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a b s t r a c t

A spectral analysis and a multiscale study are performed on the numerical data obtained from direct
numerical simulation and large-eddy simulation of the turbulent flow in a cubical lid-driven cavity.
The analyzed data or signals are picked at three specific points inside the cavity allowing to investigate
three drastically different flow regimes over time: laminar, transitional and turbulent. In comparison
with direct numerical simulation, large-eddy simulation not only have a reduced resolution in space
but also in time. In this context a wavelet analysis is chosen to study signals from large-eddy simulation,
to provide a ‘local’ analysis of transient turbulent events. A time-scale joint representation is generated
by continuous wavelet transform and compared with the time-scale joint representation of the direct
numerical simulation. In this framework, the main objective of this study is to confirm the correlation
between the computed physical quantities and those expected theoretically.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of sampled signals obtained from experiments and
direct numerical simulation (DNS) of turbulent fluid flows through
wavelet analysis is now common practice. Such analysis often
provides tremendous insight into the flow behavior otherwise
difficult, if not impossible, to apprehend with more conventional
statistical signal analysis methods (e.g. Fourier transform). The
use of wavelet analysis to study signals from large-eddy simulation
(LES) is not as common, mainly because of the intrinsic high level
of non-physical noise introduced by the subgrid models and the
reduced resolution both in space and in time. However, depending
on the subgrid model and the numerical method used, these diffi-
culties may be overcome.

After a brief description of the main features of the lid-driven
cubical cavity flow, the characteristic parameters are provided for
both DNS and LES methods of simulation. Then the choice of the
three analyzed points within the cavity is motivated and the coor-
dinates of the three points are specified. After a classical spectral
validation (sampled condition), a multiscale approach based on
wavelet transform provides a relevant analysis of signals consider-

ing the three regimes, namely laminar, transitional and turbulent.
Such an approach has been employed and is reported here for the
study of the time histories of the pressure and other fluctuating
quantities in the locally-turbulent regime of the lid-driven cubical
cavity flow; the main objective being to confirm the correlation
between the computed physical quantities and those expected
theoretically.

2. The lid-driven cubical cavity flow

The flow field contained within a cubical enclosure (see Fig. 1) is
generated by imposing a motion of the ‘top’ wall’s cavity (with the
velocity vector being everywhere parallel to the x-axis). On the
remaining five sides homogeneous no-slip conditions are enforced.
The two faces normal to the x-axis will be referred to as down-
stream and upstream, depending of their positions relatively to
the motion of the lid, whereas the faces normal to the z-axis will
be referred to as side walls. The remaining face parallel to the
moving lid will be called the bottom wall. The three-dimensional
domain of the flow is defined on [�h, +h]3. The center of the axes
system is assigned to the center of the cavity. This places the
boundaries of the flow domain at ±h of each axis. This problem is
known as the lid-driven cavity (LDC) problem. Even though the
problem statement appears fairly simple, the physical nature of
the resulting flow regimes is known to be very complex and
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deserve to be analyzed in many details. The fluid enclosed in the
cavity is assumed to be incompressible, Newtonian with constant
physical properties throughout its volume. The equation of motion
for the fluid inside the cavity is given by the Navier–Stokes equa-
tions. The flow of a viscous Newtonian incompressible fluid within
a lid-driven cavity is an idealization of a number of fluid mechanics
problems. From a physical point of view, several well-known flow
phenomena appear in the LDC like shear flow, boundary layers,
eddies and core vortex, and, with the occurrence of curved stream-
lines, a contribution due to the associated (Görtler) instability
mechanism to the dynamics of the flow, Taylor–Görtler-like vorti-
ces. Less well known aspects of this flow concern the presence of
streaks near the moving wall, of jet impingement at the walls,
and of corner spiraling vortices and at high Reynolds number,
the coexistence of adjacent regions of laminar and turbulent flow
within the cavity [1–3].

