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Abstract— This paper considers an approximate solution of
the event-triggered Hamilton-Jacobi-Bellman (ET-HJB) equa-
tion to derive a finite-time suboptimal event-triggered control
law for a class of nonlinear systems. To reduce the communi-
cation and computation overhead, the control law is computed
and actuated after violating a predefined state-dependent event
triggering condition. To obtain the controller gain, the ET-
HJB equation is approximated as a state-dependent differential
Riccati equation (SDRE). After converting the ET-HJB into
an SDRE, a frozen time concept is used to eliminate the
issues related to state dependency in the system and input
matrices between two consecutive events. This helps reframe
the SDRE into a simple differential Riccati equation (DRE),
where the state-dependent system and input matrices remain
fixed until the next event occurs. Using the solution of a
differential Lyapunov equation, the solution of the DRE is
computed forward in time. The designed event-triggered control
law is readily amenable to an online implementation, and also
it ensures the input-to-state stability of closed-loop systems.
Simulation results are reported to prove the efficacy of the
proposed control approach.

I. INTRODUCTION

Generally, in Cyber-Physical Systems (CPS), each phys-
ical system shares its local information with the other sub-
systems through a digital network. Due to the shared nature
of the communicating channel, controlling such systems
with continuous or periodic control laws requires significant
bandwidth requirements [1]-[2]. Recently, event-triggered-
based control techniques have been proposed in [3]-[8] to
reduce the information requirements for realizing a stable
control law. In event-triggered control, sensing at the system-
end and actuation at the controller-end happens only when a
prespecified event condition is violated. This so-called event
triggering condition mostly depends on the system’s current
states or outputs. The primary shortcoming of continuous-
time event-triggered control is that it requires continuous
monitoring of the event condition. In [7]-[8], Heemels et
al. proposed an event-triggering technique where the event-
condition is monitored periodically. To avoid continuous or
periodic monitoring, self-triggered control techniques have
been reported in [9]-[10], where the next event occurring
instant is computed analytically using the system’s state at
the previous sampling instant. Maximizing the inter-event
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time is the key aim of the event-triggered or self-triggered
control to reduce the total communication requirements fur-
ther. The efficacy of aperiodic sensing and actuation over
the continuous or periodic one in the context of CPS are
expressed in [1]-[2].

Controlling nonlinear systems with a finite-time event-
triggered optimal control law is a challenging control prob-
lem due to its time dependency of the solution. Few attempts
have been made in the past to compute the optimal solution
for a linear event-triggered system with a quadratic cost
functional [11], [12] and [13]. However, extending these
results to nonlinear systems with finite-time convergence
is not straightforward. In general, to design a finite-time
optimal control law for a nonlinear system, it is essential
to solve a continuous-time Hamilton-Jacobi-Bellman (CT-
HJB) equation. Nevertheless, to compute optimal event-
triggered control input, it is necessary to convert the CT-HJB
equation into an event-triggered HJB (ET-HJB) [16]. Solving
the HJB equation is computationally intensive as it is a
partial differential equation. Different techniques like neural
networks [14]-[17], dynamic programming [13], [11] have
been considered to approximate both the CT-HJB and the
ET-HJB equation. However, these approximation techniques
are also computationally taxing. Therefore, computationally
complex approximation technique to realize a control law
is difficult to implement in resource-constrained CPS. To
address this critical issue, this paper proposes a procedure
to convert the ET-HJB equation into a Riccati equation for a
class of nonlinear systems, inspired by the results reported in
[18]. In [18], the conversion processes from a CT-HJB to an
SDRE have been discussed. However, in this paper, instead
of the CT-HJB, the ET-HJB is considered and converted into
an SDRE which is a challenging task in itself as the control
inputs are aperiodic in nature.

