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Abstract. In this study, we address the challenging problem of propagation of infrared electromagnetic
two-dimensional bipolar pulses of extremely short duration in a heterogeneous array of semiconductor
carbon nanotubes. Heterogeneity is defined here as a region of high electron density. The evolutions of
the electromagnetic field and charge density in the sample are described by Maxwell’s equations and
the continuity equation respectively, wherein the inhomogeneity of the field along the nanotube axis is
integrated and incorporated into the modeling framework. Our numerical solution to this problem shows
the possibility of a stable propagation of two-dimensional electromagnetic pulses through a heterogeneous
array of carbon nanotubes. This propagation of electromagnetic pulses is accompanied by a redistribution
of the electron density in the sample. For the first time to the best of our knowledge, this latter effect
is fully accounted for in our study. Specifically, we demonstrate that depending on the initial speed of
the electromagnetic pulse two possible outcomes might ensue: either (i) the pulse overcomes the region of
increased electron concentration, or alternatively (ii) it is reflected therefrom. As a result, a near-infrared
pulse is transmitted, while the long-wavelength infrared pulse is reflected, on an obstacle that is much
smaller than its wavelength.

1 Introduction

One of the most promising objects for modern nanoelec-
tronics is the ensemble of carbon nanotubes (CNTs) [1,2],
which represent quasi-one-dimensional macromolecules of
carbon. The nonlinearity of the electron dispersion in nan-
otubes leads to a wide range of properties, which mani-
fest in fields of moderate intensity ∼103–105 V/cm (see,
e.g., Refs. [3,4] and references therein). Recent successes
in laser-based optical physics in the generation of power-
ful electromagnetic radiations with given parameters [5],
have provided the impetus for comprehensive studies of
electronic and optical properties of CNTs in the presence
of an electromagnetic field. Special interest in phenom-
ena related to the propagation of ultrashort electromag-
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netic pulses through an array of CNTs [6–11] has recently
been mounting. In particular, the possibility for propaga-
tion of solitary electromagnetic waves in an array of CNTs
has been demonstrated [6,7], as well as the dynamics of a
periodic train of electromagnetic pulses, and the induced
current domains have been investigated [8,9].

Generally, the theoretical and experimental studies of
electromagnetic solitary waves have a rather long history.
In the last decade, the researches on the morphogenesis of
localized structures in optics and photonics and in related
areas, such as Bose-Einstein condensates, have attracted
a growing body of interest (see Refs. [12–22] and refer-
ences therein for thorough reviews on these topics). More
generally, the study of propagation of stable/quasistable
ultrashort optical solitons with duration of only a few cy-
cles requires approaches beyond the standard slowly vary-
ing envelope approximation and specific types of medium
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nonlinearity, see for example the recent overviews [23–26].
The control of medium nonlinearity and of the correspond-
ing features of the electromagnetic wave propagation can
be performed, e.g., by a proper choice of nonlinear optical
lattices (a topic comprehensively reviewed in Ref. [14]).
In this context, the CNT arrays provide one of the unique
and practically reliable systems for studying various as-
pects of electromagnetic wave propagation in nonlinear
media. Earlier studies of the propagation of electromag-
netic pulses in CNTs were mainly devoted to the analysis
of one-dimensional (1D) cases. Later on it was realized
that there are a lot of unsolved remaining issues in two-
dimensional (2D) and three-dimensional (3D) cases, some
of which are quite peculiar. Indeed, the possibility of prop-
agation of cylindrically symmetric electromagnetic waves
in an array of nanotubes has been demonstrated [27]. Fur-
thermore, the possibility of propagation of 2D traveling
solitary electromagnetic waves (a.k.a. light bullets) has
been reported in reference [28] (see also Ref. [29]). Sub-
sequently, their interaction with inhomogeneities in the
arrays of nanotubes has been investigated [30–32]. The
possibility of propagation of 2D bipolar electromagnetic
pulses in semiconductor arrays of CNTs was revealed in
reference [33]. The general aspects of stability of the laser
beams propagating in an array of CNTs were analyzed in
reference [34].

It should be noted that the theoretical analysis in the
abovementioned studies has been performed under the as-
sumption of homogeneity of the pulse field along the axis
of the CNTs. However, the heterogeneity of this field can
cause the emergence of interesting and unexpected physi-
cal effects of potential practical importance. In particular,
reference [35] is concerned with the 2D model of the prop-
agation of ultrashort electromagnetic pulses in an array
of CNTs with the heterogeneity of the field along their
axis. Furthermore, a comprehensive study of the latter
problem in the fully 3D case was recently carried out,
which resulted in the demonstration of the possibility of
3D bipolar electromagnetic breather propagation through
an array of CNTs with account for the field inhomogene-
ity [36]. As a result, it was found that in that specific case,
an electromagnetic pulse induces a significant redistribu-
tion of the electron density in the sample, both in 2D and
3D systems.

Apart from the field inhomogeneity leading to the
electrons redistribution, there are other natural hetero-
geneities in the experimental samples. A case of special
importance is when heterogeneities are caused by regions
of increased conduction electron concentration, induced by
the presence of impurities. In this regard, it seems appro-
priate to study the effects of heterogeneity of the electron
concentration on the characteristics of propagation of ex-
tremely short bipolar electromagnetic pulses through an
array of semiconducting carbon nanotubes. Note that a
similar, yet highly simplified model was previously con-
sidered in reference [37], where the electron heterogeneity
has been considered in the form of a step-function and the
field inhomogeneity has been ignored. The key conceptual
advances of the present study are as follows: (i) account for

the inhomogeneity of electric field along the CNTs axes,
and (ii) account for the heterogeneity due to the electron
density distribution.

The paper is constructed as follows. The effective equa-
tion describing the evolution of the electric field during the
propagation of two-dimensional extremely short bipolar
electromagnetic pulses through an inhomogeneous array
of semiconductor CNTs is derived in Section 2. In Sec-
tion 3, we describe the choice of initial conditions used to
derive the solution of the problem. In Section 4, we present
the outcome of numerical simulations and we thoroughly
discuss the obtained results. The main conclusions of our
study are summarized in Section 5. In Appendix we give
the details of the numerical methods used in this work.

2 General formulation of the problem

2.1 General provisions

Let us consider the propagation of a solitary electromag-
netic wave (infrared laser pulse) through a volumetric ar-
ray of a monolayer of semiconductor carbon nanotubes
of the zigzag type, (m, 0), where the number m (not
a multiple of three) determines the radius of the nan-
otube through R = m

√
3b/2π, with b the distance be-

tween nearest-neighbor carbon atoms [4]. The nanotubes
are supposed to be placed into a homogeneous insulator
in a way that the axes of the nanotubes are parallel to the
common Ox-axis, and the distances between neighboring
nanotubes are large compared to their diameter, which al-
lows us to neglect the interaction between CNTs [33,34].

Given the above framework, the dispersion relation for
the conduction electrons of CNTs takes the form

γ(px, s) = γ0

{
1 + 4 cos

(
px

dx

�

)
cos
(
π

s

m

)

+ 4 cos2
(
π

s

m

)}1/2

, (1)

where the quasimomentum is given by p = {px, s}, s be-
ing the number characterizing the momentum quantiza-
tion along the perimeter of the nanotube, s = 1, 2, . . . , m,
γ0 being the overlap integral and dx = 3b/2 [3,4].