Specific features of lid-driven cavity flows in the turbulent
regime, such as inhomogeneity of turbulence, turbulence produc-
tion near the downstream-corner-eddy, small-scales localization
and helical properties have been investigated and discussed in
direct and large-eddy simulations framework [1–3]. Time histories
of quantities such as the total energy, total turbulent kinetic energy
or helicity exhibit different evolutions but only after a relatively
long transient period. At a Reynolds number of 12,000, the lid-
driven cavity flow is in the locally-turbulent regime and is proved
to be highly inhomogeneous in the secondary-corner regions of the
cavity where turbulence production and dissipation are important
[1–3]. The maximum production of turbulence is located at the
downstream wall jet impingement point, just above the bottom
wall, nearby the downstream-corner-eddy region.

In [1–3], the mean momentum budgets are presented and the
leading terms in these balances are examined. The Reynolds stress
budgets are computed and the statistics for the distribution of
energy between the various components are discussed. Moreover,
the effects of Reynolds number on the driven cavity flow are briefly
addressed.

3. Direct numerical simulation of the lid-driven cubical cavity
flow

The direct numerical simulation (DNS) of the LDC flow involves
the solution of the full transient, nonlinear Navier–Stokes equa-
tions without any modeling of turbulence. DNS provides thus a
complete description of a turbulent flow, and the instantaneous
flow variables (e.g. velocity and pressure) are known as a function
of space and time. The DNS resolves all dynamically important
turbulence scales, from the largest and most energetic generating
eddies, down to the smallest dissipative Kolmogorov scales.

Direct numerical simulation of the flow in a lid-driven cubical
cavity has been carried out at a Reynolds number (based on the
maximum velocity on the lid), of 12,000. The resolution used up
to 2.1 (1293) million Chebyshev collocation nodes, which enables
the detailed representation of all dynamically significant scales of
motion. The main numerical parameters of the DNS of the LDC flow
at a Reynolds number of 12,000 are presented in Table 1.

The spatial approximation of the equations of motion (i.e. the
incompressible Navier–Stokes equations) is based on the standard
Chebyshev collocation method based on Gauss–Lobatto quadrature
rules [4], which consists of exactly enforcing the differential
equations, and the boundary conditions at the Chebyshev–Gauss–
Lobatto points. It is based on the use of tensor product expansions
in Chebyshev polynomials of order N along every space direction.
This high-order method eliminates diffusion and dispersion errors
in the solution – the latter being common with low-order methods
(e.g. finite difference methods or low-order finite element methods)
currently used in three-dimensional numerical simulations of
bounded flows. All matrices arising from the discretization are cast
into the tensor product form with substantial gains in computational
efficiency.

4. Large-eddy simulation of the lid-driven cubical cavity flow

Large-eddy simulation of the turbulent flow in a lid-driven
cubical cavity have been carried out at the same Reynolds number,
i.e. 12,000, as for the DNS but using the Legendre spectral element
method [3,5]. Two distinct subgrid-scales models, namely a
dynamic Smagorinsky model (DSM) and a dynamic mixed model
(DMM), have been both validated a priori and implemented a
posteriori to perform long-lasting simulations required by the rele-
vant time-scales of the flow. The resolution in time is high enough
so that subgrid modeling is only needed to account for the reduced
resolution in space. Practically, it is usually more cost-effective to
be under-resolved in space than in time. In addition, being un-
der-resolved both in space and time leads to unavoidable numeri-
cal instabilities, e.g. Courant–Friedrich–Lewy (CFL) criterion not
respected, etc. All filtering levels make use of explicit filters applied
in the physical space (on an element-by-element approach) and
spectral (modal) spaces to separate the resolved (‘‘large”) scales
from the modeled (‘‘small”) ones. The two subgrid-scales models
had been validated and compared to available experimental and
numerical reference results, showing very good agreement.

U

Side wall
Dow

ns
tre

am
wall

Ups
tre

am
wall

Top lid

Side wall

h

h

-q
-h

X

Y Z

-h

q

Bottom wall

Fig. 1. Sketch of the geometry of the lid-driven cubical cavity.

Table 1
Main numerical parameters for the direct and large-eddy simulation of the LDC flow
at Reynolds number 12,000: K is the number of Legendre spectral elements in each
spatial direction, N is the degree of Chebychev (resp. Legendre) polynomials in each
spatial direction for the DNS (resp. LES), Dt is the time step, and the associated
sampling time with witch the instantaneous velocity and pressure fields have been
stored.