Here, an attempt is made to realize an event-triggered
control law for a class of nonlinear systems whose system
dynamics can be represented in a state-dependent coefficient
(SDC) form [19]. With this SDC form, the state and input
functions are converted to a linear-like structure. The SDC
representation of nonlinear systems is applicable to several
important practical systems like under-actuated robot [27]-
[28], missile [29], spacecraft [30], and level control of tank
systems [31]. Figure 1 depicts the overall block diagram
of the proposed control method. Here, the system and
controller are connected using a communication network.
The state and input information are transmitted aperiodically
to the controller and actuator, respectively. To design a
finite-time event-triggered control law for controlling such
systems, an ET-HJB equation is considered. After some
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Fig. 1: Block diagram of proposed event-triggered control
technique. The dotted lines are used to represent the aperi-
odic transmission of data over the communication channel.
The symbols x and u denote the system state and control
input, respectively.

mathematical simplification, the ET-HJB is converted into
an SDRE. Applying the frozen-time concept within two
consecutive events, the SDRE reduces to a simple differential
Riccati equation (DRE). The analytical solution of DRE
is calculated using the solution of a Differential Lyapunov
Equation (DLE). In turn, the solution of the DLE is used
to compute the control law at every event-triggering instant.
This paper reports the following contributions:

(i) A proposed finite-time optimal control approach
applicable to a class of nonlinear systems (whose
system dynamics can be expressed in SDC form).
To generate the control input, the ET-HJB is con-
verted into an SDRE. The solution of SDRE is
computed based on the solution of the DLE. Using
the analytical solution of the SDRE for a final time
tf , the control input is computed at every event-
triggering instants.

(ii) An event-triggering condition for a nonlinear sys-
tems is proposed by solving an SDRE equation.
The event-triggered control law ensures the ISS
of the closed-loop system. A comparative study
between continuous and event-triggered method is
carried out to highlight the contribution of this
paper over the existing literature.

(iii) An example with simulation results is used to
validate the proposed control algorithm.

Notation: The symbol ∥x∥ denotes the Euclidean norm of
a vector x ∈ Rn. Rn represents the n dimensional Euclidean
real space and Rn×m is the set of all (n×m) real matrices.
The notations X ≤ 0, X−1 and XT denote the negative
semi-definiteness, inverse and transpose of matrix X , re-
spectively. The notation I refers to the identity matrix. The
minimum and maximum eigenvalue of a symmetric matrix

P ∈ Rn×n are represented by the notations λmax(P ) and
λmin(P ) respectively. A set Ω is used to denote a continuous
Lipschitz compact set where state x (including the initial
points) satisfy the condition x ∈ Ω [20]. A continuous
function f : R≥0 → R≥0 is K∞ if it is continuous and
strictly increasing and it satisfies f(0) = 0 and f(s) → ∞
as s → ∞. The function f : R≥0 → R≥0 belongs to class
K, if it is strictly increasing and it satisfies f(0) = 0. A
continuous function β(r, s) : R≥0 × R≥0 → R≥0 is a KL
function, if it is class K function with respect to r for a
fixed s and it is strictly decreasing with respect to s when r
is fixed [20].

II. PROBLEM FORMULATION

Consider a continuous-time input-affine nonlinear system
with state-dependent coefficients as [19]

ẋ(t) = A(x)x(t) +B(x)u(t), (1)

where state and input matrices A(x) ∈ Rn×n and B(x) ∈
Rn×m. Here x ∈ Rn and u ∈ Rm represent the system state
and input vector respectively. To stabilize (1), a finite-time
optimal stabilizing control law is designed by minimizing
the following quadratic cost-functional

J =
1

2
xT
f Fxf +

1

2

∫ tf

t0

(
xTQx+ uTRu

)
dt, (2)

where matrices F ≥ 0, Q ≥ 0 and R > 0. The time-instants
t0 and tf in (2) denote the initial and final time respectively.
To compute the optimal input for (1) with the cost-functional
(2), the Hamiltonian H is defined as

H

(
x, u(t),

∂J

∂x

)
=

1

2
{xT (t)Qx(t) + uT (t)Ru(t)}+

∂J

∂x

T{
A(x)x(t) +B(x)u(t)

}
. (3)

Using optimal control theory results, the optimal input u∗(t),
should minimize H , that means

∂H
(
x, u∗(t), ∂J∗(x,t)

∂x

)
∂u∗(t)

= 0. (4)

The notation J∗(x, t) denotes the optimal value of the cost-
functional J . After simplification, (4) reduces to

u∗(t) = K(x) = −R−1B(x)T
∂J∗(x, t)

∂x
, (5)

where K(x) is a controller gain function. Also u∗(t) satisfies
the well-known HJB equation, i.e.

