
Computers & Fluids 44 (2011) 1–8
Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid
Computational performance of a parallelized three-dimensional high-order
spectral element toolbox

Christoph Bosshard c, Roland Bouffanais b, Michel Deville a, Ralf Gruber a, Jonas Latt a,⇑
a École Polytechnique Fédérale de Lausanne, STI–IGM–LIN, Station 9, 1015 Lausanne, Switzerland
b Massachusetts Institute of Technology, 77 Massachussetts Avenue, Bldg 5–326, Cambridge, MA 02139, USA
c Paul Scherrer Institut, Laboratory for Thermalhydraulics (LTH), 5232 Villigen PSI, Switzerland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 November 2009
Received in revised form 16 September
2010
Accepted 18 November 2010
Available online 24 November 2010

Keywords:
CFD
High-order method
Spectral element method
HPC
Parallelism
0045-7930/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.compfluid.2010.11.014

⇑ Corresponding author.
E-mail addresses: christoph.bosshard@epfl.ch (C.

(R. Bouffanais), michel.deville@epfl.ch (M. Deville), ra
jonas.latt@epfl.ch (J. Latt).
In this paper, a comprehensive performance review of an MPI-based high-order three-dimensional spec-
tral element method C++ toolbox is presented. The focus is put on the performance evaluation of several
aspects with a particular emphasis on the parallel efficiency. The performance evaluation is analyzed
with the help of a time prediction model based on a parameterization of the application and the hardware
resources. Two tailor-made benchmark cases in computational fluid dynamics (CFD) are introduced and
used to carry out this review, stressing the particular interest for clusters with up to thousands of cores.
Some problems in the parallel implementation have been detected and corrected. The theoretical com-
plexities with respect to the number of elements, to the polynomial degree, and to communication needs
are correctly reproduced. It is concluded that this type of code has a nearly perfect speedup on machines
with thousands of cores, and is ready to make the step to next-generation petaFLOP machines.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction ment, libraries optimization, libraries parallelization, and increase
The Spectral unstructured ELements Object-Oriented System
(SpecuLOOS) is a toolbox written in C++ [1], which is available free
of charge under the terms of an open-source software license.
SpecuLOOS is a spectral and mortar element analysis software for
the numerical solution of partial differential equations and more
particularly for solving incompressible unsteady fluid flow prob-
lems. The main architecture choices and the parallel implementa-
tion were elaborated and implemented by Van Kemenade and
Dubois-Pèlerin, and published in [2]. Subsequently, SpecuLOOS’
C++ code has been further developed, see [3].

It is well known that spectral element methods [4] are easily
amenable to parallelization, as the domain decomposition into
spectral elements can be made to correspond in a natural way to
an attribution to parallel nodes [7].

The ongoing simulations based on SpecuLOOS highlight the
achieved versatility and flexibility of this C++ toolbox. Neverthe-
less, 10 years have passed between the first version of SpecuLOOS’
code and the present time and tremendous changes have occurred
at both hardware and software levels. SpecuLOOS correspondingly
improved to incorporate the benefits of fast dual DDR memory,
RISC architectures, 64-bit memory addressing, compilers improve-
ll rights reserved.

Bosshard), bouffana@mit.edu
lf.gruber@epfl.ch (R. Gruber),
in inter-connecting switch performance.
Here we discuss adaptation of SpecuLOOS to thousands of mul-

ti-core nodes. Performance measurements on a one-core node, on
an Intel-based cluster with hundreds of nodes, and on a 2048
quad-core nodes of a Blue Gene/P (BG/P) are presented. The ob-
tained complexities are compared with theoretical predictions. Ini-
tial results show that small cases gave good complexities, but very
large cases gave poor efficiencies. These results led to the detection
of a poor parallel implementation which limited the usage of the
code to approximately 1000 cores. As it is pointed out in [15], this
threshold value of 1000 cores is frequently observed and puts often
a limit to the scalability of modern software in the domain of com-
putational fluid dynamics. Once this problem was corrected, the
complexity of SpecuLOOS could however be adjusted and corre-
sponds now to the theoretical one up to the 8192 cores used.

To our knowledge, there exist two other spectral-element-
based codes for computational fluid dynamics which, like Specu-
LOOS, are adapted to high performance computing and can be used
under the terms of an open-source license. The first one, the Nektar
code, is referenced in [8], and the second one, provided under the
code-name Nek5000, is mentioned in [9].
Description of the test cases

The test cases belong to the field of CFD and consist in solving
the 3D unsteady Navier–Stokes equations for a viscous Newtonian

http://dx.doi.org/10.1016/j.compfluid.2010.11.014
mailto:christoph.bosshard@epfl.ch
mailto:bouffana@mit.edu
mailto:michel.deville@epfl.ch
mailto:ralf.gruber@epfl.ch
mailto:jonas.latt@epfl.ch
http://dx.doi.org/10.1016/j.compfluid.2010.11.014
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid

2 C. Bosshard et al. / Computers & Fluids 44 (2011) 1–8
incompressible fluid. Based on the problem at hand, it is always
physically rewarding to non-dimensionalize the governing Na-
vier–Stokes equations which take the following general form:

@u
@t
þ u � $u ¼ �$pþ 1

Re
Duþ f; 8ðx; tÞ 2 X� I; ð1Þ

$ � u ¼ 0; 8ðx; tÞ 2 X� I; ð2Þ

where u is the velocity field, p the reduced pressure (normalized by
the constant fluid density), f the body force per unit mass and Re the
Reynolds number

Re ¼ UL
m
; ð3Þ

expressed in terms of the characteristic length L, the characteristic
velocity U, and the constant kinematic viscosity m. The symbol X de-
notes the computational domain. The evolution of the system is
studied in the time interval I = [t0,T]. Considering particular flows,
the governing Navier–Stokes equations (1) and (2) are supple-
mented with appropriate boundary conditions for the fluid velocity
u and/or for the local stress at the boundary. For time-dependent
problems, a given divergence-free velocity field is required as initial
condition in the internal fluid domain.

