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Abstract— In this paper a novel approach to co-design con-
troller and attack detector for nonlinear cyber-physical systems
affected by false data injection (FDI) attack is proposed. We
augment the model predictive controller with an additional con-
straint requiring the future—in some steps ahead—trajectory
of the system to remain in some time-invariant neighborhood
of a properly designed reference trajectory. At any sampling
time, we compare the real-time trajectory of the system with
the designed reference trajectory, and construct a residual.
The residual is then used in a nonparametric cumulative sum
(CUSUM) anomaly detector to uncover FDI attacks on input
and measurement channels. The effectiveness of the proposed
approach is tested with a nonlinear model regarding level
control of coupled tanks.

I. INTRODUCTION

Industrial cyber-physical systems play a crucial rule in

critical infrastructures and everyday life. Cyber-physical sys-

tems (CPSs) are constituted of physical processes (plants)

communication and computation. Some examples of CPS

include power grids, intelligent transportation systems, water

distribution systems, aerospace systems, retail supply chain,

etc. which are all based on safety critical processes [3]. Both

cyber and physical components of a CPS are vulnerable

to malicious attacks. Security of CPSs is of paramount

importance to societies and governments. This importance

has fueled a considerable research in the recent past; see

survey papers [3], [4], [6], [7], [9], [20] and references

therein. In general there are two possible approaches in attack

detection: i) Information Technology (IT) based methods,

and ii) Physics-based (Control-based) methods. Due to the

presence of physical components in CPS, the states of the

system need to follow strict rules of nature, e.g. laws of

physics. For instance, in a power grid, voltage of buses and

current flowing through lines need to follow Kirchhoff’s

circuit laws. This important feature can be exploited to

detect attacks in CPSs. In this paper, we focus on physics-

based attack detection; hence, from now onward by attack

detection, we imply physics-based attack detection. Although

attacks can be complicated from an IT viewpoint, they tend to

be rather naı̈ve or unsophisticated from a control prospective

[19].
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Most attack detection methods are observer-based tech-

niques in which an observer is designed to estimate states

of the plant. The estimated state is then compared against

the actual value (measured by sensors) and a time-series

residual is formed. Then, an anomaly detector is used to

decide—based on the residual time series—on the presence

of an adversary agent having access to the control signal

and/or measurement output [1]. The observer can be static

or dynamic; for instance, the phase angle estimator in power

grids is a static estimator [10]. Attack detection strategies

can be broadly divided into two categories: active and

passive. Passive strategies are those in which the detection

mechanism does not affect the system. On the other hand,

active strategies affect the control system by sending some

unpredictable control commands and observing if sensors

react as predicted. In [15] a physical watermarking based

detection mechanism is presented in which a random noise

of known distribution is injected to the plant and a stateful

anomaly detector is used to detect attacks on the system.

In most attack detectors, the control and attack detection

designs are carried out independently: the controller is de-

signed first and, subsequently, the detection mechanism is

formulated. Contrary, in this paper we co-design these two

critical components and propose a joint control and attack

detection mechanism using elements from model predictive

control (MPC). MPC is an optimization-based controller

which can handle different state and control input constraints.

The control signal at each sampling time is the solution

of a constrained discrete-time optimal control problem [8],

[14], [17]. For linear time-invariant systems, the resulting

optimization problem is convex which can therefore be

efficiently solved using standard solvers. If the dynamical

systems is nonlinear—such as the one considered in this

paper, the MPC optimization problem becomes nonconvex.

We augment the standard MPC problem with an additional

constraint which restricts the future state/output trajectory

to remain within some time-invariant neighborhood of a

carefully designed reference trajectory. The minimization

of the MPC optimization problem involves the predicted

states as well as inputs over the prediction horizon. The

first component of the control vector is applied to the plant

and the predicted outputs are used to construct the future

reference trajectory. In fact, the reference trajectory at time

k is the N th component of the predicted trajectory provided

as the minimizer of the MPC problem at time k−N where N
is the prediction horizon. The difference between actual real-

time output and the reference output trajectory is stored in a

residual time-series. The residual is used in a non-parametric
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cumulative sum (CUSUM) anomaly detector to decide on the

presence of attack in control signal or measurement output.

A. Related Literature

While the literature on attack detection is vast (see e.g.

