
Vol.:(0123456789)1 3

Applied Physics B  (2018) 124:10  
https://doi.org/10.1007/s00340-017-6879-4

Two‑dimensional electroacoustic waves in silicene

Alexander V. Zhukov1,2 · Roland Bouffanais1 · Natalia N. Konobeeva3 · Mikhail B. Belonenko2,3,4

Received: 5 November 2017 / Accepted: 6 December 2017 
© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract
In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon 
silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell’s equa-
tions supplemented with the wave equation for the medium’s displacement vector, we obtain the effective governing equa-
tion for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. 
The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, 
thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties 
of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for 
an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially 
offer promising prospects for the development of amplification devices for the optoelectronics industry.

1 Introduction

With the rapid development of laser technology, a growing 
interest is observed in studying the propagation of extremely 
short optical pulses in different environments [1–4]. Among 
a host of newly discovered media, graphene-like materials 
take a special place because of the wide range of related 
practical applications to modern optoelectronics stemming 
from peculiar nonlinear phenomena. The occurrence of the 
so-called “light bullets” is one such example. Light bullets 
are wave packets that are localized in space and that can 
travel through a medium while retaining their spatiotem-
poral shape—in spite of diffraction and dispersion effects. 
Over the past decade, the dynamics of light bullets in these 
structures has been the subject of a significant number of 
studies [5–14]. In particular, the effective governing equa-
tions were established and the dynamics of the pulse with 
the influence of impurities and the Coulomb interaction 

between electrons was comprehensively studied. Further-
more, the processes and mechanisms of collision between 
light bullets, as well as the influence of external fields have 
been thoroughly investigated.

Among the affected range of issues, however, there are 
a number of challenges remaining that are not addressed 
in the papers cited above. First of all, there is the question 
of the influence of the physical properties of the medium 
into which the “ target material” is placed. In this regard, 
Refs. [15, 16] can be noted as they study the impact from 
the medium dispersion on the propagation of light bullets. 
Meanwhile, as we know, the medium can have other prop-
erties (e.g., piezoelectric, magnetic, ferroelectric, and so 
forth), which may have a significant influence on the propa-
gation of light bullets. In this study, we investigate the conse-
quences of piezoelectricity in a medium with silicene, which 
has a structure consisting of a single layer of silicon atoms in 
a hexagonal lattice [17–19]. Relatively recently, such a struc-
ture has been experimentally fabricated [20, 21]. Placed in a 
particular environment, the silicene structure will contribute 
to the propagation of light bullets, thereby generating intense 
electric fields. The latter contributes to the emergence of a 
nonlinear response of the medium.

It is important stressing that we consider here a free-stand-
ing silicene [17] immersed in a piezoelectric medium. Our 
primary concern is to investigate the influence of a strong 
spin–orbit interaction on the ultrashort pulse propagation. 
However, it is worth noting recent ab initio investigations [22], 
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showing that silicene itself can get a piezoelectric behavior 
under certain conditions. The choice of silicene as the central 
object of our study originates in the fact that silicene has a 
particular gap in the energy spectrum, which makes silicene-
based devices very promising in modern micro- and nano-
electronics. This gap arises for two reasons. First, it is a direct 
consequence of its atomic arrangement—silicon atoms are 
not strictly arranged in the same plane, unlike graphene for 
instance. When an electric field is applied perpendicular to that 
plane, the electronic degeneracy disappears, thereby leading to 
the appearance of an electronic bandgap. It is worth noting that 
this effect makes it impossible to control the size of the band-
gap by applying a constant external field. The second reason 
is that there is a strong spin–orbit interaction in silicene. The 
latter induces a lifting of the electronic degeneracy between 
the sublattices. Finally, it is worth highlighting that the study 
of materials with a strong spin–orbit interaction has recently 
gained significant traction owing to their increasing potential 
of applications in electronics and spintronics.