The first test case corresponds to the fully three-dimensional
simulation of the flow enclosed in a lid-driven cubical cavity. The
cavity is cubical and imposes no-slip walls, including for the top
wall which is driven by a constant velocity, tangential to the sur-
face. This numerical setup offers an interesting context for the
study of internal flows, and it offers a rich physical content. The
simulations are run at a Reynolds number of 12,000 that corre-
sponds to a locally-turbulent regime. This corresponds to the case
denoted under-resolved DNS (UDNS) in Bouffanais et al. [10]. The
reader is referred to Bouffanais et al. [10] for full details on the
numerical method and on the parameters used.

The second test case is the differentially heated cavity problem.
Like for the first test case, the flow is confined in a cubical cavity.
The fluid is heated over one vertical wall and cooled over its oppo-
site wall at equal rates. For this case the flow is described by the
Boussinesq equations:

@u
@t
þ u � $u ¼ �$pþ Prffiffiffiffiffiffi

Ra
p Du� PrT

g
jgj ; 8ðx; tÞ 2 X� I; ð4Þ

$ � u ¼ 0; 8ðx; tÞ 2 X� I; ð5Þ
@T
@t
þ u � $T ¼ 1ffiffiffiffiffiffi

Ra
p MT; 8ðx; tÞ 2 X� I; ð6Þ

where T is the nondimensional temperature, Pr the Prandtl number,
g the gravity vector and Ra the Rayleigh number

Ra ¼ bgL3DT
ma

: ð7Þ

In the last equation b is the thermal expansion coefficient, g is the
gravitational constant, DT is the temperature difference between
the hot and the cold wall and a is the thermal diffusivity. The differ-
entially heated cavity problem is one of the classical heat and mass
transfer problems and has become a popular numerical benchmark.
The simulations are run at a Rayleigh number of 109. For further
explanations and details of the differentially heated cavity problem
see for example [13].

For the complexity analysis in the Sections 3 and 4 we used the
lid-driven cavity as the test case. The benchmarks in Section 5 have
been done for both test cases.
2. Legendre spectral element method

2.1. Space and time discretizations

The spectral element method is based on a weak formulation of
the Navier–Stokes equations, with a choice of test and trial func-
tions which are element-wise Lagrangian interpolation polynomi-
als based on a Legendre grid [4]. The Navier–Stokes equations in
their strong formulation are first expressed in a general weak form,
which is also used in the context of finite elements. The solution for
the velocity u for the Navier–Stokes problem in d-dimensional
space is sought directly in the Sobolev space of test (resp. trial)
functions H1

0ðXÞ
d (resp. H1(X)d), defined as the space of differentia-

ble vector functions having their first-order partial derivatives with
respect the space of square integrable functions L2(X) and vanish-
ing on the domain boundary oX (resp. except on the top lid wall as
in [10]), and where d = 2, 3 denotes the space dimension. The weak
transient formulation reads as follows:

Find a solution (u(t),p(t)) 2 H1(X)d � L2(X) such that for almost
every time t:

d
dt

Z
X

u � v dXþ
Z

X
u � $uð Þv dX ¼

Z
X

p$ � v � 1
Re

$u : $v dX

þ
Z

X
f � v dX; 8v 2 H1

0ðXÞ
d

and

�
Z

X
q$ � udX ¼ 0; 8q 2 L2ðXÞ; ð8Þ

The first step in the SEM discretization consists in subdividing
the fluid domain �X ¼ X [@X into E non-overlapping elements
fXegE

e¼1. Each element Xe involves a mesh constructed as a tensor
product of one-dimensional grids. Although each space direction
may be discretized independently of the others, for the sake of sim-
plicity and without loss of generality, we consider in this paper
only meshes obtained with the same number of nodes in each
direction, within each element, denoted by N + 1, and correspond-
ing to the dimension of the space of Nth-order polynomials. In the
following, we define the spaces

X � H1
0ðXÞ

d
; Z � L2ðXÞ; ð9Þ

and apply the Galerkin approximation, in which finite dimensional
polynomial sub-spaces XN and ZN are selected to represent X and Z
respectively. In practice, some restrictions occur as far as the selec-
tion of polynomial degrees is concerned. In particular spurious
oscillation phenomena in the pressure are avoided by means of a
staggered-grid approach with elements based on sub-spaces of
polynomial degree N and N � 2 respectively for the velocity and
the pressure field. With this formalism, the term d

dt

R
X u � v dX in

the weak Navier–Stokes formulation is for example replaced by
its semi-discrete analog d

dt ðuN;vNÞ, where the bracket denotes a sca-
lar product within the corresponding polynomial subspace:

ðuN ;vNÞ ¼
XE

e¼1

Z
Xe

uN � vN dX; 8vN 2 XN: ð10Þ

The functions uN an vN are approximated by Lagrangian interpola-
tion polynomials of degree N based on a Legendre grid [4].