−∂J∗(x, t)

∂t
=

1

2
{xTQx+ u∗TRu∗}

+
∂J∗(x, t)

∂x

T{
A(x)x(t) +B(x)u∗(t)

}
. (6)

Now, to generate u∗(t) from (5), the solution J∗ of the HJB
equation (6) is essential. To avoid the difficulty of solving
(6), Heydari et al. [18] proposed an approximation technique
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to generate the optimal control input u∗(t) by converting (6)
into the following SDRE

Ṗ (x, t) =P (x, t)A(x) +ATP (x, t)

− P (x, t)B(x)R−1BT (x)P (x, t) +Q. (7)

The final boundary condition is

P (x, tf ) = F. (8)

With the condition (8), the solution P (x, t) of (7) is used to
compute the approximate solution of (5) as

u(t) = −R−1B(x)TP (x, t)x(t). (9)

The approximate input (9) makes the closed loop system (1)
stable.

The realization of the control law (9) for a CPS or
networked control systems (NCS) requires continuous trans-
mission of x over the communication channel. This causes
a huge communication overhead. Therefore, to reduce the
communication burden, in this paper the state and input
information are transmitted and actuated aperiodically. The
aperiodic time-sequence of information transmission is de-
noted by tk where k ∈ {1, 2, · · · , N}. Due to the aperiodic
nature of information transmission, the continuous control
input u(t) is converted to u(tk). Applying u(tk), the closed-
loop system (1) and the HJB equation (6) reduce to

ẋ = A(x)x+B(x)u(tk), (10)

−∂J

∂t

∗
=
1

2

{
x(t)TQx(t) + u∗(tk)

TRu∗(tk)
}
+(

∂J∗

∂x

)T{
A(x)x(t) +B(x)u∗(tk)

}
. (11)

From [3] and [6], system (10) can be modeled as a contin-
uous time perturbed system by introducing an error variable
e(t). This error variable is used to derive the triggering
condition and is defined as

e(t) = x(tk)− x(t), ∀t ∈ (tk, tk+1). (12)

At the event-triggering instant tk, the numerical value of
the measurement error e(t) is zero. Using e(t), the event-
triggered control input u(tk) reduces to

u(tk) = K(x, e) =−B(x(tk))
T ∂J∗(x(t), t)

∂x(t)

∣∣∣∣
t=tk

,

∀t ∈ (tk, tk+1). (13)

The following assumptions should hold for the closed-loop
system (10):

Assumption 1: The event-triggered closed-loop system
(10) is Lipschitz continuous with respect to state x(t) and
measurement error e(t), that means

∥A(x)x(t) +B(x)K(x, e)∥ ≤ L1∥x(t)∥+ L2∥e(t)∥, (14)

where L1 and L2 are positive constants.
To generate (13), it is essential to solve or approximate the
ET-HJB (11). Several researchers have used neural networks

(NN) as a universal function approximator to estimate the
optimal value function J∗ [16]-[17]. To approximate J∗,
they update the NN weight vector aperiodically to reduce the
computation burden. Apart from NN-based approximation
techniques, in [18] Heydari et al. have approximated the
equation (6) as an SDRE for a class of nonlinear systems
with a stabilizing control law (9). But with an event-triggered
control input u(tk), the conversion of the ET-HJB (11) to
an SDRE is a non-trivial problem. To achieve a modified
SDRE from (11), the conversion procedure and the numerical
tools for solving the proposed SDRE are discussed in the
next section. For the stability analysis of the closed-loop
event-triggered system (10), the ISS property is adopted. The
definition of the ISS property is introduced for a general
nonlinear system in [20], which is briefly discussed below.

Definition 1: A system

ẋ(t) = f(x(t), u(t)), (15)

is globally ISS if it satisfies

∥x(t)∥ ≤ β(∥x(0)∥, t) + γ

(
supτ∈[0,∞)

{
∥uτ∥

})
, (16)

with each input u(t) and each initial state x(0). The functions
β and γ are KL and K∞ functions respectively.

Definition 2: Suppose the origin is an equilibrium point of
a continuous-time system ẋ = f(x(t), u(t)), i.e., f(0, 0) =
0, ∀ t > 0. A positive continuous function V (x(t)) : Rn →
R is an ISS Lyapunov function for that system if there exist
class K∞ functions α1, α2, α3 and a class K function γ
for all x ∈ Rn and u ∈ Rm by satisfying the following
conditions.