Assume that the laser pulse propagates perpendic-
ular to the nanotubes axes (along the Oz-axis of a
Cartesian coordinate system), the associated electric field
E = (E, 0, 0) being oriented along the Ox axis. The char-
acteristic length over which noticeable changes occur in
the pulse field along the Oy-axis is supposed to be sub-
stantially greater than the size of the array of nanotubes in
the direction of this axis. The later assumption allows us
to assume a field to be quasi-uniform along the Oy direc-
tion, so that we can justify a two-dimensional model of the
system in the xOz-plane. We also suppose that the charac-
teristic pulse duration TS satisfies the condition TS � trel,
where trel is the characteristic relaxation time. This con-
dition allows us to use the collisionless approximation in
the present study [6].
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Let us bear in mind that the pulse field inhomogeneity
along the nanotubes axis can lead to a redistribution of
the concentration of conduction electrons in the sample
and the appearance of regions with low and high charge
density. Thus, we assume that the electrons in an array
of nanotubes are subjected to the influence of an electro-
magnetic field associated with a vector potential, A, and
a scalar potential, ϕ. The electromagnetic field in an ar-
ray of nanotubes will therefore be described by Maxwell’s
equations [38,39] for the vector and scalar potentials of
the field in the system.

2.2 Equations for the field potentials

Maxwell’s equations with the Lorentz gauge condi-
tion [38,39],

∇A +
ε

c

∂ϕ

∂t
= 0, (2)

lead us to the following equation for the vector potential:

ε

c2

∂2A
∂t2

−∇2A− 4π

c
j = 0, (3)

where A = {A, 0} is the vector potential, j = {j, 0} is the
current density, ε is the dielectric constant of the medium,
and c is the speed of light in vacuum. Hereinafter, the no-
tations for the vector projections are written in the plane
{x, z}. The electric field is classically related to the field
potentials via [38,39]

E = −1
c

∂A
∂t

−∇ϕ. (4)

We define the conduction current density in the array of
carbon nanotubes using the approach developed in ref-
erences [33,34,36]. Specifically, we represent the electron
energy spectrum (1) as a Fourier series, and then write
the expression for the projection of the current density on
the Ox-axis in the collisionless approximation as

j =−en
dx

�
γ0

m∑
s=1

∞∑
r=1

Gr,s sin

⎧⎨
⎩r

dx

�

⎛
⎝A

e

c
+e

t∫
0

∂ϕ

∂x
dt

⎞
⎠
⎫⎬
⎭ ,

(5)
where e is the electron charge, n is the concentration of
conduction electrons in the array of nanotubes, and the
coefficients Gr,s are explicitly given by

Gr,s = −r
δr,s

γ0

∫ π

−π cos(rα) exp {−∑∞
r=1 θr,s cos rα} dα∑m

s=1

∫ π

−π exp {−∑∞
r=1 θr,s cos(rα)} dα

,

(6)
with θr,s = δr,s(kBT )−1, T stands for the temperature, kB

is the Boltzmann constant, and δr,s are the coefficients in
the expansion of the spectrum (1) in a Fourier series:

δr,s =
dx

π�

∫ π�/dx

−π�/dx

γ(px, s) cos
(

r
dx

�
px

)
dpx. (7)

We emphasize, that the value of the conduction electrons
concentration in the expression (5) is generally a function
of both position and time, i.e., n = n(x, z, t).

The equation governing the evolution of the vector po-
tential field in the array of nanotubes follows from the
combination of equations (3) and (5). Direct substitution
gives

∂2Ψ

∂τ2
−
(

∂2Ψ

∂ξ2
+

∂2Ψ

∂ζ2

)

+ η(ξ, ζ, τ)
m∑

s=1

∞∑
r=1

Gr,s sin

⎧⎨
⎩r

⎛
⎝Ψ +

τ∫
0

∂Φ

∂ξ
dτ

⎞
⎠
⎫⎬
⎭ = 0,

(8)

where η = η(ξ, ζ, τ) = n(ξ, ζ, τ)/n0 is the dimension-
less electron concentration, n0 is the equilibrium elec-
tron concentration in a homogeneous specimen in the
absence of electromagnetic field, Ψ = A edx

c�
is the pro-

jection of dimensionless vector potential onto the Ox-
axis, Φ = ϕ edx

c�

√
ε is the dimensionless scalar potential,

τ = ω0t/
√

ε is the dimensionless time, ξ = xω0/c and
ζ = zω0/c are the dimensionless coordinates, and ω0 is
the frequency determined through

ω0 = 2
|e|dx

�

√
πγ0n0. (9)

The redistribution of the electron density distribution is
accompanied by a change in the scalar potential field in
the system. Maxwell’s equations [38,39] give the equa-
tion governing the evolution of the dimensionless scalar
potential:

∂2Φ

∂τ2
−
(

∂2Φ

∂ξ2
+

∂2Φ

∂ζ2

)
= β(η − 1), (10)

where β = c�(dxγ0
√

ε)−1.

2.3 Equation for the electron density

The propagation of electromagnetic pulses in the sample
leads to fluctuations of the charge density. Inhomogeneity
of the field along the Oz-axis, perpendicular to the axis of
nanotubes, has no impact on the redistribution of the elec-
tron density in the sample, since the interaction between
nanotubes is negligible and there is no electric current in
the Oz direction. Field inhomogeneity along the Ox-axis
causes nonuniformity of the current density along the axis
of nanotubes, leading to a redistribution of electron den-
sity in the sample. Since the total charge in the sample is
conserved, the change in the charge density is determined
by the following continuity equation [38]:

∂j

∂x
+ e

∂n

∂t
= 0. (11)

Substituting equation (5) into equation (11), we readily
obtain the dimensionless equation determining the evolu-
tion of electron concentration due to the influence of the
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pulse’s electromagnetic field, namely

∂η

∂τ
= α

m∑
s=1

∞∑
r=1

Gr,s
∂

∂ξ

⎧⎨
⎩η sin

⎡
⎣r
⎛
⎝Ψ +

τ∫
0

∂Φ

∂ξ
dτ

⎞
⎠
⎤
⎦
⎫⎬
⎭ ,

(12)
where α = dxγ0

√
ε/c�. Thus, the field evolution in our

system with account for the redistribution of charge den-
sity is determined by the system of equations (8) and (10),
supplemented with equation (12).

2.4 Pulse field intensity

The electric field component of an electromagnetic wave
propagating along the Oz-axis is directed along the axis
of the nanotubes (Ox-axes) by virtue of the transverse na-
ture of electromagnetic waves. Thus, for the electric field
component of the electromagnetic waves in an array of
nanotubes, we can write E = (E(ξ, ζ, τ), 0, 0). Accounting
for equation (4), the electric field projection E(ξ, ζ, τ) onto
the Ox-axis can be represented through the expression

E = E0

(
∂Ψ

∂τ
+

∂Φ

∂ξ

)
, (13)

where E0 is defined as

E0 = − �ω0

edx
√

ε
. (14)

As is well-known, the measured physical quantity is the
intensity of the electromagnetic field, which is propor-
tional to the square of the electric field component (see
e.g. Ref. [38]), I = E2. Using equations (13) and (14), we
easily obtain the following relation

I = I0

(
∂Ψ

∂τ
+

∂Φ

∂ξ

)2

, (15)

where I0 = E2
0 (see Eq. (12)).