The integrals within each of the spectral elements fXegE
e¼1 are

calculated in a discrete manner using Gaussian quadrature rules.
More specifically, all terms in the momentum equations are inte-
grated using a Gauss–Lobatto–Legendre (GLL) quadrature rule, ex-
cept for the pressure term. This term, as well as the divergence-free
equation, are solved with help of a Gauss–Legendre (GL) quadra-
ture rule. In order to formulate the semi-discrete version of the Na-
vier–Stokes problem, the variables are approximated with

C. Bosshard et al. / Computers & Fluids 44 (2011) 1–8 3
expressions involving Lagrangian interpolation polynomials, with
collocation points identical to the quadrature points. The SEM uses
two tensor-product bases on the reference element bX � ½�1;1�d.
The semi-discrete equations are then expressed as

M
du
dt
¼ �Au� Cuþ DT pþMf; ð11Þ

� Du ¼ 0: ð12Þ
The operators appearing in these equations are: M the diagonal

mass matrix, A the stiffness matrix, C the discrete convective oper-
ator, DT the discrete gradient operator and D the discrete diver-
gence. These matrices are all composed of three blocks
associated with the discretization in each space direction. For in-
stance, the diagonal mass matrix M is composed of d blocks,
namely the mass matrices M which are identical when considering
the same polynomial degree in the d space directions. The variables
u and p represent the degrees of freedom of the numerical model.
They have a size of (N + 1)dE variables in the former case, and
(N � 1)dE variables in the latter case. It is worth adding that nodal
values for the velocity field, u, on subdomain interface boundaries
are stored redundantly on each processor corresponding to the
spectral elements having this interface in common. This approach
is consistent with the element-based storage scheme which mini-
mizes the inter-processor communications. The details of the par-
allelization of this scheme are provided in Section 8 of [4].

To discretize in time, we use a backward differentiation formula
of order 2 (BDF2) for the Stokes operator and an extrapolation
scheme of order 2 (EX2) for nonlinear terms. The resulting set of
equations is solved via a generalized block decomposition with
pressure correction (see chapter 5 in [4]), which can be summa-
rized by the following steps (Dt represents the time step):

1. Computation of the tentative velocity vector u* by solving
Hu� ¼ DT pn þ M
Dt

2un � 1
2

un�1
� �

þMfnþ1 � ð2Cun � Cun�1Þ

ð13Þ
using the old time-level pressure pn, and defining the Helmholtz
operator H = 3M/(2Dt) + A.
2. Computation of the pressure at the new time-level by solving

the following problem for the pressure correction
dpn+1 = pn+1 � pn:
�DQDTdpnþ1 ¼ 2
Dt

Du�: ð14Þ
3. Computation of the final velocity at the time-level n + 1 after a
pressure correction
unþ1 ¼ u� þ QDTdpnþ1: ð15Þ
To entirely decouple the pressure from the velocity-field calcu-
lation, the matrix Q is an approximation of the inverse of the Helm-
holtz operator, and in this case is chosen as:

Q ¼ 2Dt
3

M�1: ð16Þ

In the case of the Boussinesq equations, the discretization of the
temperature Eq. (6) is similar to the discretization of the momentum
Eq. (1). The temperature is approximated by a Lagrangian interpola-
tion polynomial of degree N with the same collocation points as for
the velocity. The semi-discrete temperature equation is given by

M
dT
dt
¼ �AT � CT; ð17Þ

where M, A, and C are the mass matrix, the stiffness matrix and the
convective operator respectively. To discretize in time, we use a
backward differentiation formula of order 2 (BDF2) for the diffusion
term and an extrapolation of order 2 (EX2) for the nonlinear convec-
tion term.

More information on this discretization method is provided in
[5,6], which also provide a formal proof of the spectral order of
accuracy of the method, for straight and for curved boundaries.

2.2. Computational complexity

The complexity of this algorithm is proportional to the total
number of elements E in the three dimensional space. The geomet-
ric complexity of each physical element is handled by resorting to
isoparametric mappings onto the unit cubic parent elementbX � ½�1;1�d. Since the Lagrangian interpolation basis functions
based on the Gauss–Lobatto–Legendre grid points {nj}06j6N of de-
grees N = Nx = Ny = Nz, and defined as

hjðrÞ ¼ �
1

NðN þ 1Þ
1

LNðnjÞ
ð1� r2ÞL0NðrÞ
ðr � njÞ

; �1 6 r 6 þ1; 0 6 j 6 N;

ð18Þ

are orthonormal, the complexity for the velocity is (N + 1)3, while
the complexity for the pressure is (N � 1)3. During the computa-
tions, the variables are frequently re-interpolated between the col-
location nodes, an operation which has a leading complexity of N4,
due to the tensorization of the implied linear operations. At large
values of N, these re-interpolations therefore dominate the total
computation time. It should be remarked that from a complexity
standpoint, a term like (N � 1)3 is equivalent to a term like
(N + 1)3. In the following, a term N � 1 has been applied systemat-
ically to read the complexity from experimental performance
curves, while the notation of the equations is simplified by use of
the term N.