[16]) few works are based on a model predictive control

design approach. In [2], the authors adopt a model-based

approach in order to detect cyber-attacks in a linear system

equipped with a model predictive controller. The problem

is formalized as a binary hypothesis test. However, the

MPC structure is assumed to be given, and no co-design

is considered. A recent and interesting line of research is the

one based on the design of set-theoretic receding-horizon

control schemes, see for instance [12], [13]. In these works,

a specific control architecture is designed so as to be able to

detect and mitigate cyber-attacks affecting CPSs. In [22], an

idea based on the concept of a receding-horizon control law

is presented to mitigate replay attacks. In particular, stability

is proved under some assumptions on the horizon length and

the attack duration. The idea can also be used with false

data injection attacks. An MPC-based attack detector using

limit checking is introduced in [18]. A feasibility problem

is solved online and if there does not exist a control vector

being able to keep states within their safe limit during the

predicted horizon, an attack is declared. We remark that all

reviewed approaches are applied to linear systems, while in

this paper we consider a nonlinear setup.

B. The sequel

The remainder of this paper is organized as follows. In

Section II we formulate the nonlinear MPC problem. The

modified MPC problem along with proposed attack detec-

tion methodology are presented in Section III. A numerical

example of industrial cyber-physical systems is presented in

Section IV and some concluding remarks are reported in

Section V.

Notations
Lowercase letters are used for vectors and uppercase ones

for matrices. The symbol X � 0 (resp. X � 0) is used to

denote a positive (resp. positive semi-definite) matrix X . The

set N>0 denotes the set of positive integers. While yk denotes

the measured output at time k, the output predicted � steps

ahead at time k is denoted as y�|k. We use uN |k to denote the

sequence of length N of vectors u0|k, . . . , uN−1|k; the same

notation is used for output vector yN |k. The Minkowski sum

of A and B is denoted by A⊕B = {a+ b|a ∈ A, b ∈ B}.

II. PROBLEM FORMULATION

Consider a nonlinear cyber-physical system (CPS) whose

dynamics is governed by the nonlinear discrete-time system

xk+1 =f(xk, (uk + ua
k)), (1a)

yk =xk + yak , (1b)

where xk ∈ Rn is the state vector of the system at sampling

time instant k, uk ∈ Rm is the control signal to be applied to

the system, ua
k ∈ Rm represents an attack signal applied to

the input at time k, f : Rn × Rm → Rn is a nonlinear map

which assigns to a state vector xk and control vector uk the

successor state xk+1, yk is the measurement signal at time k,

and yak is the attack signal at the output. We assume that all

states are available for feedback. The controller is spatially

distributed and the channels between controller-actuators and

sensors-controller are established by some communication

network, e.g. Internet or wireless, industrial Ethernet, Field-

bus, etc. We assume that malicious agents can gain access to

these communication channels by compromising the security

protocols, and as a consequence are able to inject their

desired signals ua
k and yak to the system (1). The objective

is to design a model predictive controller for the system (1)

to be able to detect any possible attack on the control input

and measurement signals. In the MPC framework, we usually

restrict the output vector yk, ∀k ∈ N>0 to live in a set Y.

This can be due to safety limitations; for example, the level

of liquid in a tank needs to be within its high and low limits

or furnace temperature should not exceed a predefined value.

Similarly, the control signal uk, ∀k ∈ N>0 is also required to

remain in a set U which is to prevent any actuator saturation.

The desired performance of the MPC controller is granted

by the appropriate design of a cost function used in the

optimization problem being solved at each sampling time.

Assuming that 0 is the equilibrium point of the system—in

fact if [xT
∗ , u

T
∗ ]

T �= 0 is the equilibrium point of the system

(1), we can replace f(xk, uk) by (f(xk+x∗, uk+u∗)−x∗)
so to have 0 as the equilibrium point—the cost function

�(x, u) : Y× U → R>0 penalizes the distance of the output

yk and control input uk to the equilibrium point. A terminal

cost is added to the cost function to ensure that the MPC

policy stabilizes the system. With these ingredients in mind,

we use the following finite-horizon cost to be minimized at

time k

�N (yN+1|k,uN |k) =
N−1∑
j=0

(
yTj|kQyj|k + uT

j|kRuj|k

)
+ VN (yk+N ), (2)

where Q ∈ Rn×n, Q � 0, R ∈ Rm×m, R � 0 and VN (y) is

the terminal cost designed based on the Lyapunov stability

theory, see [8, Chapter 5] for further details. A terminal

constraint of the form yN |k ∈ Yf is also included in the MPC

optimization problem to guarantee stability. The terminal

set Yf is designed to grant stability to the MPC policy.

