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Abstract. In this paper we show how very high-volumes of raw
WiFi-based location data of individuals can be used to identify dense
activity locations within a neighbourhood. Key to our methods is
the inference of the size of the area directly from the data, without
having to use additional geographical information. To extract the
density information, data-mining and machine learning techniques form
activity-based transportation modelling are applied. These techniques
are demonstrated on data from a large-scale experiment conducted
in Singapore in which tens of thousands of school children carried
a multi-sensor device for five consecutive days. By applying the
techniques we were able to identify expected high-density areas of
school pupils, specifically their school locations, using only the raw data,
demonstrating the general applicability of the methods.
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1. Introduction
The large-scale adoption of location-tracking capable devices, such as cell phones
and some whereables, have given researchers access to large volumes of human
mobility and activity data. In this paper, we demonstrate how such big data can
be leveraged to identify high-density common-locations within urban areas. Such
information provides key insight into locations that are close to saturation and
may be in need of re-design and expansion to cater for forecasted population
growth. Another potential use is in identifying formal communal locations with
low densities which are likely in disuse. Such locations can then be directly studied
and the cause of their disuse, such as an inconvenient location or poor design, can
be investigated and corrected, or at the least avoided in future developments.

To extract the density information, we apply data-mining andmachine learning
techniques, commonly used in activity-based transportationmodelling (Schuessler
and Axhausen, 2009), on high volumes of time-stamped location data. The
techniques are applied in four steps. First, velocity and proximity rules are
applied to distinguish between travel point-sequences and activity point-sequences.
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Next, a commonly used machine-learning clustering algorithm, is applied over the
activity sequence-points to identify potential commonly used, thereby dense areas.
The convex hull of the cluster points is then calculated and used to approximate
the physical size of the areas. Thereafter, the number of unique visitors and
total time spent in them is calculated, which in turn, is used to calculate the
densities. An important benefit of this approach is that no external information
on the location area is required to calculate densities. The density calculations can
be repeated at different times of the day while keeping the size of the area constant.
The calculated time-based densities can then be used to find and compare dense
common areas, and analyse the typical density experienced during non-transport
activities over the course of a day.

2. Related research
Within the urban and transportation planning communities there has been a variety
of models to study human and city dynamics and mobility patterns (Gonzalez
et al., 2008; Liao et al., 2007). Among them, and especially in transportation
planning, activity-based models are considered as the state-of-the-art whereby
travel demand is seen as a direct result of people wanting to participate in and
conduct activities in certain places at given times (Jiang et al., 2017; Pinjari and
Bhat, 2011). The uptake of activity-based modelling is a direct result of the
large volumes of human activity location data now readily available to planners.
Such big data can be indirectly obtained through mobile call data (Chen et al.,
2017; Zheng, 2015) ormore directly throughGPS-enabled devices (Schuessler and
Axhausen, 2009). More recently, the movement of people has been successfully
traced by triangulating their location through the proximity of their mobile phones
to knownWiFi access points (Fakhreddine et al., 2018). The data generated by all
the abovemethods give a detailed view of people’s movement over time which can
be processed to identify the timing, location and duration of their key activities.

Similar to the aim of this paper, Vieira et al. (2010) deal with the problem of
dense areas detection where individuals concentrate within a specific geographical
region and time period. The authors develop the Dense Area Discovery
(DAD-MST) algorithm to automatically detect dense areas in cell phone antenna
networks using Call Detail Records. A benefit of their approach is that the
underlying shape of dense-areas is directly inferred from antenna networks. Their
approach is demonstrated in a non-disclosed city and used to identify dense areas
that are insufficiently covered by the public transport network.

Huang et al. (2017) follow an even more detailed approach to track visitors’
movement through the Vanke Songhua Lake Resort, located in Jilin City, northeast
of China. The authors make use of WiFi Indoor Position System and track the
spatial distribution of visitors through time, and infer the peak-times of specific
shops and streets within the resort. For their study, detailed information on
the underlying geographical area of the resort and points-of-interest are known
beforehand. There is thus a research gap to identify dense locations using
detailed location information, but in cases with little information on the underlying
geographical areas. For such a scenario, points of interest will have to be inferred
directly and solely from detailed location data.
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Identifying points of interest from raw GPS records is a common first step in
activity-based transportation modelling. Schuessler and Axhausen (2009) develop
rule-based methods that split locations of individuals into activity and transport
based records. The authors demonstrate the effectiveness of their methods using
location data from a sample of residents in Switzerland. In a second step, the
transportation mode-choices between activities are analysed (Montini et al., 2014).
Similar studies have been conducted in Singapore on large volumes of location
data of students (Monnot et al., 2016; Tan et al., 2018; Wilhelm et al., 2017). It
should be noted that in these studies, the research focus is on analysing the travel
behaviour of individuals. Understandably, little attention is given to the geospatial
overlap between activities of residents.

