 4) – after imposing a pulse corresponding
to the initial conditions (7) and (8) at t = 0 with pe-
riod T0 = 2.5 × 10−12 s. From the evolution of the two-
dimensional shape of the propagating light bullet revealed
in Figure 2, we can conclude that the spatial modulation
of the refractive index in the medium leads to a slowdown
of the propagation of light bullets as predicted by the the-
ory. Spatial dispersion also induces significant changes to
the shape of the light bullet itself. As can be seen from our
computed solution (Fig. 3), the two-dimensional light bul-
let in our Bragg medium with immersed CNTs remains lo-
calized. However, the spatial structure of the pulse evolves
over time due to lateral dispersion. The combined effect
of the spreading of the pulse associated with dispersion
and nonlinearity leads to the formation of a multipeak
transverse structure, which nevertheless remains spatially
localized.

We have to emphasize that the primary purpose of our
study is to show that a steady pulse propagation is still
achievable over distances significantly exceeding the pulse
size, with a certain level of shape retention. The spe-
cific design of the pulse shape minimizing diffractive ef-
fects along the transverse direction is beyond the scope of
the present work. However, we speculate that super-Gauss
pulses should be more stable. These last two issues could
be the goals of a separate follow-up study.

Let us summarize the results and conclusions:

(i) Our calculations show that there is a possibility for
the propagation of stable two-dimensional light bul-
lets, not only through an array of CNTs [15,20,21,25],
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Fig. 3. (A) Spatial variations of the (vector potential) electric field at four consecutive instants in time. In the presence of the
Bragg grating, results are given for (1A) t = T0, (2A) t = 2T0, (3A) T = 3T0, (4A) t = 4T0. The dependence of the electric field
on the transverse coordinate, y, is presented on (B).

but also through a similar array immersed into a
Bragg medium with a spatially and periodically-
varying refractive index.

(ii) From a practical viewpoint, our results are impor-
tant as they demonstrate the possibility to control the
propagation speed of light bullets by specifically tun-
ing the parameters defining the Bragg environment.

(iii) Finally, the propagation of light bullets in this Bragg
medium with immersed CNTs presents some signifi-
cant differences from the canonical case of a medium
with constant refractive index. Perhaps the most im-
portant difference is that light bullets in our Bragg
environment bear a more complex transverse struc-
ture (Fig. 3). The latter, in our opinion, is due to the
excitation of internal vibrational modes of the light
bullets because of interactions with the inhomogene-
ity of the refractive index of the medium.

A.V. Zhukov and R. Bouffanais are financially supported by
the SUTD-MIT International Design Centre (IDC).
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