The CPU time of the SpecuLOOS spectral code can then be esti-
mated as

TðN1;NCG; E;NÞ ¼ a1N1NCGEa2 Na3 ; ð19Þ

where NCG is the number of conjugate gradient steps, N1 is the num-
ber of time steps. The parameter a1 represents the actual operations
which are executed on an element at each CG iteration. It is inde-
pendent on the simulated problem, but depends on the characteris-
tics of the hardware, and is therefore found through simulation. The
parameter a3 has a leading complexity of 4, which appears with
very large values of N. In practice, simulations are however run with
relative modest polynomial degrees which are rarely higher than
12. In this case, benchmarks find a value of 3 < a3 < 4, which reflects
the different complexity of the operations involved in the simula-
tion process.

3. Complexity on one node

In the software SpecuLOOS, the linear equations involved in
steps 1 and 2 of the procedure shown in the previous section are
solved with help of an iterative conjugate gradient solver. The rel-
ative expense of solving the pressure problem (step 2) compared to
the Helmholtz problem (step 1) increases when Dt is decreased.
The choice of Dt is restricted by a Courant–Friedrichs–Lewy (CFL)
condition in step 1,

umaxDt
Dxmin

6 1; ð20Þ

where umax is the physical flow velocity and Dxmin the smallest dis-
tance between two grid points. In a GLL grid, the smallest distance be-
tween two collocation points is located close to the mesh boundary,
and scales like 1/N2. Due to the high grid resolution, the time step is
small in the present problem, and the computation of the pressure

Table 1
SpecuLOOS on one node of an Intel Xeon cluster. The number of conjugate gradient
iterations NCG is an average value over all time steps for the pressure.

N1 E N Texec (s) NCG # iter TCG (s) TCG
Texec

TCG,(1iter) (s)

1 256 8 40.1 198 32.8 0.818 0.17
1 256 10 119.3 247 103.8 0.870 0.42
1 512 6 43.2 205 33.9 0.785 0.17
1 512 8 116.4 268 106.7 0.917 0.40
1 512 10 394.3 344 342.3 0.868 1.00
1 1024 6 105.2 259 83.4 0.793 0.32
1 1024 8 311.0 339 265.4 0.853 0.78

4 C. Bosshard et al. / Computers & Fluids 44 (2011) 1–8
problem becomes dominant, taking as much as 90% of the total com-
putation time. A complexity analysis of the code therefore concen-
trates on a complexity analysis of this part of the problem. It should
be remarked however that a complexity analysis of the Helmholtz
problem is very similar, and the overall conclusions are therefore
the same in face of a problem with a larger discrete time step.

A time iteration of the solver is performed by executing the iter-
ative algorithm of the conjugate gradient (CG) solver. At each CG
iteration, the problem is preconditioned, after which the linear
operators such as D or Q are evaluated. Thus, the total complexity
of a time step is described by the leading complexity of either pre-
conditioning the problem or evaluating the linear operators,
whichever is more expensive, multiplied by the number of CG
iterations.

For the case of the Boussinesq Eqs. (4)–(6), the linear system of
equations coming from the discretized temperature equation is
also solved with a conjugate gradient algorithm. This linear system
is always solved in a few iterations independently from the prob-
lem size. Therefore, time spent in code for solving the temperature
Eq. (6) is truly negligible for the complexity analysis.

All measurements shown in the current Section 3 are from the
lid-driven cavity problem described in Section 1.

3.1. Number of CG iterations for the Helmholtz and the pressure
problem

The number of conjugate gradient iterations needed to solve a
linear problem depends on the quality of the preconditioning. With
good preconditioning, it is observed that an optimal complexity is
achieved, with a number of iterations which is proportional to both
the polynomial degree N, and to the number of elements E1/3 along
a space direction.

3.2. Preconditioning of the pressure calculation

Two preconditioners are used in the following. The first precon-
ditioner, referred to as the Couzy preconditioner [11], holds a full
matrix representation of the preconditioning matrix. Applying this
preconditioner therefore requires a number of operations propor-
tional to N6. Because of this unfavorable complexity, the Couzy pre-
conditioner is a bad option for large values of the polynomial
degree N. On the other hand, it dramatically reduces the number
of required CG steps thanks to a high quality preconditioning,
and is therefore a good option for modest values of N. The second
preconditioner, referred to as the diagonal preconditioner, is repre-
sented by a diagonal matrix. It is therefore applied with an optimal
complexity of N3 and is an ideal choice at large values of N,
although its quality of preconditioning is distinctly inferior to the
abilities of the Couzy preconditioner. Typically, the Couzy precon-
ditioner leads to an improved overall performance for N < 12.

3.3. Evaluation of the linear operators

During the computation of the pressure term, step 2 in the algo-
rithm, the operators D, DT, and Q are evaluated. Furthermore, the
variables of the vector p need to be re-interpolated from the GL
to the GLL grid, to be combined with the other terms. All men-
tioned operators, as well as the operator responsible for reinterpo-
lation, are expressed as tensor products of one-dimensional
operators. It can be shown that such tensor-product operators
can be applied to a vector with a leading complexity of N4. This
is much faster than applying a general linear operator in a space
of dimension N3, which would require an operational complexity
N6.

Table 1 presents the results of SpecuLOOS on one node of a
home-grown cluster which consists of quad-core Xeon X3350
CPUs, running at 2.66 GHz, and with a Gigabit Ethernet intercon-
nect [12]. The CPU time measurements, TCG,(1 iter), for one CG iter-
ation step (N1 = NCG = 1) are used to minimize

P
ðT � TCG;ð1iterÞÞ2,

where

TðNCG ¼ 1Þ ¼ a1Ea2 Na3 ; ð21Þ

This minimization procedure gives the scaling law.