3 Initial conditions

3.1 Electron concentration inhomogeneity

Suppose that in an array of carbon nanotubes there is an
originally formed region of intense concentration of con-
duction electrons, which exceeds the concentration n0 in
the rest of the sample volume. Let the region of high elec-
tron concentration be a plane layer perpendicular to the
Oz-axis with a characteristic half-thickness Δzimp, and the
size of the layer along the Ox-axis substantially exceeds
the characteristic width of the electromagnetic pulse along
the axis of the nanotube. We assume that at the initial in-
stance of time, an inhomogeneity of the electron density
has the form of a Gaussian distribution [34] and can be
modeled by a function of the form

η(ξ, ζ, τ0) = 1 +
(

nimp

n0
− 1
)

exp

(
− ζ2

Δζ2
imp

)
, (16)

where nimp is the maximum electron concentration in the
inhomogeneity area, and Δζimp = Δzimpω0/c.

The scalar field potential in the system due to the
presence of the layer of increased concentration of elec-
trons (16) at the initial instant of time, can readily be
calculated using the Gauss theorem [39]. In dimensionless
form, the scalar potential is recast as

Φ(ξ, ζ, τ0) = −κΔζ2
imp

{
ζ

Δζimp
erf
(

ζ

Δζimp

)

+
1√
π

[
exp
(
− ζ2

Δζimp

)
− 1
]}

, (17)

where we introduce the quantity

κ = 2π3/2 dxce2n0

ω2
0�

√
ε

(
nimp

n0
− 1
)

.

It is worth emphasizing that in equation (17), there is no
dependence on the coordinate ξ caused by the presence of
a flat layer of increased concentration of electrons at the
initial instant in time. Specifically, this electrostatic field
is homogeneous along the direction of the nanotube axis
(namely the Ox-axis).

3.2 Initial electromagnetic pulse

The choice of the initial form of electromagnetic pulse orig-
inates from the following considerations. Equation (8) can
be considered as a generalization of the 2D analog of the
sine-Gordon equation. The numerical results show that
the coefficients (see Eq. (6)) decrease rapidly with increas-
ing r (|G1,s| � |G2,s| etc.). Working within a 1D frame-
work and leaving only the first term in the sum over r,
equation (8) would lead us to the well known sine-Gordon
equation, which admits a classical solution in the form
of a breather [40]. Note that the sine-Gordon equation
describes, in particular, the evolution of the electromag-
netic field in solids (e.g., semiconductor superlattices) and
allows for the possibility of propagating bipolar solitary
electromagnetic waves in a form of breathers [41]. On this
basis, it is logical to assume that the system described by
equation (8) leads to the propagation of electromagnetic
waves in the form of sine-Gordon breathers. We further as-
sume that the system is irradiated by an electromagnetic
pulse, such that at the time τ = τ0 its scalar potential
field is zero and the “snapshot” of the projection of the
dimensionless vector potential field on the Ox-axis has a
form similar to the “instantaneous snapshot” of the sine-
Gordon equation breather profile, namely:

Ψ(ξ, ζ, τ0) = 4Ψ0 arctan

(
sinχ

coshμ

√
1

Ω2
− 1

)

× exp

{
−
(

ξ − ξ0

λξ

)2
}

, (18)
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where the following notations have been used:

χ = Ω
τ0 − (ζ − ζ0)u/v√

1 − (u/v)2
, (19)

μ =
[τ0u

v
− (ζ − ζ0)

]√ 1 − Ω2

1 − (u/v)2
, (20)

with Ω = ωB/ω0 being a parameter determined from the
frequency of natural field oscillations ωB (Ω < 1), u being
the speed of pulse propagation, v = c/

√
ε being the linear

speed of electromagnetic waves in the medium, ξ0 and ζ0

being the dimensionless coordinates at τ = τ0; Ψ0 is an
arbitrary constant that allows us to vary the amplitude of
the initial pulse without having to modify u or Ω.

In the expression (18), the first factor represents a
“snapshot” of the profile of a breather, propagating with
the speed u (see Ref. [40]). The presence of the second fac-
tor accounts for the fact that a Gaussian intensity distri-
bution is almost always of interest from a practical point
of view in various fields of physics and engineering. In-
deed, this is due to the minimum diffraction spreading of
Gaussian beams, which at the same time represents a very
close approximation to reality: it is simple and yet fully
describes the properties of laser radiation [34].

The electric field component of an electromagnetic
wave in an array of nanotubes at the initial time τ = τ0

has the general form E = {E(ξ, ζ, τ0), 0}. The quantity
E(ξ, ζ, τ0) can be evaluated in the following way. First,
we make the formal substitution τ0 → τ in equations (19)
and (20). As a next step and with the use of equations (18)
and (13), we come up with an expression in which we
perform the reverse substitution τ → τ0. As a result, we
obtain the following expression:

E(ξ, ζ, τ0) = 4E0Ψ0

√
1 − Ω2

1 − (u/v)2

×
{

cosχ coshμ − (u/v)
(
Ω−2 − 1

)1/2 sin χ sinhμ

cosh2 μ + (Ω−2 − 1) sin2 χ

}

× exp

{
−
(

ξ − ξ0

λξ

)2
}

, (21)

where E0 is determined from equation (14).
In the long pulse limit (the slowly varying enve-

lope case), equation (14) describes a pulse with a car-
rier phase χ, and an envelope sechμ (given by Eqs. (19)
and (20), respectively), according to what the angu-
lar frequency should be ω0 = Ω/

√
1 − (u/v)2, and the

pulse length should be Δτ = (v/u)
√

1 − (u/v)2/
√

1 − Ω2

(the full length at half maximum being then FWHM=
2 ln
(
2 +

√
3
)
Δτ), in normalized units. The values in phys-

ical units are obtained by multiplying the times (and di-
viding the frequencies) by

√
ε/ω0. Here v/u and u/v are

the phase and the group velocities, respectively; they are
reciprocal of each other according to the dispersion rela-
tion of the approval of the sG equation. However, for the
numerical values of parameters we are using, the values
of the ratio FWHM/T0 between the pulse width and the

optical period T0 = 2π/ω0 ranges from 0.5 to 0.24. In
this sub-cycle range, the quantities evaluated in the long
pulse limit appreciably differ from the actual ones. The
central angular frequency ω of the pulse can be evaluated
by numerically computing the Fourier transform Ê(ω) of
the field given by equation (14), and then computing the
mean value

ωc =

∫∞
−∞ ω|Ê(ω)|2dω∫∞
−∞ |Ê(ω)|2dω

.

The pulse length can be evaluated according to the D4σ
standard, with

σ2 =

∫∞
−∞ |E2|t2dt∫∞
−∞ |E2|dt

for a pulse centered at t = 0, then FWHM= 2
√

2 ln 2σ.
In summary, the initial conditions for the potentials of

the electromagnetic field in the system at the initial time
τ = τ0 have been chosen based on the forms reported in
references [34,35]. The scalar potential (see Eq. (17)) de-
termines the electrostatic field generated by the enhanced
electron density initially given by equation (16), while
the vector potential (see Eq. (18)) determines the elec-
tric field of the electromagnetic pulse initially given by
equation (21).