With these notations, in an attack-free scenario the MPC

optimization problem being solved at time k is

min
yN+1|k,uN|k

�N (yN+1|k,uN |k) (3a)

subject to: xj+1|k = f(xj|k, uj|k), x0|k = xk

yk = xk

yj|k ∈ Y, j ∈ [1, N ]

uj|k ∈ U, j ∈ [0, N − 1]

yN |k ∈ Yf . (3b)
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Denoting the minimizer of optimization problem (3) with

(y∗1|k, . . . , y
∗
N |k, u

∗
0|k, . . . , u

∗
N−1|k), the MPC control law is

uk = u∗
0|k, meaning that only the first element of the optimal

control signal is applied to the system. The formulated MPC

problem (3) is for an attack-free scenario, i.e. ua
k = yak =

0, ∀k ∈ N>0. In the next section, we propose a modified

MPC problem along with a detection criterion which is able

to detect possible attacks on system (1).

III. ATTACK DETECTION ALGORITHM

We first discuss the class of attacks considered in this

paper, and then present the modified MPC controller and,

finally the detection procedure. Here, we specifically con-

sider the class of False Data Injection Attacks (FDI). In an

FDI attack, an attacker augments control and measurement

signals with his/her desired arbitrary data by manipulating

ua
k and yak . Regarding the FDI attack we make the following

assumption.

Assumption 1: The attacker can modify control and mea-

surement signals by injecting its desired signals ua
k, y

a
k ;

however, it cannot access both control and measurement

channels at the same time, i.e. �k : (ua
k �= 0)&(yak �= 0).

Assumption 1 is important because if the attacker has access

to the model of the system and is able to modify both control

and measurement signals, he/she can design attack signals

ua
k and yak such that the attack remains covert, see [19] for

further details.

A. Modified MPC Algorithm

Attack detection algorithms reported in the literature are

usually independent from the controller design process. Typ-

ically, the controller is designed first, and subsequently the

detection algorithm is formulated. In this paper, however,

we take a novel approach by co-designing the detection

algorithm and the controller. To this end, at each time k
we consider a future reference trajectory ỹj|k, j ∈ [1, N ].
This constitutes a key ingredient of our approach, and is

formally defined later. Next, we add an extra constraint to

the MPC optimization requiring the actual output trajectory

yj|k, j ∈ [1, N ] to remain within a specified time-invariant

neighborhoods of the reference trajectory

yj|k ∈ ỹj|k ⊕ E , j ∈ [1, N ]. (4)

Therefore, the modified MPC problem to be solved at each

time k reads as

min
yN+1|k,uN|k

�N (yN+1|k,uN |k) (5a)

subject to: xj+1|k = f(xj|k, uj|k + aj+k), x0|k = xk

yj|k ∈ Y, j ∈ [1, N ]

yj|k ∈ ỹj|k ⊕ E , j ∈ [1, N ]

uj|k ∈ U, j ∈ [0, N − 1]

yN |k ∈ Yf . (5b)

The motivation behind forcing the real-time output to re-

main within some time-invariant neighborhood of a reference

trajectory originates from the distributed model predictive

control literature, and in particular, [5]. In [5] authors con-

sider a distributed scenario where states and control inputs

of each node of the network affects the neighboring nodes.

Specifically, each node of the network enforces its real-time

trajectory to stay within some time-invariant neighborhood

of a reference trajectory. Nodes of the network receive the

predicted state and control input of their neighbors and

solve their local MPC problem by relying on the predicted

trajectories. Solution of the optimization problem defined

in (5), i.e. (y∗1|k, . . . , y
∗
N |k, u

∗
0|k, . . . , u

∗
N−1|k), involves pre-

dicted outputs (y∗1|k, . . . , y
∗
N |k). This information can be used

as the predicted reference trajectory ỹj|k. In fact, the refer-

ence trajectory at time k +N, ỹk+N is the N th component

of the predicted output trajectory provided as the minimizer

of the MPC problem (5) at time k, y∗k+N |k

ỹk+N = y∗k+N |k.

Therefore, by solving the MPC optimization (5), we gradu-

ally construct the reference trajectory.