K N Dt Sampling

DNS – 128 2.5 � 10�3 0.25
LES 8 8 2.0 � 10�3 0.6
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The Legendre spectral element method (SEM) is a high-order
spatial discretization method for the approximate Galerkin solu-
tion of Navier–Stokes equations expressed in weak variational
forms [5]. The SEM relies on the division of the cavity domain into
conforming elements within each one, every velocity flow variable
is expanded in tensor-product Lagrange interpolants (polynomial
of order N in every space direction) based on (N + 1) Gauss–Lob-
atto–Legendre points in conjunction with particular quadrature
rules. Like high-order finite element techniques, the SEM can deal
with arbitrary complex geometry where h-refinement is achieved
by increasing the number of spectral elements and p-refinement
by increasing the Lagrangian polynomial order within the ele-
ments. The SEM brings the exponential rate-of-convergence asso-
ciated with high-order precision combined with the geometrical
flexibility of finite elements. From a high-order precision stand-
point, the SEM is comparable to spectral methods as an exponen-
tial rate-of-convergence is observed when smooth solutions to
regular problems are sought. Velocity C0-continuity across element
interfaces requires the exact same interpolation in each and every
spectral element sharing a common interface but the continuity of
the first derivative is reached in the weak sense. Continuity of all
derivative orders across element boundaries is attained in the limit
N ?1. Moreover, to prevent any spurious pressure modes in the
Navier–Stokes computations, the choice of a staggered PN � PN�2

interpolation method for the velocity and pressure respectively,
has been made [6,7].

The main numerical parameters of the LES of the LDC flow at a
Reynolds number of 12,000 are presented in Table 1 with K = 8
number of Legendre spectral elements, and N = 8 for the degree
of the Legendre polynomials in each spatial direction. When
removing the redundant points at the elements interfaces, the total
number of degrees of freedom (dof) is 653, representing 1/8 of the
total dof used by the DNS.

5. The three selected probed points

Three points have been carefully and purposely selected inside
the cavity with a location corresponding to three drastically different
flow states. At these three selected points, for the DNS and LES-DSM
respectively, velocity, pressure and kinetic energy instantaneous
signals have been recorded over 1200 (resp. 1000) dimensionless
time units with a sampling of 100 time steps (resp. 300 time steps),
in accordance with the sampling time given in Table 1. For the LES,
only the resolved part have been used and the analysis of the signals
are performed with those coming from LES-DSM, the LES-DMM
signals analysis providing the same quantitative results. For consis-
tency reasons, DNS data have been down-sampled with a ratio of 2.4,
hence leading to the same sampling rate as the LES data.

The point P1 is located in a laminar region at the center of the
cavity with coordinates:

P1 ¼
x1

h
¼ 0:0;

y1

h
¼ 0:0;

z1

h
¼ 0:0

� �
: ð1Þ

The point P2 is located in a transitional region near the downstream
wall jet (which is highly unsteady) with coordinates:

P2 ¼
x2

h
¼ 0:6155;

y2

h
¼ �0:6122;

z2

h
¼ �0:6021

� �
: ð2Þ

The point P3 is located in a region where the mean turbulence pro-
duction reaches its maximum due to the jet impingement and
where a large amount of small-scales structures are present. Its
coordinates are:

P3 ¼
x3

h
¼ 0:7874;

y3

h
¼ �0:9388;

z3

h
¼ �0:3371

� �
: ð3Þ

The time history of the instantaneous turbulence production
recorded in the region of this maximum of the mean turbulence

production exhibits relatively few very high peaks [1,3]. The peaks
obtained by the LES have lower intensity in comparison with those
obtained by DNS due to the filtered scales of the LES. For both DNS
and LES, those peaks (or clusters of them) show a minimum sepa-
ration in time of about 100 dimensionless time. The conditional
average of the instantaneous velocity field according to a pre-
scribed threshold value provides the associated coherent structure:
a pair of counter-rotating vortices. Due to the filtering separation
of the resolved (‘‘large”) eddies from the modeled or filtered
(‘‘small”) ones, it is expected that all LES signals will exhibit less
behavior coming from the small-scales.