4 Numerical simulation and discussion
of results

4.1 Choice of parameters

The system of equations, (8), (10) and (12), has no ex-
act analytical solution in the general case, therefore we
have numerically studied the propagation of an electro-
magnetic pulse in an array of carbon nanotubes. To solve
this set of governing equations (Eqs. (8), (10), and (12)),
with initial conditions (16)–(21), we applied an explicit
difference scheme [42] (see details in Appendix). Thus, as
a result, we evaluated the quantities Ψ = Ψ(ξ, ζ, τ) and
Φ = Φ(ξ, ζ, τ), giving us the field and the associated in-
tensity through the formulas (13) and (15), respectively. It
is worth adding that with our analysis we also have access
to the dynamics of the modified dimensionless distribu-
tion of the quantity η = η(ξ, ζ, τ), thereby allowing us
to compute the concentration of electrons in the sample,
n = n0η.

In our numerical simulations, we have used the fol-
lowing realistic parameters of the medium: m = 7, b =
1.42 × 10−8 cm, γ0 = 2.7 eV, dx ≈ 2.13 × 10−8 cm,
n0 = 2 × 1018 cm−3, T = 77 K, ε = 4, ω0 ≈ 1014 s−1

(see Eq. (9) and Refs. [36,37]). Suppose that in the ar-
ray of nanotubes we have a layer formed by the enhanced
electron concentration nimp = 30n0 with a character-
istic width Δzimp = 3 × 10−5 cm that corresponds to
a dimensionless width Δζ ≈ 0.1. As stated above, we
use the collisionless approximation in the present study,
which is justified when considering processes at times t
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Fig. 1. Intensity distribution of the pulse field in an array of CNTs (while passing through the heterogeneous layer) with
u/v = 0.997, λ = 2.49 μm, at different instants of the dimensionless time τ : (a) τ = 0, (b) τ = 2.0, (c) τ = 4.0, (d) τ = 6.0. The
axes are scaled using the dimensionless coordinates ξ = xω0/c, and ζ = zω0/c. The values of the ratio I/Imax are mapped on
a color scale, the maximum values of the field intensity correspond to red, and minimum ones to purple. Imax is the maximum
value of I at the given instant τ considered.

not exceeding the relaxation time trel ≈ 3 × 10−13 s (see
Refs. [3,4]). With the parameters chosen above it means
τrel = ω0t/

√
ε ≈ 15. The relative initial pulse veloc-

ity, u/v, was varied in a range between 0.500 and 0.999.
In the particular range u/v < 0.5, the problem has no
practical interest since the pulse travels too short a dis-
tance during a time τrel, which is comparable with its
own halfwidth. On the other hand, we do not consider
the range u/v > 0.999 because of limitations associated
with the specifics of the selected numerical scheme (see
Appendix). The parameter Ω – being proportional to the
natural oscillations frequency – has being varied in a range
between 0.3 and 0.7. In the case when Ω < 0.3, the elec-
tromagnetic pulse becomes too narrow and a fundamental
change in its shape has not been observed with decreasing
value down below 0.5. On the other hand, increasing Ω
beyond 0.7 yields a pulse that is too wide in the Oζ direc-
tion, which makes its halfwidth comparable to the size of
our numerical domain. The parameter λξ – the halfwidth
of the pulse along the Oξ-axis – has been varied between
0.5 and 1.5, though we did not observe any qualitative dif-
ferences in the pulse behavior and dynamics. The param-
eter Ψ0 has been varied between 0.05 and 1. When chosen
above all other values of the system parameters, there are
realistic – in terms of possible experiments – initial val-
ues of the peak amplitude of the electric field pulse if the
value of Ψ0 is within the specified limits. In particular,
for u/v = 0.997 the peak amplitude of the electric field is
Ep = 4E0Ψ0(1−Ω2)1/2(1−(u/v)2)−1/2 ≈ 7.0×106 V/cm,
while for u/v = 0.95 we have Ep ≈ 1.7 × 106 V/cm (see
Eq. (21)).

For definiteness, we have chosen the following initial
values for the laser pulse parameters: Ω = 0.5, which cor-
responds to the natural mode frequency ωB = Ωω0 ≈
5.05 × 1013 s−1; λξ = 1, which corresponds to the ac-
tual halfwidth along the Ox-axis being Lx = λξc/ω0 ≈
3 × 10−4 cm; Ψ0 = 0.1, ξ0 = 0, and τ = τ0.

Computing the wavelength in vacuum λ =
2πc

√
ε/(ω0ωc) with these parameters, it is seen that

it ranges from near infrared (λ = 1.43 μm for a normal-
ized velocity u/v = 0.999), to far infrared (λ = 43 μm for
u/v = 0.5). The corresponding FWHM ranges from 2.82
to 100 fs, and the number of cycles within the pulse, i.e.,
the ratio between the FWHM and the optical period T ,
is about 0.6 for all considered values (0.7 for u/v = 0.5).
Hence, the input pulses are a bit longer than half-cycle.

4.2 Results of the simulations

As mentioned earlier, our numerical analysis considered
the 0.5 < u/v < 0.999 range, which covers a wide part
of the infrared domain, 43 μm < λ < 1.43 μm. How-
ever, within that range, our results revealed that the
most interesting physical phenomena where concentrated
in the much narrower region 0.95 ≤ u/v ≤ 0.997 (i.e.,
10.4 μm < λ < 2.49 μm), as is shown below. Figures 1–4
represent typical results of the current study of the prop-
agation of laser pulses through an inhomogeneous array
of CNTs with account for a realistic and dynamic field
distribution.

First, let us consider the upper bound case u/v =
0.997, λ = 2.49 μm. Our numerical results show that the
interaction between the ultrashort bipolar laser pulse with
the electron inhomogeneity is strongly dependent on the
initial speed of the pulse speed u, which can naturally be
expected from equation (18). Figures 1 and 2 represent
a passage of the electromagnetic pulse propagating with
initial velocity u = 1.496 × 1010 cm/s, corresponding to
u/v = 0.997 (see Eq. (16)), i.e., a subcycle pulse with
central wavelength in vacuum λ < 2.49 μm), and pulse
duration FWHM = 4.9 fs, through the region of enhanced
electron concentration. Figure 1 reveals the temporal evo-
lution of the distribution of field intensity I(ξ, ζ, τ) when
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Fig. 2. A: Intensity distribution I(ξ0, ζ, τ )/Imax of the pulse field in an array of CNTs with u/v = 0.997, λ = 2.49 μm in an
area parallel to the νOζ-plane and passing through the point with ξ = ξ0, at different instants of the dimensionless times: (a)
τ = 0, (b) τ = 2.0, (c) τ = 4.0, (d) τ = 6.0. B: The same for the electric field amplitude.

considering four different instants separated by the dimen-
sionless duration τ∗ = ω0t

∗/
√

ε = 2. The field intensity
is represented through the ratio I/Imax, different values
of which correspond to a variation of colors (flooded con-
tours) with a colormap from violet to red. The quantity
Imax is the maximum value of intensity at that given in-
stant in time. Red areas correspond to near-maximum in-
tensity, while violet ones reflect near-minimum intensity
regions. With the above chosen parameters, unit values
along the axes Oξ and Oζ correspond to the real physi-
cal distances ∼3× 10−4 cm, and hence the propagation is
shown over a distance of about 30 μm.

