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Abstract

The task of searching for and tracking of multiple targets is
a challenging one. However, most works in this area do not
consider evasive targets that move faster than the agents com-
prising the multi-robot system. This is due to the assumption
that the movement patterns of such targets, combined with
their excessive speed, would make the task nearly impossible
to accomplish. In this work, we show that this is not the case
and we propose a decentralized search and tracking strategy
in which the level of exploration and exploitation carried out
by the swarm is adjustable. By tuning a swarm’s exploration
and exploitation dynamics, we demonstrate that there exists
an optimal balance between the level of exploration and ex-
ploitation performed. This optimum maximizes its tracking
performance and changes depending on the number of targets
and the targets’ movement profiles. We also show that the use
of agent-based memory is critical in enabling the tracking of
an evasive target. The obtained simulation results are vali-
dated through experimental tests with a decentralized swarm
of six robots tracking a virtual fast-moving target.

INTRODUCTION
Swarming multi-robot systems (MRS) are gaining increas-
ing amounts of attention as they bring several advantages
compared to their centrally controlled MRS counterparts.
This includes system flexibility—the ability to operate in
dynamic environments, robustness—the ability to cope with
individual agent failures, and scalability—the ability to
carry out tasks in systems comprised of different number of
agents. As such, swarming MRS have been demonstrated to
be able to carry out several tasks such as dynamic area mon-
itoring (Zoss et al., 2018), area mapping (Kit et al., 2019),
and target monitoring (Coquet et al., 2019).

In the field of target tracking, the task of monitoring mul-
tiple moving targets is an NP-hard problem and was first
formalized in the Cooperative Multi-robot Observation of
Multiple Moving Targets (CMOMMT) framework by Parker
and Emmons (1997). Under this framework, agents position
themselves to maximize the amount of time that each tar-
get is observed. In this study, the authors developed a ba-
sic algorithm where robots switched between a ‘search’ and
‘track’ mode. While in the ‘search’ mode, robots repelled

each other to disperse and search for the targets. Upon en-
countering a target, a robot changed to the ‘track’ mode and
autonomously moved to the center of mass of all observed
targets and its neighbors using a locally calculated force vec-
tor. Later, Parker (2002) assigned weights to the targets, pre-
venting target coverage overlap by reducing the influence of
targets already under observation on the force vector.

When the number of targets exceeds the number of agents,
Kolling and Carpin (2006) developed a strategy based on
the targets’ speed and direction of travel. Agents broad-
cast a ‘help request’ if it predicted that a target was about
to move out of detection range. Esterle and Lewis (2017)
studied the implementation of various response models and
communications strategies for situations where the number
of targets in the search space was known a priori. They
demonstrated that increasing the level of inter-agent com-
munication served to improve the system-level monitoring
performance, regardless of the response model used.

However, Mateo et al. (2017) have shown that increasing
levels of connectivity causes a reduction in an MRS’s capac-
ity to respond to dynamic stimuli. Furthermore, Mateo et al.
(2019) established that a swarm must change its level of con-
nectivity to maximize its response, adapting itself according
to the speed of evolution of the environment. Applying this
concept to the tracking of a single fast-moving non-evasive
target, Kwa et al. (2020a) showed that an optimum level of
connectivity occurs at which the ideal balance between the
amount of exploration and exploitation is carried out, thus
maximizing the tracking performance of the system. A sim-
ilar observation was also made by Hamann (2018). In this
work, a stick pulling task is carried out by a MRS swarm in
which the degree of collaboration among agents is varied by
changing an agent’s sensor range. The author concluded that
the amount of information needs to be moderated to maxi-
mize a system’s performance. Doing so prevent agents from
trying to optimize the problem independently, which occurs
at low levels of connectivity, and also prevents all agents
from solving the same problem in parallel.

In CMOMMT, all proposed strategies are limited to hav-
ing targets slower than or at the same speed of the individual



swarming agents. This is especially the case when evasive
targets are being tracked where there is a long-standing as-
sumption that the targets will always be able to evade their
pursuers given their superior mobility and maneuverability.
This gives a false sense that the problem is impossible for the
pursuing swarm (Parker and Emmons, 1997; Parker, 2002).
However, it has been shown that this is possible in various
target capture games where the pursuers have vision of the
entire environment (Janosov et al., 2017; Zhang et al., 2019).
Shishika and Paley (2019) also demonstrated that informa-
tion sharing between swarming agents aids agents in the
process of intercepting and capturing a fast-moving evader.
Furthermore, Ni and Yang (2011) showed that the networks
used to share information among agents must be a dynamic
one. This allows connections between agents to be broken
and established, maximizing the system’s ability to capture
evasive targets.