6. Spectral analysis

The time series of the three considered quantities, namely pres-
sure, local kinetic energy and x-component of the velocity field,
have been extracted from the DNS ans LES databases at the three
distinct locations inside the cavity introduced in Section 5. Fig. 2
presents the pressure and the velocity signals issued from DNS
and LES simulations. Each probed point has been purposely chosen
to characterize the three different regimes – laminar, transitional,
turbulent – encountered within the lid-driven cavity flow at
Re = 12,000 as discussed in Section 5. The groundbreaking work
of Kolmogorov [8] highlights the fact that the velocity fluctuations
of a turbulent flow can be analyzed and characterized based upon
the behaviors of the scales of the spatial increment of the Eulerian
velocity or the temporal increment of the Lagrangian velocity. The
central postulate of statistical isotropy of small spatial and tempo-
ral scales, used by Kolmogorov in [8] is directly connected to the
independence of these small-scales with respect to the mechanism
of injection of energy which occurs at the large scales through the
formation of the large eddies. In addition, the statistical analysis of
the temporal fluctuations of the pressure field allows one to study
the vortically-intense regions of the flow [1]. Given the fact that
the pressure field is the solution of a Poisson equation (the flow
being incompressible), the vortical structures are therefore con-
nected to the rapid changes in the temporal signal of the pressure
field, see Fig. 2.

A pre-analysis of the simulated system consists in the Fourier
transform computation applied to the velocity signal and to the
pressure signal at the point P3 of maximum mean turbulence pro-
duction within the cavity. The Fourier transform can be written as
[9]:

SðmÞ ¼
Z

sðtÞe�2ipmt dt; ð4Þ

where s(t) is the analyzed signal, t the time and m the frequency.
The results of the spectral analysis for the intensity (square

modulus of the quantity) in a Log-Log scale are shown in Fig. 3
(resp Fig. 4) where a �5/3 (resp. �7/3) slope is observed for the
velocity (resp. pressure) signals. These results which are character-
istics of the developed turbulence region of the cavity flow are in
good agreement with those predicted by the statistical theory of
the turbulence K41 [8]. Slopes were conventionally estimated
using a linear regression method. It is worth noting that these
spectra (as well as the subsequent ones in this article) lack smooth-
ness at high frequencies due to the limited size of our databases of
turbulent flow samples. It must be added that nowadays, the stor-
age of these databases represents a serious practical issue, if not a
bottleneck, in the production of DNS databases [2].

In order to get a meaningful spectral analysis, the sampling
period should be compatible with the Shannon’s theorem [9].
The Nyquist frequency being higher than the maximum frequency
of the DNS and LES signals, no aliasing error are found, as shown in
Fig. 5.
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7. Wavelet transform and wavelet transform modulus maxima
analysis

The simple and traditional spectral (Fourier) analysis presented
in Section 6 provides interesting initial results. However, such
spectral analysis is known to provide limited insight.

More advanced signal analyses of turbulent data have been
reported in the literature and, without being exhaustive, it is worth
mentioning two specific techniques. First, a multiscale geometric
analysis has been reported in [10], in which the curvelet transform

is used. The curvelet transform is an extension of the wavelet
transform concept using polar coordinates). It is applied in [10]
to the total vorticity of both experimental and DNS signals of a
turbulent flow, with the aim to reconstruct the two- and three-
dimensional coherent vortical structures. Second, a hybrid method
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Fig. 2. Pressure fields and velocities for the three regimes for DNS and LES simulations.
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Fig. 3. Fourier transforms of the time histories of the DNS and LES velocity signals
at the point P3 of maximum mean turbulence production within the cavity.

0 0.5 1 1.5 2 2.5 3
−6

−5

−4

−3

−2

−1

0

1

2

3

log (frequency)

lo
g 

(P
SD

(P
re

ss
ur

e)
)

DNS
LES

−7/3

Fig. 4. Fourier transform of the time histories of the DNS and LES pressure signals at
the point P3 of maximum mean turbulence production within the cavity.
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is introduced in [11], where a proper orthogonal decomposition
(POD) technique is coupled to multiscale wavelet analysis and
applied to experimental PIV data for the analysis of some specific
flow structures and their time evolution. The wavelet transform
is both used for denoising the PIV data and also to obtain scale wise
decomposition (discrete wavelet transform) of the POD modes in
order to study spatial topologies of the considered turbulent flows.