α1(∥x(t)∥) ≤ V (x(t)) ≤ α2(∥x(t)∥), (17)

V̇ (t) ≤ −α3(∥x(t)∥) + γ(∥u(t)∥). (18)
Problem Statement: Convert the ET-HJB equation (11) into
an SDRE and design a state feedback event-triggered control

u(tk) = K{B(x(tk)), P (x(tk)), x(tk)}, (19)

where the vector x(tk) and the matrix P (tk) are the aperiodic
system state and the positive definite solution of the proposed
Riccati equation. Derive the control law (19) in order to
ensure the ISS of the closed-loop system (10) for a given
event-triggering rule.

III. MAIN RESULTS

The primary theoretical contributions of this paper are di-
vided into three parts, and they are discussed in the following
two subsections. First, conversion of the ET-HJB to an SDRE
is discussed, and then using the solution of the SDRE, the
stability of the closed-loop system is ensured. Along with this
stability result, a state-dependent event-triggering rule is also
defined. Finally, a numerical procedure to solve the proposed
SDRE is reported. The following standard assumption [20],
[21] is used to convert (11) into an SDRE.

Assumption 2: [16] For a positive constant L and mea-
surement error e(t), the event-triggered control u(tk) and
continuous control u(t) hold the following inequality

∥u(t)− u(tk)∥ ≤ L∥e(t)∥, ∀t ∈ (tk, tk+1). (20)

547

Authorized licensed use limited to: University of Ottawa. Downloaded on January 13,2023 at 15:13:17 UTC from IEEE Xplore.  Restrictions apply. 



A. Conversion of the ET-HJB into an SDRE

The conversion process of the ET-HJB into an SDRE is
stated next.

Theorem 1: Suppose there exist positive scalars L and
σ ∈ (0, 1) such that Assumption 2 holds. For an event-
triggering rule

t0 = 0, tk+1 = inf{t ∈ R|t > tk ∧ (µ∥x∥2 − ∥e∥2 ≤ 0)},
(21)

the ET-HJB (11) reduces to the following SDRE

−Ṗ (x, t) ≤ P (x, t)A(x) +AT (x)P (x, t)−
P (x, t)B(x)B(x)P (x, t) + (σ + 1)Q− ℧, (22)

where scaling matrix R = I and the boundary condition
P (x, tf ) = F are selected. The selection R = I simplifies
the expression however, one can select any value for R. The
parameter µ and matrix ℧ are defined by

µ =
σλmin(Q)

L2
, (23)

℧ =

{ n∑
i=1

Pxizi +
1

4

( n∑
i=1

n∑
j=1

Pxix(B(x)B(x)T )ijx
TPxj

)

+ (B(x)B(x)T )


xT ∂P (x,t)

∂x1

...
xT ∂P (x,t)

∂xn

}
,

(24)

where the scalar zi = biu(tk) and bi is the ith element of
input matrix B(x). The notation ( · )ij represents the ijth

element of matrix ( · ) The partial derivative of a positive
matrix P (x, t) with respect to the individual state-element
xi∈{1≤i≤n} is denoted by Pxi

.
Proof: Using R = I , the ET-HJB (11) reduces to

−∂J∗

∂t
=

1

2
(xTQx+ u(tk)

Tu(tk)) +(
∂J∗

∂x

)T{
A(x)x(t) +B(x)u(tk)

}
. (25)

which has an optimal cost-to-go

J∗(x, t) = xTP (x, t)x. (26)

The partial derivative of J∗(x, t) with respect to t and x are
simplified as

∂J∗

∂t
=

1

2
xTPtx, (27)

∂J∗

∂x
= Px+ Γ, (28)

where Pt =
∂P
∂t and

Γ =
1

2


xT ∂P (x,t)

∂x1
x

...
xT ∂P (x,t)

∂xn
x

 . (29)

Using (27) and (28), the ET-HJB (25) reduces to

−1

2
xTPtx =

1

2
{x(t)TQx(t) + u(tk)

Tu(tk)}

+(Px+ Γ)T
{
A(x)x+B(x)u(tk)

}
. (30)

Further, (30) is simplified as

−1

2
xTPtx− ΓT ẋ =

1

2
{xTQx+ u(tk)

Tu(tk)}+

xTP (x, t)A(x)x+ xTP (x, t)B(x)u(tk). (31)

Equation (31) can be written as

−1

2
xT Ṗ (x, t)x =

1

2
{xTQx+ u(tk)

Tu(tk)}+

xTP (x, t)A(x)x+ xTP (x, t)B(x)u(tk), (32)

where the following auxiliary equations are used

ΓT ẋ =
1

2
xT (

n∑
i=1

Pxi
ẋi)x,

−1

2
xTPtx− 1

2
xT (

n∑
i=1

Pxi
ẋi)x = −1

2
xT Ṗ x.