To supplement our two-dimensional analysis in the
ξOζ-plane shown in Figure 1, we further consider one-
dimensional lines corresponding to constant values for ξ.
Figure 2 shows the profile of the field intensity I(ξ0, ζ, τ)
along the Oζ-line, in a plane parallel to the νOζ-plane,
with the pulse passing trough the point ξ = ξ0 (the center
of the pulse is along the Oξ-axis) at the same instants as
those considered in Figure 1. Figure 2 reveals a typical
change in the shape of the laser pulsing maximum value
of intensity Imax during a passage through the region of
enhanced electron density. In general, as can be seen from
Figures 1 and 2, a 2D bipolar electromagnetic pulse, af-
ter interaction with the inhomogeneous layer, continues to
steadily propagate along the initial direction with insignif-

icant dispersal spreading. Hence, the short-wavelength in-
frared pulse is almost integrally transmitted.

As a next step, we turn our attention to the lower
bound case u/v = 0.95, λ = 10.4 μm. of the narrower
range of interesting values for this problem. Figures 3
and 4 are concerned with the interaction of a laser pulse
with the region of enhanced electron density for an ini-
tial value of the pulse velocity u = 1.425× 1010 cm/s (i.e.
u/v = 0.95, which corresponds to a wavelength in vac-
uum λ = 10.4 μm, and a pulse duration FWHM
 20 fs).
Figure 3 shows the temporal evolution of the distribu-
tion of field intensity I(ξ, ζ, τ) when considering four dif-
ferent instants separated by the dimensionless duration
τ∗ = ω0t

∗/
√

ε = 2, similarly to what has been done pre-
viously. The profile of the field intensity I(ξ0, ζ, τ) along
the Oζ-line is shown in Figure 4, in a plane parallel to the
νOζ-plane, with the pulse passing trough the point ξ = ξ0

(the center of the pulse is along the Oξ-axis) at the same
instants as those considered in Figure 3.

Interestingly, we observe that if the initial pulse has an
insufficient initial velocity, then it is unable to overcome
the area of inhomogeneous electron distribution, though
it continues to propagate stably, but in the opposite di-
rection. Thus, the results of our numerical analysis reveal
that the dynamics of interaction of the laser pulse with
a layer of increased concentration of electrons crucially
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Fig. 3. Intensity distribution of the pulse field in an array of CNTs (while reflecting from heterogeneous region) with u/v = 0.95,
λ = 10.4 μm at different instants of the dimensionless time τ : (a) τ = 0, (b) τ = 2.0, (c) τ = 4.0, (d) τ = 6.0. The axes are
scaled using the dimensionless coordinates ξ = xω0/c, and ζ = zω0/c. Values of the ratio I/Imax are mapped on a color scale,
the maximum values of the field intensity correspond to red, and minimum ones to purple. Imax is the maximum value of I at
the given instant τ considered.

depends on the initial velocity of the pulse. Electromag-
netic pulses with low propagation velocities are reflected
from a region of enhanced electron density, while pulses
with velocities exceeding a certain threshold value uc are
able to overcome the region of high electron density. The
value of uc depends on several factors, which include the
heterogeneity parameters: the ratio of the electron con-
centration nimp/n0, as well as the characteristic width of
the inhomogeneity layer 2Δzimp.

We have to emphasize that our results are completely
consistent with the earlier simplified model considered in
reference [37]. The principal difference lies in the account
for the realistic inhomogeneity as well as the inhomogene-
ity of the field along the nanotubes axis. This allowed us
to solve the problem self-consistently with full account of
the realistic and dynamic redistribution of the electrons.
As stated in reference [37], this principal result is consis-
tent with earlier investigations of different systems. For
instance, in the study reported in reference [41], the au-
thors demonstrated the selective nature of the transmis-
sion of electromagnetic solitons through the region of high
electron density in quantum semiconductor superlattices.

We can therefore conclude that an array of semicon-
ducting carbon nanotubes acts as a “filter” for extremely
short electromagnetic pulses, which selectively transmits
pulses with parameters satisfying certain conditions – in
the particular of our study, for pulses with u > uc. This
interesting effect, in our opinion, may serve as the basis for
manufacturing optical logic elements and laser radiation
control devices. It results in the reflection of almost all en-
ergy of the input long wavelength infrared pulse, on a very
short obstacle. Recall indeed that the size of the inhomo-
geneity layer (full length at 1/e) is 2Δzimp = 0.6 μm, al-
most one order of magnitude below the linear wavelength
in the medium, λ/

√
ε 
 5 μm.

It is worth adding that the inhomogeneity of the field
distribution along the nanotubes axis as included in our
model, does not violate the conclusion on the stability of
propagation of extremely short pulses. The main differ-

ence as compared with our previous study [37] consists in
the shape of the electromagnetic pulses. Indeed, within the
frame of homogeneous field consideration [37], the shape
of the tail – notice the “ripples” of small amplitude – ap-
pearing behind the propagating pulse is due to the imbal-
ance between competing nonlinear and dispersive effects.
In the present study, we incorporate an additional impor-
tant factor, namely the dynamic redistribution of electrons
associated with the field inhomogeneity.

Another way to analyze the nature of the interaction of
ultrashort pulses with an area of increased concentration
of electrons can be achieved by studying the coefficients
of transmission KT and reflection KR defined as follows:

KT =

∫ +∞
0

dζ
∫ +∞
−∞ I(ξ, ζ)dξ∫ +∞

−∞
∫ +∞
−∞ I(ξ, ζ)dζdξ

, (22)

KR =

∫ 0

−∞ dζ
∫ +∞
−∞ I(ξ, ζ)dξ∫ +∞

−∞
∫ +∞
−∞ I(ξ, ζ)dζdξ

. (23)

The system considered in this paper – owing to the choice
of a model that assumes the collisionless approximation –
is conservative. A direct consequence of the energy con-
servation is the following simple relation between KT

and KR:
KT + KR = 1, (24)

which is verified by our numerical analysis as shown in
Figure 5. Let us explain the physical meaning of the vari-
ables defined by equations (22) and (23). By definition,
KT (resp. KR) is the ratio of the energy of the wave-packet
that has overcome the region (resp. that is reflected there-
from) of the area of increased concentration of electrons
to the total energy of the initial wave-packet.

Figure 5 shows the dependence of the reflection and
transmission coefficients the initial pulse velocity u/v (at
time τ = τ0 = 0). Our numerical analysis shows that
with increasing values of u/v, there is an increase in the
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Fig. 4. A: Intensity distribution I(ξ0, ζ, τ )/Imax of the pulse field in an array of CNTs with u/v = 0.95, λ = 10.4 μm, in an
area parallel to the νOζ-plane and passing through the point with ξ = ξ0 (but reflecting from heterogeneous region), at different
instants of the dimensionless times: (a) τ = 0, (b) τ = 2.0, (c) τ = 4.0, (d) τ = 6.0. B: The same for the electric field amplitude.