In the present work, we aim at finding the most appropriate sig-
nal analysis allowing to characterize the turbulent coherent struc-

tures (large eddies) simulated by a LES, in comparison to those
obtained of the associated DNS and obtained by CVE [12]. As a sec-
ond step, a continuous wavelet transform (CWT) analysis is consid-
ered [9,13]. The CWT is known to be well suited to investigate
signals generated by turbulent phenomena [9,14].

The continuous wavelet transform is expressed by

CW½s�ða; bÞ ¼ hWa;b; si ¼
Z

Wa;bðtÞsðtÞdt; ð5Þ

with

Wa;b ¼
1ffiffiffi
a
p W

t � b
a

� �
; ð6Þ

and corresponds to the inner product of the signal s(t) with the suc-
cessive versions of the mother wavelet Wa,b, where a is a real posi-
tive parameter and b a real parameter, and the overline denotes the
complex conjugate. The selected wavelet must verify the following
admissibility condition

R
WðtÞdt ¼ 0. In the sequel, all wavelet

analyses are based on the so-called ‘‘Mexican hat” wavelet (Fig. 6)
expressed by

WðtÞ ¼ 2p�1=4ffiffiffi
3
p ð1� t2Þe�t2=2: ð7Þ

The choice of the wavelet leads to the second derivative of the
Gaussian function (see Fig. 6). In fact this wavelet is C1 and is well
localized in the time domain as in the frequency domain. In addi-
tion, its two first moments vanish and verifyZ

xqWðtÞ_t ¼ 0; 0 6 q < 2: ð8Þ

This property is essential analyzing singularities within a signal
[14].

The continuous wavelet transform CW[s](a,b) is now a conven-
tional tool for the analysis of singularities in a signal at an instant
t0, and hence allows one to expand the concept of ‘singularity
exponent’. It is well-known that the wavelet transform, near a sin-
gular point b = t0, behaves like a power law according to the scale
with the Hölder exponent h(t0), namely: jCW½s�ða; t0Þj / ahðt0Þ. The
Hölder exponent h(t0) is a measure of the strength of the singular-
ity [14,15].

In the present work, given the (inhomogeneous) production of
turbulence within the cavity flow [3,1], a multi-resolution analysis
of signals extracted from the DNS and LES database appears like a
promising strategy. The results of the wavelet transform computa-
tion are traditionally presented in a graph with a horizontal axis for
the time, a vertical one for the scale a and flooded color contours of
the continuous wavelet transform. The continuous wavelet trans-
form of the DNS and LES signals are used to reveal the changing
patterns between the three regimes, laminar, transitional and tur-
bulent. The wavelet analysis of the pressure signal is shown in Figs.
7 and 8. Fig. 8 highlights the gradual emergence of LES ‘time-scale’
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Fig. 6. Mexican hat wavelet.
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patterns at large scales. As expected in the DNS simulation all the
scales of eddies contribute to the generated turbulence and Fig. 7
provides a representation of the turbulence across all scales.

To quantify the turbulence, it seems relevant to implement the
wavelet transform modulus maxima analysis (WTMM) [14]. In par-
ticular, the skeleton (defined by the lines of maxima of the wavelet
transform modulus) is calculated for the pressure signal in both
laminar and turbulent regimes. The results are shown in Fig. 9
where filaments appear for both the laminar and the turbulent
cases. The longest filaments are collected and represented in

Fig. 10 where the scale is on the horizontal axis and the magnitude
of the filaments on the vertical one. The laminar filaments appear
almost constant in amplitude, whereas the filaments for the turbu-
lent regime display a �2/3 slope. This �2/3 slope corresponds to
very large depressions associated with the turbulent bursts
occurring when a pair of counter-rotating vortices is produced
[3,1]. The identified singularities are very strong and have a nega-
tive Hölder exponent. The above results for the turbulent region of
the flow provide structures possessing a clear fractal signature,
which is also related to the high level of singularities. In addition,