From (5) and (28), the optimal input u∗(t) can be written as

u∗T (t) = −(Px+ Γ)TB(x). (33)

For simplicity of notation, the optimal cost-functional J∗,
the matrices P (x, t), A(x), B(x) and input u∗(t) are now
denoted by J , P , A, B and u(t) respectively. Applying (33),
the term xTPB(x)u(tk) is simplified as

xTPBu(tk) = (Px+ Γ)TBu(tk)− ΓTBu(tk)

= −uT (t)u(tk)− ΓTBu(tk). (34)

Using (34), equation (32) reduces to the following equality

−1

2
xT Ṗ x =

1

2
{xTQx+ u(tk)

Tu(tk)}+ xTPAx

+
1

2
(u(t)− u(tk))

T (u(t)− u(tk))

− 1

2
{u(t)Tu(t) + u(tk)

Tu(tk)} − ΓTBu(tk).

(35)

The event-triggering rule (21) is used to define an upper
bound of (20). Now using (20) and (21), the equality (35)
reduces to following inequality

−1

2
xT Ṗ x ≤ (σ + 1)

2
xTQx+ xTPAx− 1

2
uTu− ΓTBu(tk).

(36)

Equation (33) is used to simplify the inequality (36):

−xT Ṗ x ≤ (σ + 1)xTQx+ xTPAx+ xTATPx−
xTPBBTPx− [2xTPBBTΓ + ΓTBBTΓ + 2ΓTBu(tk)].

(37)

To construct a Riccati-like equation, it is essential
to express the terms 2ΓTBu(tk), ΓTB(x)B(x)TΓ and
2xTPB(x)B(x)TΓ in quadratic form. To that aim, the
following simplifications are adopted:
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• The event-triggered input u(tk) is constant within
the inter-event time. The input matrix B(x) =[
b1(x) b2(x) · · · bn(x)

]T
depends on the system’s

sate x. Therefore, the term B(x)u(tk) can be repre-
sented by another different state dependent variable
Z(x) and it is defined as follows

Z(x) =
[
z1(x) z2(x) · · · zn(x)

]T
, (38)

where zi(x) = bi(x)u(tk) for i = 1, 2 . . . n. Using (38)
and (29), the following equalities are obtained

2ΓTBu(tk) = xT (

n∑
i=1

Pxi
zi)x, (39)

ΓTBBTΓ =
1

4
xT (

n∑
i=1

n∑
j=1

Pxi
x(BBT )ijx

TPxj
)x.

(40)

• Similarly, the term 2xTPBBTΓ is reduced to

2xTPBBTΓ = xTPBBT

xT ∂P (x,t)
∂x1

. . .

xT ∂P (x,t)
∂xn

x. (41)

Using (39), (40) and (41), the equation (37) is simplified as

−xT Ṗ x ≤xTPAx+ xTATPx− xTPBBTPx+

(σ + 1)xTQx− xT℧x (42)

where the matrix ℧ is defined in (24). Now rewriting
the inequality (42), (22) is obtained for a final condition
P (x, tf ) = F . That completes the proof.

Remark 1: Equation (22) is converted into an approxi-
mated Riccati equation by neglecting the term ℧ from (22).
The expression of the approximated Riccati equation is

−Ṗ (x, t) = (σ + 1)Q+ P (x, t)A(x) +AT (x)P (x, t)−
P (x, t)B(x)B(x)TP (x, t) (43)

with a boundary condition P (x, tf ) = F . The approximation
helps to solve the Riccati equation numerically by avoiding
the partial differential terms exist in ℧. The constant matrix
(σ + 1)Q > 0 in (43) is changed from (7) due to the
aperiodic update of control inputs. The solution P of (43) is
used to compute the event-triggered control input (19). The
approximate control input will not be optimal, but the ISS
property holds for (10).

The following theorem ensures the ISS of (10) for the event-
triggering law (21).