TðE;NÞ ¼ 2:01 � 10�6E0:97 � N3:3: ð22Þ

One realizes that this complexity law corresponds well to the
theoretical one, (Eq. (19)).

Generally, the number of iteration steps is not known. If in the
optimization procedure one includes NCG in the parameters E and
N, the power law (19) becomes

TðN1; E;NÞ ¼ 1:15� 10�5 � N1 � E1:30 � N4:19: ð23Þ

As a consequence, the estimated number of NCG,est is

NCG;est ¼ 5:72� E0:33 � N0:89: ð24Þ

This prediction is also close to the expected theoretical com-
plexity NCG,theo:

NCG;theo � E
1
3 � N: ð25Þ

The same type of studies has been made for a diagonal precon-
ditioner varying the polynomial degree. The complexity found is
NCG, est � N1.47. Thus, for N P 12 the diagonal preconditioner is fas-
ter, while for N < 12 the Couzy preconditioner is faster. Since we
treat cases with N = 12 or smaller, we concentrate on the Couzy
preconditioner.

4. Wrong complexity on the Blue Gene/P

The SpecuLOOS code has been ported to the IBM Blue Gene/P
machine at EPFL with 4096 quad-core nodes (for practical reasons,
only 2048 nodes of the BG/P could be used). Table 2 presents the
results obtained with the original version of the SpecuLOOS code,
before important adaptations described below were performed.
One element is running in a core. The polynomial degree is fixed
to N = 12 for the velocity components, and to N � 2 = 10 for the
pressure. The resulting complexity given by the pressure computa-
tion is illustrated in Table 2, and is identified as [12]

T � E2: ð26Þ

This result shows that the complexity of the original parallel
code is far from the E1.3 law, which is expected for theoretical rea-
sons, as shown in Eq. (23), and verified numerically in a serial pro-
gram execution. The reasons for this bad result could be identified
as follows. In fact, an ‘‘IF’’ conditional statement over all elements
had been introduced in the code, in order to check the attribution
of elements to computational nodes dynamically, at each iteration
of the conjugate gradient method. Such an instruction is typical for
rapid corrections in a code, which are made to parallelize a pro-

Table 2
SpecuLOOS on the Blue Gene/L machine up to P = 8192 nodes. The number of
elements per core has been fixed to one. The polynomial degree for the pressure is
equal to N � 2 = 10.

N1 E = ExEyEz N P #elem
node

Texec

1 8 � 8 � 16 12 1024 1 17.22
1 8 � 16 � 16 12 2048 1 29.91
1 16 � 16 � 16 12 4096 1 57.05
1 16 � 16 � 32 12 8192 1 140.50

0

101

102

Sp
ee

du
p

Ideal speedup
BG/P, Pol. degree 8
Pleiades2, Pol. degree 12
Pleiades2, Pol. degree 8

C. Bosshard et al. / Computers & Fluids 44 (2011) 1–8 5
gram rapidly without realizing its impact on future program exe-
cutions. This did not affect the CPU time for less than 100 cores P
(the acronym P stands for ‘‘processes’’), but became dominant at
a large number of cores P > 1000. This ‘‘IF’’ instruction has now
been replaced by the use of a precomputed list, pointing to the ele-
ments which are active on a core.
Number of cores
100 101 102

10

Fig. 1. Speedup of a constant-size problem on the BG/P and on the Pleiades2
commodity cluster, on a number of cores varying from 1 to 64. The number of
elements is 4 � 4 � 4 = 64. It is seen that the scaling is practically ideal on the BG/P.
On Pleiades2, while the scaling is very good within the four cores of a quadri-core
node, it is severely affected by the inter-node communication. The scaling improves
when the polynomial degree is increased, because this increases the relative
computational load compared to the communication time.

64 128 256 512 1024 2048 4096 8192
100

101

102

103

Number of cores

R
el

at
iv

e
sp

ee
du

p

16*16*32
16*32*32
32*32*32

Fig. 2. Performance of a constant-size problem on the BG/P, on a number of cores
varying from 64 to 8192. The speedup represents the relative efficiency of the
program on N nodes, as compared to the efficiency on 64 nodes. The number of
elements is selected among the choices of E = 16 � 16 � 32 = 8192, E = 16 � 32 �
32 = 16,384, and E = 32 � 32 � 32 = 32,768. It is seen that the scaling is excellent in
spite of the small element-per-core ratio in the many-core limit.
5. Benchmarks

In the following benchmarks, the SpecuLOOS code is executed
on two different parallel platforms, and the scaling laws which
were derived theoretically in the previous section are verified in
practice. Furthermore, the negative impact of inter-process com-
munication on performance is quantified. In this way, it is possible
predicting to which extent spectral element-based codes scale to
very large problems, or to very large parallel machines, or both.

All benchmarks have been done for both test cases described in
Section 1 with almost identical results. Unless stated otherwise in
the text, only the results from the differentially heated cavity prob-
lem are shown in this section.