Time

Sc
al

e
LES Pressure Laminar CWT

0 1 2 3

50

100

150

200

250 −6

−4

−2

0

2

4
x 10−3

Time

Sc
al

e

LES Pressure Transition CWT

0 1 2 3

50

100

150

200

250

−0.01

0

0.01

Time

Sc
al

e

LES Pressure Turbulent CWT

0 1 2 3

50

100

150

200

250 −0.2

−0.1

0

0.1

Fig. 8. Continuous wavelet transform of the LES pressure field at the three locations of the cavity corresponding to laminar, transitional and turbulent regimes. Red (resp.
blue) represents positive (resp. negative) contour levels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

0 100 200 300 400 500 600 700 800 900 1000

7

7.5

8

8.5

9

9.5

10

lo
g2

(s
ca

le
)

Time

Skeleton of Wavelet Transform
     Pressure signal − Laminar

0 100 200 300 400 500 600 700 800 900 1000

7

7.5

8

8.5

9

9.5

10

10.5

11

lo
g2

(s
ca

le
)

Skeleton of Wavelet Transform
Pressure signal − Turbulent

Time

Fig. 9. Skeleton of the wavelet transform of the LES pressure field successively for both the laminar (top) and turbulent (bottom) regimes.

G. Courbebaisse et al. / Computers & Fluids 43 (2011) 38–45 43



Author's personal copy

when considering the DNS case, the calculated skeleton behavior
for the pressure signal for the turbulent regime, hence reinforcing
our discussion in the LES case. The results are shown in Fig. 11

where filaments appear highlighting a high level of singularities
and in Fig. 12 where a �5/3 slope measurement is linked to turbu-
lence scales and to the interaction between small and large eddies.

8. WTMM method and spectrum of singularities

To characterize the DNS and LES signals, one has to resort to a
multi-fractal model and hence study the spectrum of Hölder expo-
nent, also known as ‘spectrum of singularities’. Considering a mul-
ti-fractal formalism [16,15], the K41 theory [8] leads to a statistical
homogeneous velocity field characterized by only one Hölder
exponent when the Reynolds number tends to infinity. For small
scales, the properties of invariance of the Navier–Stokes equations
are statistically preserved. However, when considering intermit-
tency phenomena in fluid flow, the assumption of homogeneity
is no longer valid for small-scales. An improvement of the earlier
statistical theory of homogeneous and isotropic turbulence K41
[8] is given by the K62 [17,18] theory which allows one to consider
intermittent phenomena. Similarity assumptions (statistical rela-
tion between local fluctuations of the velocity field and fluctua-
tions of the dissipative energy field) in the case of isotropic
turbulence can be understood from the multi-fractal formalism
[9,14–16].

Furthermore to achieve a better computation of the spectrum of
singularities, we should consider a longer time integration for the
DNS and the LES – the database sampling time turned out to be
accurate –, up to several thousand dimensionless time. The present
DNS and LES simulation span only for 1000 dimensionless time,
and increasing the total dimensionless time will be rather expen-
sive for DNS, but may be feasible. Moreover, to study the statistical
distribution of singularities, it is necessary to calculate the spec-
trum of singularities D(h) by a multi-fractal formalism based on
the wavelet transform modulus maxima method (WTMM) [14].

9. Conclusions

Continuous wavelet transform coupled to WTMM analysis, is
implemented to analyze DNS and LES signals in order to character-
ize the locally turbulent flow in a lid-driven cubical cavity. Despite
the inherently low space and time resolution of the LES signals, the
wavelet analysis reveals some very interesting features through its
Hölder exponent in a multi-fractal framework. In addition, the
wavelet transforms of DNS and LES signals deliver representations

Fig. 10. Amplitude of the wavelet transform along the longest filaments of the
skeleton of the LES pressure field successively for both the laminar (top) and
turbulent (bottom) regimes.
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Fig. 11. Skeleton of the wavelet transform of the DNS pressure field in the turbulent
regime.
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Fig. 12. Amplitude of the wavelet transform of the DNS pressure field along the
longest filaments of the skeleton in the turbulent regime.
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highlighting the specificities of DNS and LES. Comparisons of these
results for three different locations within the cavity corresponding
to three different flow regimes show the effectiveness of this
approach for a locally inhomogeneous and anisotropic flow such
as the one in the lid-driven cavity at a Reynolds number of
12,000. At this step, a more general investigation and characteriza-
tion of physical quantities computed through DNS and LES in other
flow configurations is suggested.
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