2  Formulation of the problem and general 
equations

Let us consider the propagation of two-dimensional (2D) 
extremely short electromagnetic pulses in silicene. The electric 
field of the pulse is assumed to be parallel to the (x, y)-plane of 
silicene. The geometry of the problem is presented schemati-
cally in Fig. 1.

The dispersion law for silicene reads [23]:

where � = ±1 is the valley sign for the two Dirac points, v 
is the velocity of Dirac electrons, k = (kx, ky) is the electron 
quasi-momentum; ΔSO is the strength of the spin–orbit inter-
action in silicene; Δz = lEz is the single-site lattice potential, 
where Ez is the constant electric field, and l is the distance 

(1)��� = ±
{
v2k2 +

1

4

(
Δz − ��ΔSO

)}1∕2

,

between the two sublattice planes; � is the electron spin. 
Furthermore, we only take into account the positive direc-
tion of rotation.

In the presence of an external electric field � , which is 
considered using the particular choice of Coulomb’s gauge, 
� = −

1

c
��∕�t , it is necessary to replace the momentum with 

the generalized momentum, i.e., p → p − eA∕c (e being the 
elementary charge and c the speed of light in vacuum). Max-
well’s equations with the account of the gauge in a 2D case 
read as follows:

where we neglect the diffraction spreading of the laser 
beam in the directions perpendicular to the axis of propa-
gation, namely the y-axis. The vector potential is assumed 
to take the form � = {0,A(x, y, t), 0} , and the current is 
� = {0, j(x, y, t), 0} . To account for the properties of the 
medium, we have added the term with the polarization vec-
tor � , directed along the silicene plane.

Let the electric field of the ultrashort optical pulse to be 
directed along y axis, namely � = {0,E(x, z, t), 0} . Thus, the 
electron velocity is given by vy(�) = ��(kx, ky)∕�ky . Following 
the analytical scheme used in Ref. [24], we can rewrite Eq. (2) 
as follows:

where the electron current density j(A) is now determined 
from

Note that the integration range, denoted as Θ in Eq. (4), 
can be determined from the conservation of the number of 
electrons:

where a†
kx,ky

 and akx,ky are the electron creation and annihila-

tion operators, respectively, and the integration of the r.h.s. 
term is performed over the Brillouin zone (BZ). Moreover, 
the quantity � in the l.h.s of Eq. (3) is associated with the 
nonzero component of the environment displacement vector 
u:
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Fig. 1  Schematic diagram of the problem with associated notations
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Here, we consider one of the possible simplest models, such 
that the induced polarization in the medium admits linear 
variations with the applied electric field, and is directed 
parallel to the electric field due to the piezoelectric effect:

where d stands for the piezoelectric coefficient. Equation 
(3) in this case needs to be supplemented with the equation 
governing the nonzero component of the displacement vec-
tor u [24, 26, 27]:

where � is the density of the medium and va is the acous-
tic velocity, which is taken to be va = 0.001c in further 
calculations.

It is important to highlight a number of points related to 
the model used in this study. First, we take into consideration 
only one component of the displacement vector � , which can 
obviously be easily generalized. More importantly, we do not 
take into account the possibility for nonlinear acoustic effects 
in the environment that would lead to a polarization vector 
being not collinear with the electric field.

3  Results of the numerical modeling

Equation (3) was solved numerically using the direct cross-
type difference scheme [28]. The initial condition is chosen in 
the form of a Gaussian pulse:

(7)P = d
�u

�y
,

(8)
�2u

�x2
+

�2u

�y2
−

1

v2
a

�2u

�t2
+

d

�

�P

�y
= 0,

(9)

A(x, y, t = 0) = Q exp

(
−
y2

�2
y

)
exp

(
−
x2

�2
x

)
,

dA

dt
(x, y, t = 0) =

2yvy

�2
y

Q exp

(
−
y2

�2
y

)
, exp

(
−
x2

�2
x

)
,

where Q and vy are the initial pulse amplitude and veloc-
ity, respectively; �x and �y determine the pulse width in the 
respective directions. As for the mechanical displacement u, 
the initial conditions read as follows:

corresponding to a medium at rest initially with a zero 
velocity.