5.1. Scaling on constant-size problems

In this first benchmark case, a problem with a constant polyno-
mial degree N and a constant number of elements E is chosen and
executed on a varying number of cores. To clearly identify how the
inter-process communication affects the efficiency of a code like
SpecuLOOS, the ratio of the number of elements to the number
of cores is kept as small as possible. Within the chosen range of
cores, the number of elements is therefore chosen in such a way
as to have only a few elements, or even just a single element per
core when all cores are used. This is an untypical regime to use
in high performance computing, because of the unfavorable effi-
ciency figures which are usually obtained. One can however think
of this as a typical use case in a near future, as it becomes interest-
ing, with the advent of cheap many-core hardware, to run rela-
tively small problems on many cores. To emphasize the
challenging nature of such a benchmark, one speaks of a strong
scaling for the behavior of constant-size problems with an increas-
ing number of cores, while the case of a problem with linearly
increasing size, as compared to the number of cores, is said to be
benchmarked with weak scaling.

The program was first executed on the commodity cluster Ple-
iades2 at the EPFL, the hardware characteristics of which are pre-
sented in Section 3.3. The result is shown in Fig. 1, with a
number of cores varying between 1 and 64. It is seen that while
the speedup is excellent within the shared memory environment
of a quad-core, it drops dramatically when inter-process communi-
cation comes into play. Such a performance figure is typical for
measurements of strong scaling on commodity clusters. Neverthe-
less, the excellent speedup in a shared-memory environment al-
lows optimistic predictions for a code like SpecuLOOS on future
many-core platforms.

Next, the same program was executed on an IBM Blue Gene/P,
on a number of cores ranging from 64 to 8192. It was impossible
to use fewer cores, as the available memory was insufficient. The
problem size ranges from an extreme regime of 8192 elements
(which is identical to the maximal number of cores) to 32,768 ele-
ments (corresponding to four times the maximal number of cores).
As it is seen in Fig. 2, the speedup is close to ideal at a usage of up to
approximately 2000 cores. Beyond this value, a loss of performance
due to inter-process communication becomes visible. However, in
spite of the small problem size, the program scales up to 8192
cores. At 8192 cores, the parallel efficiency, measured as the ratio
of the measured speedup over the ideal speedup, takes a value of
34% with 8192 elements, 50% with 16,384 elements, and 65% with
32,768 elements. It should be emphasized that such a good perfor-

128 256 512 1024 2048 4096 8192
100

101

102

Number of cores

R
el

at
iv

e
sp

ee
du

p

N=10
N=8

Fig. 3. Relative speedup of a constant-size problem on the BG/P, on a number of
cores varying from 128 to 8192. The number of elements is chosen as
E = 16 � 16 � 32 = 8192, and two different polynomial degrees N = 8 and N = 10
are used.

64 128 256 512 1024 2048 4096 8192
10−3

10−2

10−1

100

101

Number of cores

W
al

l−
cl

oc
k

tim
e

[s
ec

on
ds

] p
er

 ti
m

e
ite

ra
tio

n lid−driven cavity
differentially heated cavity

Fig. 4. Wall-clock time per conjugate iteration on the BG/P for both the differen-
tially heated cavity problem and the lid-driven cavity problem. The number of
elements is selected among the choices of E = 16 � 16 � 32 = 8192 (under two
lines), E = 16 � 32 � 32 = 16,384 (middle two lines), and E = 32 � 32 � 32 = 32,768
(upper two lines). It is seen that the time per conjugate gradient iteration, and with
this also the speedup, is essentially the same for both problems.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
10−3

10−2

10−1

Number of cores

W
al

l−
cl

oc
k

tim
e

[s
ec

on
ds

] p
er

 ti
m

e
ite

ra
tio

n 1 element per core
2 elements per core
4 elements per core

Fig. 5. Speedup of a growing-size problem on the BG/P, on a number of cores
varying from 1 to 8192. In each case, the total number of elements is equal to the
number of cores. The figure plots the computation time for iteration step of the CG
solver, normalized with respect to the computation time on one core.

6 C. Bosshard et al. / Computers & Fluids 44 (2011) 1–8
mance is rare for benchmark measurements in the limit of strong
scaling. This is a proof of concept for the fact that even very small
problems can be solved efficiently with a spectral element method
on thousands of cores, if the hardware is well adapted and a per-
forming interconnection network is used.

Knowing that a spectral element code based on the algorithm
described in this paper is entirely exempt of non-parallel program
components, it is clear that the performance loss observed in the
many-core limit in Fig. 2 is entirely due to inter-process communi-
cation. This observation also applies to the SpecuLOOS code in
which, as mentioned in Section 4, remaining non-parallel compo-
nents were carefully eliminated. The program performance is
therefore affected when the communication time between MPI
threads approaches or reaches the time needed for the computa-
tions. In Eq. (22), it is argued that the computation time is propor-
tional to N3.3. The communication time on the other hand is
proportional to the number of variables exchanged between two
elements at each CG iteration. This corresponds to the number of
degrees of freedom present on a face of an element, and is propor-
tional to N2. The communication-to-computation ratio is therefore
proportional to N�1.3, and decreases as N increases. This argument
is validated in Fig. 3, which shows that the speedup of the program
improves when a polynomial degree of N = 10 instead of N = 8 is
used.

In Fig. 4 we show the wall-clock time per conjugate gradient
iteration on the Blue Gene/P for both the differentially heated cav-
ity and the lid-driven cavity problem and for different numbers of
elements. The corresponding curves for the differentially heated
cavity and the lid-driven cavity problem are very close. This shows
that, as we expected, the time per conjugate gradient iteration and
with this also the speedup do not depend on the specific test case.