Fig. 5. Variations of the reflection coefficient KR (dashed lines) and transmission coefficient KT (solid curves) with the
initial pulse speed for different values of the inhomogeneity of the electron density nimp/n0: (a) nimp/n0 = 15 (red curves);
(b) nimp/n0 = 20 (green curves); (c) nimp/n0 = 30 (blue curves).

transmission coefficient (solid curves) with, of course, a
concomitant decrease – as a result of equation (24) – in
the reflection one (dashed curves). The initial speed of
the pulse at which there is equality between the trans-
mission and reflection coefficients, can be considered as
the critical speed ratio (u/v)c defined by the condition
KT ((u/v)c) = KR ((u/v)c). In other words, when the
pulse speed exceeds this critical speed, uc, the compo-
nent of the pulse transmitted through the region of in-

creased concentration of electrons is larger that its re-
flected component.

From Figure 5 we see that the graphs for KT (u/v)
and KR(u/v) intersect at the point corresponding to
their value KT = KR = 0.5. For different values of the
inhomogeneity parameter nimp/n0 and Δzimp, this equal-
ity remains true for different values of the critical ve-
locity ratio (u/v)c. In particular, (u/v)c increases with
increasing values of the parameter nimp/n0. Our analysis
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shows that varying the latter parameter as nimp/n0 =
15, 20, 30, the critical velocity ratio changes as (u/v)c =
0.978, 0.988, 0.993, so that the dependence of (u/v)c with
respect to nimp/n0 is clearly nonlinear. The critical values
of the velocity ratio correspond to critical values of the
wavelength 6.80 μm, 5.00 μm, and 3.81 μm, respectively.
A more detailed study of the dependence of the critical
speed with the various parameters of heterogeneity will
be provided in a future study of the more general case
of the interaction of light pulses in a three-dimensional
model.

As already hinted earlier, the results of the present
study might open new possibilities for the practical de-
velopment of innovative nanoelectronic devices. Indeed,
the peculiar features of propagation of extremely short
electromagnetic pulses in a heterogeneous array of semi-
conducting carbon nanotubes could potentially be used
in the development of new devices for field control of the
laser radiation, optical information processing systems, as
well as for nondestructive quality control technologies for
systems in nanoelectronics.

5 Conclusions

In summary, the key results of our study are the following:

(i) For the first time to the best of our knowledge, we
derived a system of equations describing and govern-
ing the evolution of the field and charge density in
an array of CNTs in the presence of a region of en-
hanced electron density, during the propagation of
ultrashort electromagnetic pulse with full account of
the field inhomogeneity along the nanotubes axis (see
Eqs. (8), (10) and (12)).

(ii) It has been established that the interaction with the
layer of increased concentration of electrons in the
array of nanotubes does not essentially affect the sta-
bility of the electromagnetic pulse shape.

(iii) Depending on its initial velocity, the ultrashort laser
pulse can either pass through the inhomogeneous re-
gion, or get reflected therefrom. The characteristic ve-
locity, corresponding to a passing/reflection turnover,
generally depends on the size of the inhomogeneous
region as well as the density of electrons in the ele-
vated concentration region.

(iv) Accounting for the field inhomogeneity in this prob-
lem leads to a redistribution of electrons in the sam-
ple. However, the latter effect only leads to quantita-
tive differences in comparison with the homogeneous
case. Qualitatively, the physical phenomenon is es-
sentially unchanged.

The inhomogeneity in a CNT array is thus able to induce
a frequency selective reflection, which is almost complete
on a very short layer along the propagation axis, much
smaller than the wavelength.
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Appendix A: Numerical scheme

A.1 Discretization of the system of equations

For the numerical solution of the system of equa-
tions (8), (10) and (12), we use the explicit difference
three-layer scheme for inhomogeneous equations of hyper-
bolic type (see, e.g. Ref. [42]). Let us carry out a dis-
cretization on the two-dimensional computational grid in
ξOζ–plane. Spatial coordinates on the grid are defined as
follows

ξi =
(

i − Nξ

2

)
Δξ, ζk =

(
k − Nζ

2

)
Δζ, (A.1)

where i and k are the indices corresponding to grid nodes
along the Oξ and Oζ axes, respectively. It is assumed that
0 ≤ i ≤ Nξ and 0 ≤ k ≤ Nζ , where Nξ and Nζ are the
maximum numbers of corresponding nodes; Δξ and Δζ
stand for the grid steps in the respective spatial directions.
Let us define the temporal layers through a simple relation
τ (n+1) = τ (n) + Δτ , where Δτ is the time step and n is
the number of a given layer.

For the discretization of equations (8), (10) and (12),
let us replace the continuous quantities with their discrete
counterparts in the following way

Ψ(ξ, ζ, τ) → Ψ(ξi, ζk, τ (n)) ≡ Ψ
(n)
i,k ,

Φ(ξ, ζ, τ) → Φ(ξi, ζk, τ (n)) ≡ Φ
(n)
i,k ,

η(ξ, ζ, τ) → η(ξi, ζk, τ (n)) ≡ η
(n)
i,k , (A.2)

η

m∑
s=1

∞∑
r=1

Gr,s sin

⎧⎨
⎩r

⎛
⎝Ψ +

τ∫
0

∂Φ

∂ξ
dτ

⎞
⎠
⎫⎬
⎭→ Λ

(n)
i,k , (A.3)

α

m∑
s=1

∞∑
r=1

Gr,s
∂

∂ξ

⎧⎨
⎩η sin

⎡
⎣r
⎛
⎝Ψ +

τ∫
0

∂Φ

∂ξ
dτ

⎞
⎠
⎤
⎦
⎫⎬
⎭→ Θ

(n)
i,k .

(A.4)
Spatial and temporal derivatives appearing in equa-
tions (8), (10) and (12) can be replaced by the following
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E
(0)
i,k = 4E0Ψ0

√
1 − Ω2

1 − (u/v)2

{
cos χ

(0)
k cosh μ

(0)
k − (u/v)

(
Ω−2 − 1

)1/2
sin χ

(0)
k sinh μ

(0)
k

cosh2 μ
(0)
k + (Ω−2 − 1) sin2 χ

(0)
k

}
exp

{
−
(

ξk − ξ0

λξ

)2
}

(A.16)

finite-difference relations:

∂2

∂τ2
{Ψ, Φ} → {Ψ, Φ}(n+1)

i,k − 2{Ψ, Φ}(n)
i,k + {Ψ, Φ}(n−1)

i,k

Δτ2
,

∂2

∂ξ2
{Ψ, Φ} → {Ψ, Φ}(n)

i+1,k − 2{Ψ, Φ}(n)
i,k + {Ψ, Φ}(n)

i−1,k

Δτ2
,

∂2

∂ζ2
{Ψ, Φ} → {Ψ, Φ}(n)

i,k+1 − 2{Ψ, Φ}(n)
i,k + {Ψ, Φ}(n)

i,k−1

Δτ2
,

(A.5)

∂η

∂τ
→ η

(n+1)
i,k − η

(n)
i,k

Δτ
. (A.6)

With some straightforward algebra, equations (8), (10)
and (12) are recast in the following discrete form

Ψ
(n+1)
i,k = 2Ψ

(n)
i,k − Ψ

(n−1)
i,k

+
(

Δτ

Δξ

)2 (
Ψ

(n)
i+1,k − 2Ψ

(n)
i,k + Ψ

(n)
i−1,k

)