Joubert and Axhausen (2013) follow the activity-extraction approach,
specifically to study the overlap of locations of commercial freight vehicles in
South Africa. Their aim is to use commonly visited areas to identify formal
links between different freight carriers. Commonly visited areas are identified
using density-based clustering methods, and formal links are established between
vehicles when they visit the same location. Joubert and Meintjes (2015) show
that these locations coincide with transportation and delivery hubs, as well as
high-density freight demand points, such as shopping centres. A benefit of their
approach is that locations are inferred without using additional information.

With our aim to use raw location data of people to identify highly-dense
areas, the reviewed approaches can be adapted and applied as follows. The
methods of Schuessler and Axhausen (2009) can be used directly to extract activity
locations. Thereafter, key statistics for the activities, such as the duration, can
be extracted. Commonly visited activity locations can then be determined using
density-based clustering methods, and the cumulative time spent at these locations
can be calculated. Lastly, the physical shape of the commonly visited locations can
be inferred based on the convex-hull of original activity location points associated
with them. The physical size of the activity space and cumulative time spend
within it then can be converted to the number of visitors per time-period per m2.

3. Study area and data
The techniques of the previous section were adapted and tested on a large-scale
real-world dataset consisting of 133 million records, collected as part of the
National Science Experiment (NSE) project in Singapore. The data has been
used by a large number of researchers and public agencies to improve their
understanding of complex urban systems, mostly from transport, environmental
and sensor technology perspectives (Happle et al., 2017; Monnot et al., 2016;
Tan et al., 2018; Wilhelm et al., 2017). The dataset was generated through the
deployment of 50,000 wearable sensors to Singaporean school children. Students
would collect the devices on a Monday and wear it until Friday. On the following
Monday, the devices were distributed to new school children. Thereby each
week’s data capture activities of different students. The data that we used was
captured over 8 weeks between April and August of 2016.

When carried, the device continuously measured environmental data, such
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as temperature, and importantly for our study, its location. When the device
was completely stationary it recorded at a 1-hour frequency. Otherwise, it
recorded at a 14-second frequency. The location of the device was localised
through surrounding WiFi access points and reported to be accurate to around
20 meters (Wilhelm et al., 2016). Weekends, as well as Mondays and Fridays,
were not considered during the analysis since the devices were not in constant
use on these days. Furthermore, for demonstration purposes and to limit
the computational burden of the analysis, device records were considered for
consecutive Wednesdays only, reducing the dataset from 133 to 33 million
records. Since a new set of students was tracked in each week, the combined
records represent a large sample of the activities of students on a typical weekday.
Activities were extracted for active devices. For validation purposes, the clustering
and density analysis were performed on three neighbourhoods, namely Toa Payoh,
Jurong East and Punggol. The available records cover between 5% and 10% the
school going population within each area, and between 0.5% and 1.8% of the total
population.

There are some important limitations to the data which we acknowledge. First,
the data only represents school children, therefore their activities mainly consist
of home and school activity anchor-points, with some minor activities occurring
elsewhere. Dense locations are expected to be dominated by areas in and around
the schools through which the devices were distributed. Second, the proportion
of students covered is small, especially when estimating absolute totals, such as
density. The totals can be inflated based on the sample proportion, but caremust be
taken due to bias in the data. Third, the data is limited to weekdays, and we expect
dense locations to be different on weekends. Lastly, activities may take place over
different floors within buildings, as investigated by Tuncer et al. (2017). Any
calculations of density must be interpreted with caution as the participants may be
spread over multiple floor-levels. Despite these limitations, the data still allows
for the demonstration of the techniques and the results give some insight to the
density experienced by school children over the course of the day.