The set E defines the closeness of the actual trajectory to

the future reference trajectory. Requiring the two trajectories

to be very close may result in a conservative control strat-

egy with poor performance. There is therefore trade-off in

selecting the set E . Selecting a very small E compromises the

performance of the MPC control strategy while very large E
leads to poor security.

B. Anomaly Detector

Anomaly detectors construct a series of residuals based

on which they decide on the occurrence of an attack on

dynamical systems. In observer-based anomaly detectors,

the residual is the difference between the actual states

(or outputs) and the estimated ones. In this paper, on the

contrary, we use as residual the difference between real-

time output yk and the reference output trajectory ỹk. Two

types of detector are usually adopted in the literature: i)

stateless, and ii) stateful. In a stateless test, if the residual

rk
.
= ‖yk − ỹk‖ exceeds some threshold γ, an attack is

declared. Contrary, in a stateful test, which is a statistical

test, a new statistic Sk is constructed, which keeps track

of the residuals. There are a number of stateful anomaly

detectors in the literature, such as simple averaging over

a time window, exponential weighted moving average and,

non-parametric cumulative sum known as CUSUM. In this

paper, we adopt CUSUM statistic due to its popularity and

effectiveness. The CUSUM statistic Sk is defined recursively

as S0 = 0 and Sk+1 = max(0, Sk+rk−δ), where δ is chosen

such that it prevents the CUSUM statistic to grow constantly

in an attack-free scenario. An attack is declared if Sk exceeds

the threshold γ. Then, the CUSUM statistic is restarted, i.e.

Sk+1 = 0. The threshold γ is usually selected by performing

extensive simulations. In fact, a small threshold may result

in frequent false positives while a large value of γ can lead

to a detecting mechanism ignoring attacks.

The control and attack detection algorithm is reported in

Algorithm 1. At each sampling time, we first receive the

actual measurement yk from the plant and construct the
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Algorithm 1 Control and Anomaly Detection Algorithm

1: Input: f,N, E , γ, δ, y0
2: Output: attack

Initialization:
3: Construct a feasible reference trajectory ỹ1|0, . . . , ỹN |0

and set k = 0, attack = 0, S0 = 0
Evolution:

4: while attack == 0 do
5: Receive yk from the plant

6: Sk+1 = max(0, Sk + ‖yk − ỹk‖ − δ)
7: if Sk+1 > γ then
8: Set attack = 1
9: return attack

10: end if
11: Solve the modified MPC problem (5)

12: Set ỹk+N = y∗k+N |k
13: Set uk = u∗

0|k and transmit uk to the plant

14: end while

CUSUM statistic Sk+1. If Sk+1 exceeds a carefully chosen

threshold γ, an attack is declared. Next, the modified MPC

problem (5) is solved, the reference trajectory is constructed

ỹk+N = y∗k+N |k and, the control signal uk = u∗
0|k is

transmitted and applied to the plant.

IV. NUMERICAL SIMULATIONS

We ran extensive simulations to check the effectiveness of

the presented approach. In particular, we tested the algorithm

on a nonlinear system regarding level control of two coupled

tank systems.

A. Level Control of Coupled Tanks

The schematic diagram of this system is shown in Fig. 1.

The fluid is pumped form a reservoir into the top tank. There

is an opening at the bottom of the tank which allows the

drainage of the fluid to the second tank. Similarly, due to

the opening in the second tank, the fluid returns back into

the reservoir. The goal is to control the fluid level in both

tanks by manipulating the pump that connects the reservoir

and Tank 1. The system dynamics can be computed using

the conservation of mass and Bernoulli’s equation

dh1

dt
=

c1
ρA1

u− c2
ρA1

√
h1, (6)

dh2

dt
=

c2
ρA2

√
h1 − c2

ρA2

√
h2,

where h = [h1, h2]
T is the state vector containing the level

of liquid in the first and second tank respectively, ρ is the

density of the fluid, A1, A2 are the cross-sectional area of

tanks 1 and 2 respectively, c1, c2 are coefficients related

to the tanks opening, and, u is the pump rate. There are

a number of ways to discretize the continuous model (6).