Our contribution to this challenging problem is a novel
swarm-based strategy for memory-enabled agents. Memory
is demonstrated to be critical in allowing an MRS to track
evasive targets that move faster than the individual units. Its
introduction also gives another parameter that can tune an
MRS’s exploration and exploitation dynamics (EED), per-
mitting agents to successfully prioritize either exploratory or
exploitative actions. In doing so, the system autonomously
adapts its collective dynamics to maximize its performance
while tracking different target numbers, speeds, and move-
ment profiles. In this problem of dynamic target tracking
problem, Jordehi (2014) cited two main challenges which
are addressed in this work, namely: (1) the trade-off between
exploration and exploitation carried out by a swarm, and
(2) problems associated with outdated system memory. As
such, we also thoroughly explore the intricate interplay be-
tween these two factors that give rise to the optimum amount
of system engagement necessary to maximize the system’s
tracking performance.

The rest of this paper is structured as follows. We first
present the MRS search and tracking strategy. We then de-
scribe the operating conditions of the search environment in
which we deploy our MRS, as well as introduce a metric that
allows for the quantification of a swarm’s EED. This novel
approach is thoroughly analyzed through simulations, and
also validated experimentally using a testbed comprising six
decentralized miniature robots.

Methods
Search and Tracking Strategy
The strategy used by Kwa et al. (2020a) was composed of
two regulated behavioral patterns: (1) promotion of agent
aggregation around a point of attraction (exploitation), and
(2) an adaptive inter-agent repulsion behavior (exploration).
These behaviors, inspired by the Charged Particle Swarm
Optimization algorithm (CPSO) (Blackwell and Bentley,
2002) and the Social-Only PSO (Engelbrecht, 2010), gen-

erated two velocity vectors at each time-step that were com-
bined to give a final agent velocity vector:

vi[t] = vi,att[t] + vi,rep[t], (1)

where vi,att[t] and and vi,rep[t] are the velocity vectors
generated by the attractive component and the repulsion
component respectively. Selecting the degree, k, of the
inter-connecting k-nearest neighbor communications net-
work controlled the amount of social interaction between the
swarming agents, and hence the overall EED of the swarm.

The overall strategy employed in the system is detailed in
Algorithm 1. The individual components of this algorithm
will be explained in the following sections.

Algorithm 1 : Dynamic k-Nearest Network Search and
Tracking Strategy

1: Set t = 0, k ∈ [2, N − 1], ω = 1, and c = 0.5
2: while System active do
3: for All agents i ∈ [1, N ] do
4: Set p using Algorithm 2
5: Calculate vatt,i using Eq. (2)
6: Calculate vrep,i using Algorithm 3
7: vi[t]← vatt,i[t] + vrep,i[t]
8: vi[t]← (vmax/vi[t]) · vi[t]
9: xi[t+ 1]← xi[t] + vi[t]

10: end for
11: t← t+ 1
12: end while

Agent Aggregation The aggregation component of the
strategy was used to generate a point of attraction for the
agents, encouraging exploitative actions. Each agent keeps
track of the position at which a target was found and the
time at which it was detected. Each agent also receives a
set of target positions and encounter times from its k-nearest
neighbors. These received values are compared to an agent’s
own values and the most recent target position is used as a
point of attraction, p (see Algorithm 2). Therefore, agents
can exploit both information that is directly sensed from the
environment and those coming from its neighbors. Note
that a neighborhood is understood in the network sense; an
agent i has as many neighbors as its degree k. Given that
time-varying network topologies are considered, the neigh-
borhoods of each individual agent change over time.

Using an agent’s previous velocity and location relative to
p, an agent’s velocity is updated according to:

vi,att[t+ 1] = ωvi[t] + cr
(
p[t+ 1]− xi[t+ 1]

)
. (2)

This equation is similar to that used in the social-only PSO
model (Engelbrecht, 2010), where ω is the velocity inertial
weight, set at ω = 2, c is the social weight, set at c = 2,
and r is a number randomly drawn from the unit interval. In



computational optimization, this is the main driver of a the
system’s exploitative behavior. Here, it is used to drive the
MRS towards the target. It should be noted that the targets
will never overlap each other and that agents do not assign
unique identifiers to tracked targets.