4. Methodology
In this section, we describe in detail the methods used to estimate the density
of high-use common areas. The input required for the methods is time-stamped
location coordinates for a large sample of people, with a unique identifier for
each person’s records. From here on, a record refers to a single time-stamped
location-reading of a person participating wearing the device. The extraction and
analysis proceeds in three main steps described in the rest of the section. All the
methods were implemented in Python 3.7 with the scikit-learn package (Pedregosa
et al., 2011) used for the clustering step.

The methods that we applied to identify activities is based on the approach of
Schuessler and Axhausen (2009), which was designed for raw data from global
positioning systems, without additional information. The methods takes as input
each participant’s time-ordered set of location records, R = {r1, . . . , rn}, where
n is the total number of records of the participant. Each record, ri = {(xi, yi), ti},
consists of the coordinate pair, (xi, yi), which we assume is in meters, of the
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participant’s location at time ti. Depending on the format of the input data,
the location may need to be converted from geographic coordinate system to a
projected coordinate system, making it possible to directly calculate Euclidian
distances in meters between points, without having to use the Haversine-formula.
As a preliminary filtering step, points falling outside the geographical borders of
the area being considered can already be removed.

To account for location inaccuracies, which are unavoidable with location
tracking devices, a Gauss kernel smoothing function with a kernel bandwidth of 10
seconds is applied to all the location positions. Two rules are then used to identify
activity sequences, consisting of consecutive points i to j. In rule 1, a sequence of
points is flagged as stationary activity points when the speed between the points
is lower than 0.01 m/s and their total duration is at least 120 seconds. For rule 2,
a sequence of points is flagged as dense activity points when they occur spatially
close to each other.

Once the activities have been identified, the next step is to cluster activities that
occur relatively close to each other, while discarding those the occur in isolation.
The Density-Based Spatial Clustering with Applications of Noise (DBSCAN)
(Ester et al., 1996) was ultimately chosen for our application. The algorithm has
two input parameters, namely, ϵ, which is the maximum distance between points
to be considered as part of the same cluster, and pmin, the number of points required
to form a cluster. For our application, both were set equal to ten.

Once the activities are clustered, the final step is to calculate the number of
unique visitors, the number of activities, and the total time spent by participants on
their activities within the clusters. Doing so is straight-forward using the calculated
attributes of the activity clusters. Using the start-and-end times of activities, the
number of activities occurring in specific time-interval can be also calculated,
which translates to the number of people within the cluster area for the time interval
under consideration. Proportional allocations can be made for the time intervals
in which activities start and end. The only metric that still needs to be calculated
to estimate the density of the activity-cluster is its physical size in m2. To do so,
we revert back to the original activity location points and calculate the convex hull
of the points. The area of the convex hull of the points represent a rough physical
boundary in which the activities took place, and the area of the convex hull is used
as a proxy for the cluster’s area. The size of the common activity location is then
used to measure its density in people per m2.

5. Results
In this section, we present full results for activity extraction over all participants
records, as well as clustering and density calculations for the three study areas.
As mentioned, the data used to test the methods consisted of 33 million records,
recorded over consecutive Wednesdays. During the activity extraction phase, a
total of 441,438 thousand activities were identified from 53,251 active participants.
Key distributions for the activities are shown in Figure 1. The median number
of activities per person was seventeen, whereas the median duration of activities
was 9 minutes. Both distributions are right skewed, with durations being more
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so. This reflects the difference between short bursts of activities occurring during
the day while the participants are more active, and long home activities when the
participants are inactive during the night.

Figure 1. Distribution and median for the total number of activities extracted per participant
and the total duration of each activity.

The next step was to cluster the activities using the DBSCAN algorithm on
the three study towns. We first evaluated the impact of the input parameters of
the algorithm, namely ϵ, the maximum distance in meters between points to be
considered as part of the same cluster, and pmin, the number of points required
to form a cluster. Both were ranged from 5-50 at intervals of 5 units and the
resulting number of clusters produced and the fraction of points clustered, with
the rest considered as outliers, were captured for the 25 parameter combinations.
Results for the experiments are shown in Figure 2.

Figure 2. Number of clusters and fraction of points clustered at different levels of epsilon and p
min.

At pmin ≥ 15, the algorithm becomes insensitive to the parameter values, while
still finding the same limited number of clusters. The only change is in the fraction
of activities that are included in the clusters. In conjunction with lower values of ϵ,
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more activities are considered as outliers, which were expected. The experiment
shows that the clustering outcome is more sensitive towards pmin. The minimum
number of activities to justify a common-location depends on the density of the
area being considered, as well the proportion of participants included in the study.
It, therefore, has to be critically evaluated when applied in semi-similar settings.