+
(

Δτ

Δζ

)2 (
Ψ

(n)
i,k+1 − 2Ψ

(n)
i,k + Ψ

(n)
i,k−1

)
− Δτ2Λ

(n)
i,k , (A.7)

Φ
(n+1)
i,k = 2Φ

(n)
i,k − Φ

(n−1)
i,k

+
(

Δτ

Δξ

)2 (
Φ

(n)
i+1,k − 2Φ

(n)
i,k + Φ

(n)
i−1,k

)

+
(

Δτ

Δζ

)2 (
Φ

(n)
i,k+1 − 2Φ

(n)
i,k + Φ

(n)
i,k−1

)
+ Δτ2β

(
η
(n)
i,k − 1

)
, (A.8)

η
(n+1)
i,k = η

(n)
i,k + ΔτΘ

(n)
i,k , (A.9)

Λ
(n)
i,k = η

(n)
i,k

m∑
s=1

∞∑
r=1

Gr,s sin
{

r
(
Ψ

(n)
i,k + Int(n)

i,k

)}
,

(A.10)

Θ
(n)
i,k =

α

2Δξ

m∑
s=1

∞∑
r=1

Gr,s

×
{

η
(n)
i+1,k sin

[
r
(
Ψ

(n)
i+1,k + Int(n)

i+1,k

)]

− η
(n)
i−1,k sin

[
r
(
Ψ

(n)
i−1,k + Int(n)

i−1,k

)]}
, (A.11)

where Int(n)
i,k stands for a discrete counterpart of the in-

tegral
∫ τ

0 dτ∂Φ/∂ξ, where we use the simplest two-point
difference approximation for the first derivative with re-
spect to ξ. The quantity Int(n)

i,k can be approximated by

the recurrent relation

Int(n+1)
i,k ≈ Int(n)

i,k +
Δτ

2Δξ

(
3Φn+1

i+1,k − 4Φn+1
i,k + Φn+1

i−1,k

)
,

(A.12)
where we have used the three-point difference approxima-
tion for the first derivative of Φ(ξ, ζ, τ) with respect to ξ.

Equations (A.7)–(A.9) allow us to compute the values
of quantities Ψ

(n+1)
i,k , Φ

(n+1)
i,k , and η

(n+1)
i,k on an arbitrary

(n + 1)th temporal layer given the prior knowledge of the
(n − 1)th and nth temporal layers.

A.2 Discretization of initial conditions

To solve equations (8), (10) and (12) we have defined the
initial conditions given by equations (16)–(18), which have
to be used on the zeroth temporal layer, so they must
be presented in a discrete form as well. For this purpose,
let us complete the following substitutions: τ → τ (0) =
0, ξ → ξi, ζ → ζk, η(ξ, ζ, 0) → η

(0)
i,k , Ψ(ξ, ζ, 0) → Ψ

(0)
i,k ,

Φ(ξ, ζ, 0) → Φ
(0)
i,k , χ(ζ, 0) → χ

(0)
k , μ(ζ, 0) → μ

(0)
k . As a

result, the initial conditions (16)–(18) read

η
(0)
i,k = 1 +

(
nimp

n0
− 1
)

exp

(
− ζ2

k

Δζ2
imp

)
, (A.13)

Φ
(0)
i,k = −κΔζ2

imp

{
ζk

Δζimp
erf
(

ζk

Δζimp

)

+
1√
π

[
exp
(
− ζ2

k

Δζimp

)
− 1
]}

, (A.14)

Ψ
(0)
i,k = 4Ψ0 arctan

(
sin χ

(0)
k

coshμ
(0)
k

√
1

Ω2
− 1

)

× exp

{
−
(

ξk − ξ0

λξ

)2
}

, (A.15)

where

χ
(0)
k = −Ω

(
1 − u2/v2

)−1/2
(ζk − ζ0)u/v

and

μ
(0)
k = − (1 − Ω2

)1/2 (
1 − u2/v2

)−1/2
(ζk − ζ0).

The discrete counterpart of the expression for the electric
part of the wave field (see Eq. (21)) at the initial instant
of time, τ = 0, can be presented as E(0)

i,k = {E(0)
i,k , 0, 0},

where

see equation (A.16) above.
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Ψ
(1)
i,k = Ψ

(0)
i,k + 4ΔτΨ0

√
1 − Ω2

1 − (u/v)2

{
cos χ

(0)
k cosh μ

(0)
k − (u/v)

(
Ω−2 − 1

)1/2
sin χ

(0)
k sinh μ

(0)
k

cosh2 μ
(0)
k + (Ω−2 − 1) sin2 χ

(0)
k

}
exp

{
−
(

ξk − ξ0

λξ

)2
}

(A.19)

A.3 Calculations on the zeroth layer

For convenience, let us number the 0th, 1st, and 2nd layers
as (n−1), n, and (n+1), respectively. On the zeroth layer
(τ0 = 0) we have to use the values given explicitly through
equations (A.13)–(A.15). The intensity of the wave field
is given by I

(0)
i,k = (E(0)

i,k )2. Note that the quantity Int(0)i,k =
0 – appearing in equations (A.10) and (A.11) – returns
zero on the zeroth layer. This fact will be further used for
calculations on the subsequent (first) layer.

A.4 Calculations on the first layer

On the first layer we impose τ (1) = Δτ . It can easily be
argued that the scalar potential does not vary consider-
ably on the first layer in comparison with the zeroth one.
Furthermore, we assume that Φ

(1)
i,k ≈ Φ

(0)
i,k . Strictly speak-

ing, the latter approximation is not quite correct from the
mathematical point of view. However, this simplification
associated with it does not lead to a significant error in
numerical integration for the subsequent temporal layers.
The value of the discrete analogue of the dimensionless
electron concentration on the first temporal layer η

(1)
i,k can

be found from equation (A.9):

η
(1)
i,k = η

(0)
i,k + ΔτΘ

(0)
i,k . (A.17)

The quantity Θ
(0)
i,k in equation (A.17) is obtained from

equation (A.11) for n = 0, bearing in mind that Int(0)i,k = 0:

Θ
(0)
i,k =

α

2Δξ

m∑
s=1

∞∑
r=1

Gr,s

{
η
(n)
i+1,k sin

[
rΨ

(0)
i+1,k

]

−η
(0)
i−1,k sin

[
rΨ

(0)
i−1,k

]}
. (A.18)

The quantity Ψ
(1)
i,k has been computed using the three-

point difference approximation for the first time deriva-
tive, and the already known value Ψ

(0)
i,k on the zeroth layer,

namely

see equation (A.19) above.

The discrete counterpart of the field projection on the
nanotubes axis given by equation (13) has been computed
using a two-point difference approximation for the first
derivatives

E
(1)
i,k = E0

(
Ψ

(1)
i,k − Ψ

(0)
i,k

Δτ
+

Φ
(1)
i+1,k − Φ

(0)
i−1,k

2Δξ

)
. (A.20)

Calculations on the second temporal layer can be achieved
following the exact same scheme, though with n = 1.
When all the quantities on the first three layers are known,
the subsequent layers can be readily treated by the recur-
sion method through a classical iterative process.