Theorem 2: Suppose there exists a positive definite so-
lution P (x, t) of (43) which is aperiodically computed for
an event-triggering rule (21). The solution P (x, t)

∣∣
t=tk

and
aperiodic state information x(tk) generate the event-triggered
control input

u(tk) = −B(x(tk))
TP (x(tk), tk)x(tk), (44)

which is actuated at the system end based on the event-
triggering rule (21). The control input (44) ensures the ISS
of the closed-loop system (10).

Proof: Defining an ISS Lyapunov function V (x) =
xTP (x, t)x, the time derivative of V (x) along the solution
of (10) is

V̇ (x) = −(σ + 1)xTQx+ (u(t)− u(tk))
T (u(t)− u(tk))−

u(tk)
Tu(tk). (45)

After further simplification, the upper bound of (45) is

V̇ (x) ≤ −(σ + 1)xTQx+ (u(t)− u(tk))
T (u(t)− u(tk)).

(46)
Applying Assumption 2 to (46), the following equation is
obtained

V̇ (x) ≤ −σxTQx+ L2∥e∥2. (47)

Using Definition 2, (47) ensures the ISS of (10) for an input
(44) with the event-triggering rule (21).

Remark 2: From (40) and (24), it is possible to show that
there exist two constants c1 and c2 such that the Γ and ℧
are bounded by the following equations

Γ ≤ c1 ∥x∥2 , (48)
℧ ≤ c2 ∥x∥2 . (49)

Therefore as x(t) → 0 for t → ∞, the terms Γ and ℧ also
approach towards zero. This also ensures the convergence of
control input (44) as t → ∞ [26].

Remark 3: In the SDC form of (10), the state and input
matrices depend on the state information. However, contin-
uous state information is not available in the controller due
to communication constraints. To resolve this problem, we
have adopted the frozen-time concept borrowed from [22] to
solve (43). It assumes that the state and input matrices remain
constant in-between two consecutive events. This also helps
to solve the Riccati equation in a frozen-time manner.

Remark 4: In event-triggered control it is essential to
prove that the inter-event time τ = (tk+1 − tk) is always
positive i.e. τ > 0. This constraint is imposed to avoid the
Zeno behavior 1 in system dynamics. Now for the system
(10) whose initial condition x(0) remains in a compact set
S ⊆ Rn (i.e. x(0) ∈ S), there exists a lower bound
τ ∈ R+ for the event-triggering rule (21) which satisfies
tk+1 − tk ≥ τ , ∀k ∈ N. This can be proved in the similar
way as Theorem III.1 in [3].

B. Numerical solution of SDRE

As per Remark 3, the derived SDRE (43) can be consid-
ered as the following DRE within the two consecutive events
[22]

−Ṗ (t, x(tk)) = P (t)A(x(tk)) +AT (x(tk))P (x(tk), t)−
P (x(tk), t)B(x(tk))B(x(tk))

TP (x(tk), t) + (σ + 1)Q.
(50)

The solution procedure of (50) is discussed next [23]:

1Infinite number of transmission and computation in a finite time [25].
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• Compute the steady-state value (Pss) of (50) , by
solving the following algebraic Riccati equation:

PssA+ATPss − PssBBTPss + (α+ 1)Q = 0. (51)

• Subtracting (50) from (51), the following equation is
obtained

−Ṗ (t) =(P − Pss)A+AT (P − Pss)

− P (t)SP (t) + PT
ssSPss. (52)

where matrix S = B(x(tk))B(x(tk))
T .

• Using the change of variable P0(t) = (P (t)− Pss)
−1,

equation (52) is recast as a differential Lyapunov equa-
tion [24]:

Ṗ0(t) = AclP0(t) + P0(t)A
T
cl − S, (53)

with the final condition P0(tf ) = (F − Pss)
−1 and

Acl = A(x(tk))− SPss.
• Compute the solution of the algebraic Lyapunov equa-

tion

AclD0 +D0A
T
cl − S = 0. (54)

• The solution of (53) is

P0(t) = eAcl(t−tf )(P0(tf )−D0)e
AT

cl(t−tf ) +A0. (55)

• The solution of original SDRE (50) is

P (t) = Pss + P0(t)
−1. (56)

The expression (56) is used to compute (44).