For all numerical simulations, we used the fol-
lowing values  for  the  involved parameters : 
Q = 4 × 106V∕m, �y = 0.3 μm, �x = 0.5 μm, vy = 0.95c  , 
where c is the speed of light in vacuum. The evolution of 
the electromagnetic field during its propagation through the 
sample is shown in Fig. 2.

It may be noted that the pulse propagates rather stead-
ily (with regards to its amplitude and shape), experiencing 
only some spreading over time. One can also notice the 
emergence of a “tail” behind the pulse that has approxi-
mately zero area. Note that these results further reveal the 
fact that the dynamics of the pulse is not affected by the 
acoustic waves in the environment, since the speed of the 
pulse approaches the speed of light ( ∼ 95% of it). Thus, it is 
possible to conclude that the electric field of the pulse does 
not “feel” acoustic vibrations in the environment induced 
by its passage.

The dependence of the pulse shape on the single-site lat-
tice potential, Δz , is shown in Fig. 3. As can be seen from 
the figure, the greater the value of the potential Δz on the 
lattice site, the greater part of the energy is concentrated in 
the main pulse.

Finally, we also studied the effect of the piezoelectric 
coefficient d on the pulse propagation through the sample 
(see Fig. 3). The figure shows that in stark contrast to the 

(10)
u(x, y, t = 0) = 0,

du

dt
(x, y, t = 0) = 0,

Fig. 2  Intensity of the 2D electromagnetic pulse I(x, y, t) = E2(x, y, t) , with d = 0.1 , and at different instants of time: a initial pulse; b 
t = 4.0 × 10−13 s; (c) t = 7.5 × 10−13 s. Units on x- and y-axes correspond to 30 and 20 nm, respectively
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case with carbon nanotubes [24], this parameter determines 
not only the shape of the “tail”, but also has a significant 
impact on the main pulse propagating in a silicene-based 
medium. This effect manifests itself in a noticeably weaker 
spreading of the main pulse. The larger the value of the pie-
zoelectric parameter d, the less energy is transferred to the 
“tail” due to the piezoelectric effect. It, therefore, appears 
that one can control the propagation regime of the pulse by 

selecting a particular environment with an appropriate value 
of the piezoelectric coefficient d (Fig. 4).

4  Conclusions

As a result of our study, the following conclusions can be 
made:

Fig. 3  Intensity of the 
2D electromagnetic pulse 
I(x, y, t) = E2(x, y, t) 
with d = 0.1 , and at time 
t = 7.5 × 10−13 s for differ-
ent values of the potential Δz : 
a Δz = 0 eV; b Δz = 0.1 eV; 
c Δz = 0.25 eV; d Δz = 0.5 
eV. Units on x- and y-axes 
correspond to 30 and 20 nm, 
respectively

Fig. 4  Intensity of the 2D electromagnetic pulse I(x, y, t) = E2(x, y, t) at time t = 7.5 × 10−13 s for different values of the piezoelectric coefficient 
d: a d = 0.1 ; b d = 1.0 ; c d = 10 . Units on x- and y-axes correspond to 30 and 20 nm, respectively
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1. We demonstrate the possibility for a stable propagation 
of two-dimensional ultrashort optical pulses in a piezo-
electric medium with silicene, which carries particular 
importance for practical applications in silicon-based 
microelectronic devices.

2. The value of the piezoelectric coefficient d determines 
the character of the oscillations in the “tail” following 
the main pulse.

3. For the first time, we observed the significant influ-
ence of the piezoelectric coefficient on the shape and 
amplitude of the main pulse, which is manifested by an 
increase of the latter. This result opens new avenues for 
the potential manufacturing of amplification devices for 
ultrashort pulses.
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