A.5 Boundary conditions

Setting up the adequate boundary conditions is of prime
importance to achieve a correct implementation of our nu-
merical scheme. During a numerical integration, we vary
the number of nodes from 0 to Nξ (for the Oξ-axis) and
from 0 to Nζ (for Oζ-axis), which – on the arbitrary tem-
poral layer n – allows us to evaluate the quantities Ψ

(n)
i,k ,

Φ
(n)
i,k , and η

(n)
i,k at every (i, k) node. Note that the right-

hand side of equations (7)–(9) contains – in the general
case – values of the quantities both on the nodes with i = k
and the neighboring nodes with i, k±1. A special case ap-
pears when the quantities in the left-hand side of the above
formulas are at the border of the grid, i.e. when at least
one of the equalities i = 0, i = Nξ, k = 0, or k = Nζ ap-
plies. In this case, the question arises on how to determine
the quantities in the right-hand side term, which are out
of the grid border, i.e. on the nodes i, k−1 (for i, k = 0) or
on the nodes i, k +1 (for i, k = Nξ, Nζ). We have resolved
this classical issue in a rather common way (similar to
periodic boundary conditions) by “stitching” grid bound-
aries. Namely the node with indices i, k = −1 is believed
to be equivalent to the node with indices i, k = Nξ, Nζ ,
and similarly Nξ + 1, Nζ + 1 is equivalent to i, k = 0.
In other words, geometrically speaking our computational
grid corresponds to a torus. This geometric interpreta-
tion, however, hardly affects the results of our numerical
analysis.

References

1. P.J.F. Harris, Carbon Nanotubes and Related Structures:
New Materials for the Twenty-First Century (Cambridge
University Press, 1999)

2. S. Iijima, Nature 354, 56 (1991)
3. S.A. Maksimenko, G.Ya. Slepyan, J. Commun. Technol.

Electron. 47, 261 (2002)
4. S.A. Maksimenko, G. Ya. Slepyan, Handbook of

Nanotechnology. Nanometer Structure: Theory, Modeling,
and Simulation (SPIE Press, Bellingham, 2004)

5. S.A. Akhmanov, V.A. Vysloukh, A.S. Chirkin, Optics of
Femtosecond Laser Pulses (AIP, New York, 1992)

6. M.B. Belonenko, E.V. Demushkina, N.G. Lebedev,
J. Russ. Laser Res. 27, 457 (2006)

7. M.B. Belonenko, E.V. Demushkina, N.G. Lebedev, Phys.
Solid State 50, 383 (2008)

http://www.epj.org


Eur. Phys. J. D (2015) 69: 242 Page 13 of 13

8. M.B. Belonenko, E.V. Demushkina, N.G. Lebedev,
Technol. Phys. 53, 817 (2008)

9. M.B. Belonenko, E.V. Demushkina, N.G. Lebedev, Russ.
J. Phys. Chem. B 2, 964 (2008)

10. N.N. Yanyushkina, M.B. Belonenko, N.G. Lebedev, A.V.
Zhukov, M. Paliy, Int. J. Mod. Phys. B 25, 3401 (2011)

11. M.B. Belonenko, A.S. Popov, N.G. Lebedev, A.V. Pak,
A.V. Zhukov, Phys. Lett. A 375, 946 (2011)

12. P. Mandel, M. Tlidi, J. Opt. B 6, R60 (2004)
13. B.A. Malomed, D. Mihalache, F. Wise, L. Torner,

J. Opt. B 7, R53 (2005)
14. Y.V. Kartashov, B.A. Malomed, L. Torner, Rev. Mod.

Phys. 83, 247 (2011)
15. P. Grelu, N. Akhmediev, Nat. Photon. 6, 84 (2012)
16. Z. Chen, M. Segev, D. Christodoulides, Rep. Prog. Phys.

75, 086401 (2012)
17. D. Mihalache, Rom. J. Phys. 57, 352 (2012)
18. M. Tlidi, K. Staliunas, K. Panajotov, A.G. Vladimirov,

M.G. Clerc, Philos. Trans. R. Soc. A 372, 20140101 (2014)
19. D. Mihalache, Rom. J. Phys. 59, 295 (2014)
20. B.A. Malomed, J. Opt. Soc. Am. B 31, 2460 (2014)
21. N.N. Rosanov, G.B. Sochilin, V.D. Vinokura, N.V.

Vysotina, Philos. Trans. R. Soc. A 372, 20140012 (2014)
22. V.S. Bagnato, D.J. Frantzeskakis, P.G. Kevrekidis, B.A.

Malomed, D. Mihalache, Rom. Rep. Phys. 67, 5 (2015)
23. S.V. Sazonov, Bull. Russ. Acad. Sci. Phys. 75, 157 (2011)
24. H. Leblond, H. Triki, D. Mihalache, Rom. Rep. Phys. 65,

925 (2013)
25. H. Leblond, D. Mihalache, Phys. Rep. 523, 61 (2013)
26. D.J. Frantzeskakis, H. Leblond, D. Mihalache, Rom. J.

Phys. 59, 767 (2014)
27. M.B. Belonenko, S. Yu. Glazov, N.G. Lebedev, N.E.

Meshcheryakova, Phys. Sol. State 51, 1758 (2009)

28. M.B. Belonenko, N.G. Lebedev, A.S. Popov, J. Exp.
Theor. Phys. Lett. 91, 461 (2010)

29. H. Leblond, D. Mihalache, Phys. Rev. A 86, 043832 (2012)
30. M.B. Belonenko, A.S. Popov, N.G. Lebedev, Techn. Phys.

Lett. 37, 119 (2011)
31. A.S. Popov, M.B. Belonenko, N.G. Lebedev, A.V. Zhukov,

M. Paliy, Eur. Phys. J. D 65, 635 (2011)
32. A.S. Popov, M.B. Belonenko, N.G. Lebedev, A.V. Zhukov,

T.F. George, Int. J. Theor. Phys. Group Theory Nonlinear
Opt. 15, 5 (2011)

33. E.G. Fedorov, A.V. Zhukov, M.B. Belonenko, T.F. George,
Eur. Phys. J. D 66, 219 (2012)

34. A.V. Zhukov, R. Bouffanais, M.B. Belonenko, E.G.
Federov, Mod. Phys. Lett. B 27, 1350045 (2013)

35. M.B. Belonenko, E.G. Fedorov, Phys. Sol. State 55, 1238
(2013)

36. A.V. Zhukov, R. Bouffanais, E.G. Fedorov, M.B.
Belonenko, J. Appl. Phys. 114, 143106 (2013)

37. A.V. Zhukov, R. Bouffanais, E.G. Fedorov, M.B.
Belonenko, J. Appl. Phys. 115, 203109 (2014)

38. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii,
Electrodynamics of Continuous Media, 2nd edn. (Elsevier,
Oxford, 2004)

39. L.D. Landau, E.M. Lifshitz, The Classical Theory of
Fields, 4th edn. (Butterworth-Heinemann, Oxford, 2000)

40. Yu.S. Kivshar, B.A. Malomed, Rev. Mod. Phys. 61, 763
(1989)

41. S.V. Kryuchkov, K.A. Popov, Semiconductors 30, 1130
(1996)

42. J.W. Thomas, Numerical Partial Differential Equations –
Finite Difference Methods (Springer Verlag, New York,
1995)

http://www.epj.org

	Introduction
	General formulation of the problem
	Initial conditions
	Numerical simulation and discussion  of results
	Conclusions
	Author contribution statement
	Numerical scheme
	References