Crucial to the system’s ability to track an evasive target
is the implementation of agent-based memory. It was pre-
viously determined that the use of memory was counter-
productive as its usage resulted in the exploitation of out-
dated information, causing swarm aggregation in a loca-
tion at which the target is no longer present (Coquet et al.,
2019; Kwa et al., 2020a). Despite these disadvantages,
memory usage has been shown to encourage the aggrega-
tion of agents around high quality target patches in static
non-destructive foraging tasks (Falcón-Cortés et al., 2019;
Nauta et al., 2020b). In the pursuit of an evasive target that
moves faster than any individual agent, the use of agent-
based memory gives the swarm a longer lasting point of
attraction. This increases the amount of exploitation car-
ried out by the MRS, allowing it to close in on a target even
though agents are unable to detect the presence of the target.
As such, each agent is given a memory, M , with a duration
of tmem.

Algorithm 2 : Point of Attraction Update Algorithm

Initialize M = tmem
if Agent detects target then
pself ← Target’s position
tbest ← t

end if
Determine Ni = {j ∈ [1, N ] s.t. agent j is a topological
k-nearest neighbor of agent i}
Get list of all neighbors’ p and tbest
pneigh ← Most recent entry in all neighbors’ p
tneigh ← Most recent entry in all neighbors’ tbest
if tbest +M < t then pself ← ∅
if tneigh +M < t then pneigh ← ∅
if pself = ∅ and pneigh = ∅ then p[t]← xi[t]
elseif tbest > tneigh then p[t]← pself
else p[t]← pneigh

Adaptive Repulsion The implemented adaptive repulsion
behavior was used to prevent the agents from flocking within
a small area and promote area exploration. From a prac-
tical robotics standpoint, this behavior also offers an anti-
collision measure as a direct byproduct of this mechanism.
This behavior was first introduced in Kwa et al. (2020a) and
is summarized in Algorithm 3.

Each agent, i, with a set of topological neighbors, j, cal-
culates its velocity vector as follows:

vrep,i[t] = −
∑
j∈Ni

(
aR[t]

rij [t]

)d
rij [t]

rij [t]
, (3)

where rij [t] is the vector from agent i to agent j at time-step
t. The level of inter-agent repulsion is controlled by two fac-
tors: (1) the dynamic repulsion strength, aR[t], controlling
agent separation when the system is in equilibrium and, (2)
the exponential term d in the pre-factor term (aR/rij).

The key aspect of this repulsion scheme is the ability of
each agent to tailor its repulsion strength, aR[t], based on in-
formation gathered through direct measurements taken from
the environment and from communications with its neigh-
bors. Here, we introduce the concept of an agent’s tracking
state, Si[t]. When an agent has information of a target’s lo-
cation, it is assigned a tracking state of 1, moves towards the
target location, and reduces its aR[t] value until a minimum
value is reached. When an agent has no target information,
it enters an exploratory state, assigns itself a tracking state
of 0, and increases its aR[t] value until a maximum value is
attained. Formally, the tracking state is assigned by consid-
ering Si(xi[t], t) = 0 if pi[t] = ∅, and 1 otherwise.

Algorithm 3 : Adaptive Repulsion

Set aR,min = 2, aR,max = 12, d = 6, δexplore = 0.1 and
δtrack = 0.75
while System active do

if aR > aR,min and Si[t] = 1 then aR ← aR − δtrack
elseif aR < aR,max and Si[t] = 0 then
aR ← aR + δexplore

Calculate vrep,i using (3)
end while

Swarm Communications Network The swarm commu-
nication network regulates the EED of the MRS. Adjustment
of the level of connectivity, also known as the degree con-
nectivity, of an MRS can have considerable effects on the
collective dynamics of the swarm (Mateo et al., 2017, 2019).
Kwa et al. (2020a,b) also established that in the tracking of
fast-moving targets that lower degrees of connectivity favor
exploration of the domain while higher degrees of connec-
tivity favor domain exploitation.

Target Representation
In this work, the targets do not emit a gradient field; agents
are either able to detect a target if they are within a target’s
radius or are completely unable to do so should they be posi-
tioned otherwise. The absence of a gradient field makes the
tracking problem more challenging by eliminating the possi-
bility of using gradient-descent methods. This conservative
approach represents one of the most challenging cases with a
near-zero-range sensor tracking a target faster than the agent
themselves. It is only through the deployment of an MRS in
such challenging scenarios that it is able to fully make use
of its swarm intelligence.