5.2. Scaling on problems with linearly growing size

The limit of weak scaling is explored on problems in which the
domain size grows linearly with the number of available cores. In
this case, the time spent in inter-process communication is mainly
dominated by the increasing computation time. As it can be seen in
Fig. 5, the required wall-clock time per iteration step of the CG sol-
ver remains essentially constant as one increases both the number
of cores and the domain size on the Blue Gene/P. The parallel
performance is only affected in the many-core limit, in which the
program is observed to slow down slightly. This effect vanishes
however when the number of elements, and thus the overall com-
putational load of the program, is increased. This loss of perfor-
mance can be attributed to a saturation of the interconnection
network as the overall load of communication on the machine in-
creases. It might be possible to avoid such a saturation by mapping
the communication structure of the algorithm more closely to the
interconnection structure of the network, but this path was not ex-
plored in the present work.

5.3. Maximum measured performance

In this section, we provide an estimate of the number of float-
ing-point operations per second (FLOPs per second, or FLOPS)
executed by SpecuLOOS on the Blue Gene/P. This number does

C. Bosshard et al. / Computers & Fluids 44 (2011) 1–8 7
not provide a measure of how fast the program solves a given
physical problem, because it does not take into account the quality
of the numerical method or the quality of the algorithm used to
implement this method. Instead, the FLOP-rate is a measure of
how well the program takes advantage of the resources provided
by a computer.

An overwhelming part of SpecuLOOS’ computational time is
used for the iterative resolution of systems of linear equations.
These are implemented in terms of matrix–matrix and matrix–vec-
tor multiplications which are executed by corresponding routines
of a BLAS library. The FLOP-rate of the program can therefore be
evaluated accurately by counting the number of additions and
multiplications executed at each call of the BLAS routines. With
this method, the highest performance measured with SpecuLOOS
on the Blue Gene/P was found to be 1.96 teraFLOPS, during the exe-
cution of a problem with E = 32 � 32 � 32 = 32,768 elements and a
polynomial degree of N = 8 on 8192 cores.

With this FLOP-rate, SpecuLOOS reaches 7% of the Blue Gene/P’s
theoretical peak performance on 8192 cores reported in [14]. Such
a seemingly modest performance should be regarded as quite com-
mon on modern computers on which a major bottleneck stems
from the limited bandwidth between the main memory and the
CPU. Other components which are thought to affect SpecuLOOS’
performance in this case are an incomplete usage of the full
instruction set offered by the CPUs of the Blue Gene/P, and the time
spent in inter-core communication. As a future work, we therefore
consider to replace the BLAS libraries by dedicated implementa-
tions of matrix–matrix and matrix–vector multiplications which
make better use of the specific hardware characteristics of the Blue
Gene/P.

5.4. Global scaling figure on the Blue Gene/P

While in the previous sections specific limits of scaling of a
spectral element code were investigated, the present section pro-
poses a global view on the performance figure of SpecuLOOS, pre-
sented on a single graph. Fig. 6 represents the measurements of
wall-clock time, taken from a vast range of simulations of the
lid-driven cavity problem, with a varying number of cores and size
of the problem. It should be pointed out that all axes are logarith-
mic, and that both the number of cores and the number of ele-
ments span over several orders of magnitude. It is rare in
computational science that such a vast range of scales can be trea-
Fig. 6. Performance of SpecuLOOS on the Blue Gene/P at a polynomial degree of N = 8, dep
problem. Each intersection of lines on the surface represents a measured benchmark valu
of the conjugate gradient solver. This surface is nearly plane, which shows that the alg
performance is only affected, as expected, in the limit of small problem size and large n
ted with a single algorithm and with a single machine. This fact
therefore underlines the exceptional scalability of both the Specu-
LOOS code and the Blue Gene/P hardware.

A few lines on the plane in Fig. 6 are emphasized by the use of a
bold line-style (and the use of colors in the online version of the
paper), because of their particular signification. The front border-
line of the surface represents for example a regime in which the
number of elements is equal to the number of cores, and is identi-
cal to the curve plotted in Fig. 5. As discussed in Section 5.2, this
curve has not a constant height, because of a saturation of the
interconnection network in the many-core limit. The top border-
line of the surface on the other hand is nearly constant, because
in this case the number of element is proportional to the number
of cores, with a proportionality constant much larger than 1. In this
case, the communication time is hidden by the large computa-
tional load.

Furthermore, two diagonally oriented curves are emphasized on
the surface of the plane. The curve evolving from the bottom-left to
the top-right of the plane (blue in the colored version) represents a
limit of strong scaling in which the number of elements is indepen-
dent of the number of cores. The curve evolving from bottom-right
to top-left (magenta in the colored version) represents a regime in
which the number of cores is constant, and the execution time in-
creases linearly with the overall computational load.

A global conclusion is drawn from Fig. 6 by observing that the
represented surface is nearly plane in most of its parts. This basi-
cally means that the size of a problem is, to a large extent, decor-
related from the size of the utilized parallel machine. Any given
problem can be, at choice, solved slowly on a small machine, or
rapidly on a large machine. This argument is only limited by the
atomic nature of an element which, in the algorithm presented
here, cannot be parallelized. The number of cores of the parallel
machine can therefore never exceed the number of elements used
to discretize the problem.

6. Conclusions

The performance review presented in this paper for the high-or-
der spectral and mortar element method C++ toolbox, SpecuLOOS,
has shown that good performances can be achieved on small com-
modity clusters as well as on high-end parallel machines. The re-
sults support the original choices made in SpecuLOOS parallel
implementation by keeping it at a very low-level.
ending on the size of the problem and the number of cores, for the lid-driven cavity
e, corresponding to the wall-clock time, in seconds, needed to compute an iteration
orithm, the parallelization, and the utilized hardware all scale nearly ideally. The
umber of cores, represented by the lower-left corner of the plane.