C. Comparison with existing work

Here, we compare the main contributions of this paper
with the existing research work [18]. In [18], the HJB equa-
tion has been approximated as an SDRE. To approximate
the HJB equation into an SDRE, the primary assumption
in the work is that the state and input information are
continuously available to the controller and system end,
respectively. In general, this assumption does not hold for
event-triggered control techniques due to the asynchronous
availability of state and input information. In [16], K.
G. Vamvoudakis has named the equation (11) as ET-HJB
equation for the presence of aperiodic control input u(tk).
This paper proposes a procedure to convert the ET-HJB
equation into an SDRE which helps solve the nonlinear
optimal control problem for a class of systems with limited
feedback information. The presence of aperiodic input u(tk)
in (11), complicates the conversion processes of the ET-HJB
equation into an SDRE. The detailed steps of conversion
processes are described in this paper [refer Theorem 1 and
its proof]. Due to the limited availability of state and control
input, we obtain a state-dependent differential Riccati-like
inequality (22). The inequality (22) is converted to a Riccati
equation (43), using an equality relation. The positive definite
solution P of (43) is evaluated at every event-triggering
instant (tk), to compute the aperiodic control input u(tk)(=
−B(x(tk))

TP (x(tk), tk)x(tk)). To handle the aperiodic ac-
tuation of control input u(tk), the constant matrix Q of (43)

is scaled by (1 + σ) times compared to reported work [18].
In [18], the solution P of Riccati equation [equation (15) in
[18]] has been computed continuously, but in this paper a
frozen-time approach is adopted to solve (43) aperiodically.

IV. RESULTS

In this section, a benchmark example, the regulation
problem of Van der Pol’s Oscillator system, is considered
to illustrate the efficacy of the proposed control algorithm.
Validation of the control problem is solved numerically. The
Van der Pol’s Oscillator model is described as[

ẋ1

ẋ2

]
=

[
0 x2

−1 1− x2
1

]
x+

[
0
1

]
u. (57)

For simulation, matrices Q = I , R = I , and F = 10I
are selected. To realize the event-triggering law (44), the
scalar L and design parameter σ are considered as 0.82
and 0.1 respectively. The simulation is carried out in Matlab
with a final time tf = 2 and 12 sec. The initial states are
selected as

[
0.5 0.5

]T
. The Figures 2a, and 2b show the

time evolution of states for different final time tf . The black
and blue lines are used to represent the state trajectories of
the system using the event-triggered and continuous control
input respectively. From these Figures, it is observed that
the proposed event-based control input helps to bring the
system states near to the equilibrium point in a finite-time.
The aperiodic variation of control input u(tk) is shown in
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(c) Variation of control input u(tk) for tf = 12 s.

Fig. 2: Results of continuous and event-triggered control.

Figure 2c. The numerical results show the ISS of closed
loop system (10) and ensure the finite-time convergence of
state trajectories for an aperiodic update of control input
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u(tk). From Table I it is observed the total number of input
computation for continuous approach is comparatively higher
than the event-triggered one. The minimum and maximum
bound of inter-event time [τmin and τmax respectively] of
proposed event-triggering rule are shown in Table I. The
notation utotal represents the number of input computation
in total runtime.

Control mechanism Performance for tf = 12 sec.
τmax(s) τmin(s) utotal

Results
Continuous
control

0.01 0.01 1200
Event-triggered
control

0.7149 0.01 144

TABLE I: Comparative results of event-triggered and con-
tinuous control approach

V. CONCLUSION

This paper proposes a novel finite-time event-triggered
control law for a class of nonlinear systems. An event-
triggered control law is derived based on the aperiodic
state information to reduce the bandwidth requirement. The
control law is designed without solving the ET-HJB equation
explicitly. It is possible by converting the HJB equation
into a modified SDRE which is an ordinary differential
equation. The solution of the SDRE equation is obtained
by solving DLE. The solution of SDRE is computed in an
aperiodic manner to reduce the computation burden. The
numerical results help to validate the proposed algorithm.
This framework has promising future direction in different
control and estimation problems like in adaptive control [16]
, robust control [28] and multi-sensor state estimation [32]
under limited feedback information. In many practical situ-
ations, e.g., guidance path planning, the control law should
achieve the desired goal in a certain predefined time with
aperiodic feedback. The proposed SDRE based approach has
a potential application for such problems [26].
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