The targets move according to ‘non-evasive’ and ‘evasive’
policies. Using the non-evasive policy, the targets move to-



wards random waypoints within the search space. Using the
evasive policy, the targets initially follow the non-evasive
policy until it makes contact with an agent. Upon contact
with an agent (i.e. when an agent falls within the target’s
radius), the target calculates its velocity using the repulsion
equation presented in (3), with all agents within its radius
used as repulsion neighbors. After encountering agents for
tlimit consecutive iterations, the target travels in a straight
line for tevade time-steps to attempt to outrun its pursuers.

Problem Statement
In this work, a set of tracking agents A = {a1, a2, . . . , aN}
and a set of targets O = {o1, o2, . . . , oM} move within a
bounded two-dimensional square search space of dimen-
sions L × L devoid of any obstacles. Both agents and
targets have an x and y position, xi = (xi, yi), and max-
imum velocities of va,max and vo,max respectively, where
va,max ≤ vo,max. The targets are modeled using disc-shaped
binary objective functions with fixed radii of ρ = L/25. A
target is considered to be tracked if an agent lies within its
radius. Formally:

cov(om, t) =

{
1 ∃i ∈ A s.t. ‖xi − xm‖ ≤ ρ,
0 otherwise.

(4)

The goal of the system is to maximize its tracking perfor-
mance of the targets within the environment, given by the
reward function:

Ξ =
1

TJ

T∑
t=1

M∑
m=1

cov(om, t), (5)

where T it the total time period of interest andM is the total
number of targets within the search space. In the simulations
performed, the agents are tasked with tracking the targets in
an environment free from obstacles and are assumed to have
perfect information about the target’s location once within
the target’s radius.

Exploration and Exploitation Dynamics
In addition to the tracking performance of the swarm, the
collective dynamics of a swarm can be studied through the
quantification of the EED of the system. Previously, this
was performed by finding the correlation between an agent’s
direction of travel and bearing to the target (Kwa et al.,
2020a,b). However, a new metric needs to be considered
since multiple targets are being studied. As such, a swarm’s
engagement ratio is used to quantify its EED. An agent is
considered to be engaged with a target if it has entered the
‘tracking’ state and Si(xi[t], t) = 1. Therefore, the overall
engagement ratio of the swarm is calculated as follows:

Θ =
1

NT

T∑
t=1

N∑
i=1

Si[t], (6)

where N is the total number of agents within the swarm.
With this metric, a higher engagement ratio will indicate that
agents are spending a larger proportion of time attempting to
track a target, and hence higher levels of exploitation. Con-
versely, at lower engagement ratios, agents spend a lower
proportion of time attempting to track a target, which is char-
acteristic of higher levels of exploration.

Simulation Results
A homogeneous swarm of N = 50 agents with a maxi-
mum speed of 0.1 arbitrary-distance-units per time-step was
initialized in a L × L square operating environment, with
L = 25. The agents are tasked with tracking J targets fol-
lowing either an evasive or non-evasive motion policy, where
J ∈ {1, 2, 3}. By fixing the agents’ maximum speed at
va,max = 0.1 we studied the effects of changing the maxi-
mum speed of the targets relative to the agents. All simu-
lations were also carried out over a period of 100,000 itera-
tions, resulting in low variability between runs with different
random seeds (below 1% for both tracking performance and
system engagement).

Impact of Varying Degree of Connectivity
Single Target Tracking While tracking both evasive and
non-evasive targets, increases in target velocity caused a de-
crease in the system’s tracking performance as seen in Fig. 1.
This was expected since the swarming agents’ velocities
were not increased to match that of the target and increas-
ing a target’s velocity allows it to more easily outrun its pur-
suers. Unsurprisingly, a reduction in tracking performance
was also seen when targets used an evasive movement pol-
icy instead of the non-evasive one as it gave the targets the
ability to better avoid its pursuing agents.

From Fig. 1, it can also be observed that there exists
an optimal degree of connectivity, k = k∗, at which the
tracking performance is maximized and is also consistent
with our previous work (Kwa et al., 2020a,b) as well as the
work carried out by Hamann (2018). However, this opti-
mum only appears when the target travels faster than the
individual agents. This is because at low target velocities,
the swarm need not regulate its level of exploration and ex-
ploitation to effectively track the target; the swarm can track
the target through performing purely exploitative actions. In
contrast, when the target travels faster than the agents, the
swarm needs to engage in more exploratory actions within
the search space to reacquire the target’s location after being
outrun. Kwa et al. (2020a,b) have shown that a swarm tends
to favor exploitation at high levels of connectivity and ex-
ploration at lower connectivity levels. This is confirmed by
Fig. 2 that shows higher system engagement at higher levels
of connectivity. As such, when operating at the optimal de-
gree of network connectivity, it can be said that the system is
able to carry out a good balance of both exploratory and ex-
ploitative actions, improving its target tracking capabilities.
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Figure 1: Non-evasive target (solid line) and evasive
target (dashed line) tracking performance with different
vo,max/va,max ratios (maximum agent’s velocity va,max = 0.1
and memory length of tmem = 20).