Here, we use the first-order forward Euler approximation

to construct a discrete-time model. To this end, selecting a
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Fig. 1. Schematic diagram of the two coupled tanks system. The exchange
of information between sensors/controller and controller/actuator are subject
to false data injection attack. Levels of the two tanks are sensed and
transmitted to the controller using level transmitters. The control signal is
computed in the controller and then transmitted to the flow control valve to
regulate the flow of liquid.

desired sampling time T , the discretized model is

h1(k + 1) =h1(k) + T

(
α1u(k)− α2

√
h1(k)

)
, (7)

h2(k + 1) =h2(k) + T

(
α2

(√
h1(k)−

√
h2(k)

))
,

where—assuming identical tanks—α1 = 1.75 and α2 =
0.1544. We remark that more sophisticated discretization

method such as Runge–Kutta can be used which results in

a more complex discrete dynamics and consequently a more

complex MPC optimization problem, see [8, Chapter 11].

The objective is to design an MPC controller to control the

level of tank 2 at 0.95. The saturation level of flow control

valve is set to 1 which means the following constraint on the

control signal should hold all the time

0 ≤ u(k) ≤ 1, ∀k ∈ N>0.

In order to prevent any overflow in both tanks, we require

the fluid level h(k) to remain below 1. Hence, the following

state constraint should be respected all the time[
0
0

]
≤ h(k) ≤

[
1
1

]
, ∀k ∈ N>0.

The MPC framework formulated in Section II is for regu-

lation problems. To consider a tracking problem, the cost

needs to be modified as

�N (hN+1|k,uN |k) =

N−1∑
j=0

(
(hj|k−h̄j|k)TQ(hj|k−h̄j|k)+uT

j|kRuj|k

)
+VN (hk+N ),
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Fig. 2. Scenario in which the reading form the level sensor reporting
liquid level in Tank 1 is compromised starting from time t = 50 sec. The
top figure shows both the actual, as well as the deceived liquid levels in
Tank 1. The bottom figure presents the liquid level at Tank 2. A simple
false data injection attack causes both tanks to overflow.

where h̄j|k is a reference signal that output hj|k has to follow.

The constraint (4) in this example is chosen to be

‖hj|k − h̃j|k‖2 < 0.01, j ∈ [1, N ]. (8)

In fact, the real-time trajectory at time k is required to remain

in an �2-ball of radius 0.01 centered at the the reference

trajectory at time k. Other measures such as the infinity

norm can also be used. The non-convex MPC optimization

problem is formulated in YALMIP [11] and solved using the

interior point algorithm embedded in the fmincon solver

[21].

We first consider data injection attack on sensors. In

particular, we assume that attacker has access to the level

sensor installed at Tank 1. We assume that the attacker’s

goal is to deceive the controller to inject too much fluid

in the two tanks causing them to overflow. To this end, the

attacker can subtract a positive value from the sensor reading

to encourage the controller injecting more fluid into the

system leading to an overflow. To show that if no detection

mechanism is used, the attacker can easily lead the system

to an unsafe region, we consider an FDI attack shown in Fig.

2. Assuming that both tanks are empty at time k = 0, i.e.

h1(0) = h2(0) = 0, the objective of MPC controller is to fill

Tank 2 and keep its liquid level at 0.8. We remark that at this

stage the proximity constraint (8) is not incorporated in the

MPC optimization problem. The attacker starts sending false

data at time k = 500—corresponding to t = 50 sec—which

deceives the controller forcing it to inject more fluid into the

system and eventually causes both tanks to overflow. This

simple scenario reveals that the system without a detection

mechanism is vulnerable to FDI attacks.

To show the effectiveness of the proposed approach, we

add the proximity constraint (8) to the MPC optimization

problem and use the anomaly detector reported in Section III
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Fig. 3. Scenario in which the reading from the level sensor reporting
liquid level in Tank 1 is compromised starting from time t = 50 sec. The
top figure shows the actual level of both tanks. The bottom figure shows the
residual ‖y(k) − ỹ(k)‖2 as well as CUSUM statistic. Once the CUSUM
statistic exceeds 0.1, the attack is detected in the system. The inset shows
a zoomed-in view of both residuals and CUSUM from t = 0 to t = 5.6
sec. It is clear that the residual does not exceed γ = 0.01 meaning that
constraint (8) is respected in the absence of attack.

to detect the attack. In particular, we use the CUSUM

anomaly detector

S0 = 0, Sk+1 = max(0, Sk + ‖y(k)− ỹ(k)‖2 − 0.01),

where yk is the (deceived) sensors measurement at time k
and ỹk is the predicted value of the levels at time k. Figure