Since the data only considers a small fraction of participants, relatively small
values of ϵ = 10 and pmin = 10 were used to extract clusters for the final analysis.
The clusters still totalled well over 300. Prior to identifying high-density locations,
all clusters with less than ten unique visitors were removed. Our reasoning was
that locations with less than 10 visitors cannot be considered as commonly visited,
and in a preceding round of experiments it was observed that they have very
low densities. Of the 300 clusters, only 33 met this criterion and where further
analysed. Another round of clustering with ϵ = 10 and pmin = 10 was applied to
original activity points of the clusters to remove outliers, thereafter the area of the
convex-hull of remaining points was calculated. The total duration, in days, of the
activity durations was calculated. Since the analysis focussed on a single day, the
total duration in person-days can interpreted as the number of people throughout
the day within the cluster. This value together with the convex hull of the area
was used to calculate density. The first four graphs in Figure 3 shows distributions
for the number of unique visitors for the clusters, the total duration, in days, of all
activities within them, their final area size in m2, and finally their density in people
per m2.

As expected, the number if unique visitors in the clusters were quite high, with
a median of just under eighty. The ten clusters with more than 100 visitors all
match schools that participated in the study. Although not explicitly showed, the
total duration of the activities per cluster is directly correlated with the number of
unique visitors. The cluster areas were also quite small with a median value of
less than 1000 m2, representing a 50-by-20 meter areas. The large clusters again
coincide with areas within participating schools. The density of the locations was
also quite small, with the largest being 0.08 people per m2. The median density is
only about 0.005. Where the values coincide with school locations we deem them
to be accurate, which includes the highest observed density. For other locations,
adjustments can bemade to account for the less than 2% sample size included in the
analysis. At the very least, the analysis results show potentially dense areas which
can be further investigated through direct observation or using more representative
data.

The last analysis conducted was to measure the density per hour-of-day.
Results for the 33 clusters are shown in the bottom of Figure 3. As expected,
there is a rise in the density of the locations from 07:00 as participants gather in
either respective schools, thereafter the density stays fairly consistent until 14:00
at which point it decreases as students move to other less student-dense location.
There is another minor spike later in the evening, indicating another batch of
activities. Coinciding with the thick-right tail of the original density distribution,
there are two locations within schools with high-density levels throughout the
course of the day, including the very early morning hours. These points coincided
with small areas with a few continuously active devices, indicating that the
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ten-unique visitor limit was too lax. Despite these limitations, the results show to
the expected density trends, allowing us to recommendwith caution, and subject to
further parameter analysis, that they can applied to larger and more representative
datasets.

Figure 3. Distributions for the number of unique visitors per cluster, the duration of activities
within it, the size of the clusters, and the density of the clusters (top four figures), and

distribution of the density of clusters over the course of a day (bottom figure).
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6. Conclusion
Our aim with the study was to investigate whether commonly applied
techniques from activity-based transportation modelling could be used to identify
high-density activity locations, and further to quantify the density levels. The
methods were applied to raw data from school pupils in Singapore, and the initial
results showed that high-density areas can be extracted and analysed over the
course of a day. The methods consisted of a rule-based activity extraction step,
followed by clustering using the DBSCAN algorithm. Thereafter the convex-hulls
of the activity points associated with commonly visited clusters were calculated to
estimate the size of the areas. A benefit of the methods is that they are relatively
straight-forward to implement with intuitive parameters that can be tuned for
specific application areas. In terms of generality, the scale of the data obtained
through study does limit the generality of the techniques. Still, the techniques
may be of use in other settings, specifically where similarly high-volumes are
obtained through cellphone devices. As is usually the case with an initial
investigation of this type, there exist many opportunities for improvement. First,
the activity extraction parameters were taken directly from literature and better
values and more advanced methods can be investigated. Second, the methods
were tested on a small subset of the available data, and the observed results may
be indicative of random fluctuations in the travel behaviour of participants. A
full application on the whole dataset and all areas in Singapore will produce more
robust results. Lastly, the methods can be applied to more comprehensive datasets
with ground-truth data to validate that they are effective. The actual floor-space
of known popular areas can also be compared against the calculated convex-hull
area to analyse its accuracy.
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