8 C. Bosshard et al. / Computers & Fluids 44 (2011) 1–8
One of the goal of this study was to estimate if SpecuLOOS could
run on a massively parallel computer architecture comprising
thousands of computational units, specifically on the IBM Blue
Gene/P machine at EPFL with 4096 quad-core processor units. After
detection and correction of a poor implementation choice in the
parallel version, perfect scalabilities on up to 8192 cores have been
achieved and measured.

A key to achieving this goal was to enforce a perfect scaling at
the level of both the numerical method and the actual implemen-
tation. At the level of the numerical method, we made sure that the
solver is preconditioned in order to converge rapidly, even asymp-
totically for large problems. The number of iterations required by
the Conjugate-Gradient method scales linearly with the number
of elements along a space dimensions, which means, as the cube
root of the total number of elements. As for the implementation,
we eliminated even the smallest non-parallelizable program com-
ponents in order to guarantee scalability to any number of cores.

The presented performance figures clearly show that a spectral
element method can efficiently exploit parallel architectures with
thousands of cores, for large as well as for small problems. As
many-core platforms become more and more common, this meth-
od is therefore an excellent choice if one wants to keep increasing
the computational power available to computational fluid dynam-
ics at the rate imposed by technological progress in supercomput-
ing. Thanks to the scalability figures shown in this paper, we are
confident that it will be possible to use the SpecuLOOS code on
the next generation of IBM Blue Gene machines as well, with a
number of cores ranging from 105 to 106. The results of corre-
sponding test runs is the subject of a future publication.

Acknowledgments

This research is being partially funded by a Swiss National Sci-
ence Foundation Grant (No. 200020-101707) and by the Swiss Na-
tional Supercomputing Center CSCS, whose supports are gratefully
acknowledged. We thank R. Puragliesi for providing us an initial
solution for the test case of the differentially heated cavity
problem.

References

[1] The OpenSPECULOOS project, <http://sourceforge.net/projects/openspeculoos/
>.

[2] Dubois-Pèlerin Y, Van Kemenade V, Deville M. An object-oriented toolbox for
spectral element analysis. J Sci Comput 1999;14:1–29.

[3] Bouffanais R, Fiétier N, Latt J, Deville M. High performance computing with
spectral element methods. In: Buchlin JM, Rambaud P, Planquart Ph, editors.
VKI lecture series 2009-05 on high-performance computing of industrial flows.
Belgium: von Karman Institute for Fluid Dynamics; 2009. ISBN: 13 978-2-
930389-93-1.

[4] Deville MO, Fischer PF, Mund EH. High-order methods for incompressible fluid
flow. Cambridge: Cambridge University Press; 2002.

[5] Bodard N, Bouffanais R, Deville MO. Solution of moving boundary problems by
the spectral element method. Appl Numer Math. 2008;58:968–84.

[6] Maday Y, Rønquist EM. Optimal error analysis of spectral methods with
emphasis on non-constant coefficients and deformed geometries. Comput
Methods Appl Mech Eng 1990;80:91–115.

[7] Fischer PF, Patera AT. Parallel spectral element solution of the Stokes problem.
J Comput Phys 1991;92:380–421.

[8] Karniadakis GE, Sherwin SJ. Spetral/hp methods for computational fluid
dynamics. Oxford University Press; 2005.

[9] Fisher P, Lottes J, Pointer D, Siegel A. Petascale algorithms for reactor
hydrodynamics. J Phys: Conf Ser 2008;125:012076.

[10] Bouffanais R, Deville MO, Leriche E. Large-eddy simulation of the flow in a lid-
driven cubical cavity. Phys Fluids 2007;19. Art. 055108.

[11] Couzy W, Deville MO. Spectral-element preconditioners for the Uzawa
pressure operator applied to incompressible flows. J Sci Comput
1994;9:107–12.

[12] Gruber R, Keller V. HPC@Green IT. first ed. Berlin: Springer; 2010.
[13] Puragliesi R. Numerical investigation of particle-laden thermally driven

turbulent flows in enclosure. PhD thesis, EPF Lausanne; 2010. <http://
library.epfl.ch/theses/?nr=4600>.

[14] IBM Journal of Research and Development Staff. Overview of the IBM Blue
Gene/P project. IBM J Res Dev 2008;52:199–220.

[15] Grinberg L, Karniadakis GE. A new domain decomposition method with
overlapping patches for ultrascale simulations: application to biological flows.
J Comput Phys 2010;229:5541–63.

http://sourceforge.net/projects/openspeculoos/
http://library.epfl.ch/theses/?nr=4600

	Computational performance of a parallelized three-dimensional high-order spectral element toolbox
	Introduction
	Description of the test cases

	Legendre spectral element method
	Space and time discretizations
	Computational complexity

	Complexity on one node
	Number of CG iterations for the Helmholtz and the pressure problem
	Preconditioning of the pressure calculation
	Evaluation of the linear operators

	Wrong complexity on the Blue Gene/P
	Benchmarks
	Scaling on constant-size problems
	Scaling on problems with linearly growing size
	Maximum measured performance
	Global scaling figure on the Blue Gene/P

	Conclusions
	Acknowledgments
	References