3 shows both residual ‖y(k) − ỹ(k)‖2 as well as CUSUM

statistic. We remark that the same FDI attack scenario as the

one reported in Fig. 2 is used to evaluate the effectiveness

of the detection mechanism. The detection threshold—the

parameter γ in Algorithm 1—is selected to be 0.1. As it can

be seen from the inset in Fig. 3, the residual ‖y(k)− ỹ(k)‖2
remains bellow 0.01 meaning that the proximity constraint

(8) is respected in the absence of any attack. Starting from

t = 50 sec, the residual starts to increase resulting in an

increase in the CUSUM statistic. At t = 5.92 sec, the

CUSUM statistic exceeds 0.1 and the FDI attack is detected.

Any sensor measurement inevitably carries some noise. To

see the effect of noise on the performance of the proposed

detection mechanism, we add a white Gaussian noise with

zero mean and 0.002 standard deviation to the sensor mea-

surement from both Tanks 1 and 2. The simulation reported

in Fig. 4 shows that the presence of noise does not have

a negative effect on the performance, hence confirming the

robustness to noise of the proposed approach.

We next consider an FDI attack on the control input u.

A simulation reporting an attack on the control signal is

shown in Fig. 5. The attacker compromises the control signal

applied to the system and augment the actual control signal

u(k) with an attack signal ua(k)—shown in the bottom graph

in Fig. 5. We remark that a smaller attack signal cannot bring

the system to an unsafe region and hence is automatically
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Fig. 4. Same scenario as the one in Fig. 3, but in the presence of added
white Gaussian noise. The performance of the controller/detector is not
affected by noise.
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Fig. 5. Scenario in which the control input signal is compromised. In
particular, the actual control signal u(k) is replaced with u(k) + ua(k)
where ua(k) is the attack signal showed in the bottom graph. The attack
signal is started at t = 50 sec and detected at t = 6.9 sec.

rejected using the MPC controller. Specifically, if the attack

signal on the control input is small, the MPC controller is

able to reject it by manipulating its designed control signal

u(k) and hence the attack signal will not have an adverse

effect on the performance of the controlled system.

V. CONCLUSION

An approach to co-design a controller controlling the

system and an attack detector to detect false data injection

attacks in control inputs and measurements is reported in

this paper. In a model predictive controller framework, we

consider a nonlinear system and require the future trajectory

of the outputs to remain in some time-invariant neighborhood

of a reference trajectory. Deviation of the real-time trajectory

form the reference trajectory—at any point in time—is con-

sidered as a residual and used in a non-parametric cumulative

sum (CUSUM) anomaly detector to detect attacks.
Future research considers extending the proposed ap-

proach to distributed industrial control systems.

REFERENCES

[1] C. Bai and V. Gupta. On kalman filtering in the presence of a
compromised sensor: Fundamental performance bounds. In 2014
American Control Conference, pages 3029–3034, 2014.

[2] A. Barboni, F. Boem, and T. Parisini. Model-based detection of
cyber-attacks in networked MPC-based control systems. In 10th IFAC
Symposium on Fault Detection, Supervision and Safety for Technical
Processes SAFEPROCESS 2018, pages 963 – 968, 2018.

[3] A. Cardenas. Cyber-physical systems security knowledge area. In The
Cyber Security Body Of Knowledge (cybok). 2019.

[4] D. Ding, Q.L. Han, Y. Xiang, X. Ge, and X.M. Zhang. A survey
on security control and attack detection for industrial cyber-physical
systems. Neurocomputing, 275:1674–1683, January 2018.

[5] M. Farina and R. Scattolini. Distributed predictive control: a non-
cooperative algorithm with neighbor-to-neighbor communication for
linear systems. Automatica, 48(6):1088–1096, 2012.

[6] J. Giraldo, E. Sarkar, A. A. Cardenas, M. Maniatakos, and M. Kantar-
cioglu. Security and Privacy in Cyber-Physical Systems: A Survey of
Surveys. IEEE Design Test, 34(4):7–17, 2017.

[7] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths,
N.O. Tippenhauer, H. Sandberg, and R. Candell. A Survey of Physics-
Based Attack Detection in Cyber-Physical Systems. ACM Comput.
Surv., 51(4):76:1–76:36, 2018.
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