The presence of an optimal k is also apparent in non-
evasive target tracking. However, k∗ for non-evasive tar-
get tracking tends to be higher than that for evasive target
tracking. This is because an evasive target makes its move-
ments to avoid contact with a pursuing agent, thereby re-
quiring more exploration from the MRS to track the target.
Exploration is favored at lower degrees of connectivity, re-
sulting in a lower k∗ and associating evasive target tracking
with a different exploration and exploitation balance.
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Figure 2: Swarm system engagement with a single evasive
target traveling at different speeds (maximum agent’s veloc-
ity va,max = 0.1 and memory length of tmem = 20).

Figure 2 also reveals an upper limit in the engagement
ratio of the system in both evasive and non-evasive targets
tracking. At higher levels of connectivity, the swarm loses
track of the target easily due to a high portion of agents ag-

gregating around and exploiting the target’s location. Even-
tually, when the agents are outrun by the target, they have
to expand and explore the environment again to relocate the
target. This suggests that the amount of exploitation that can
be performed by the swarm is being limited by the lack of
information gathered by the swarm about the target’s loca-
tion, further stressing the critical need to balance the amount
of exploration and exploitation carried out by the swarm.

Multiple Target Tracking Similar to single target track-
ing, the swarm has a lower k∗ when tracking evasive targets
compared to when tracking non-evasive targets (see Fig. 3).
Again, this is due to the swarm requiring higher levels of ex-
ploration when pursuing evasive targets. Also seen in Fig. 3
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Figure 3: Multiple non-evasive (solid lines) and eva-
sive (dashed lines) target tracking performance (maximum
agent’s velocity va,max = 0.1, memory length of tmem = 20,
and maximum targets’ velocity vo,max = 0.2).

is a reduction in k∗ when tracking multiple targets. This
holds true for both evasive and non-evasive targets and is
because more exploration is required to acquire information
about the different targets’ location. These higher levels of
exploration are achieved at lower levels of connectivity. It is
also harder to track multiple targets simultaneously. There-
fore, increasing the number of targets present in the search
space lowers the tracking performance of the swarm.

Impact of Varying Agent-Based Memory
It has previously been assumed that the addition of agent-
based memory will cause the swarm to exploit outdated
information, reducing the system’s overall tracking perfor-
mance. However, as seen in Fig. 4, the addition of moderate
amounts of agent-based memory to the system only results
in a small decrease an MRS’s non-evasive target tracking
performance.

In contrast, when tracking an evasive target, memory
plays a major role in a swarm’s ability to track the target.
Without its use, the swarm is unable to track the target effec-
tively. As demonstrated in Fig. 4, the tracking performance
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Figure 4: Single evasive and non-evasive target tracking per-
formance with different implemented agent-based memory
lengths (target speed vo,max = 0.2). Tracking agents are
connected in a dynamic k = 20 network.

rapidly improves when memory is introduced until an op-
timum memory length is reached before slowly degrading
again. This is because the use of agent-based memory gen-
erates a persistent point of attraction based on a target’s last
known position, giving the agents the ability to aggregate at
that point. While the swarm may periodically encounter the
target without the use of memory, its agents will tend to ex-
pand until they reach their static equilibrium positions and
will be unable to close in on the target due to the target’s
evasive maneuvers. This is illustrated in Fig. 5 where it can
be seen that the swarm is unable to engage with the target
with very low agent-based memory lengths.

Balancing Network Connectivity and Memory
When comparing Figs. 1 and 4, it can be seen that after
the optimal memory length has been attained, changing the
degree of connectivity impacts the MRS’s tracking perfor-
mance more compared to the effects attained by altering
the memory length. However, Fig. 6 shows that changing
the length of the memory present in each agent also affects
the optimal degree of connectivity required to maximize the
tracking performance. It can be seen that increasing agents’
memory length tends to decrease the optimal degree of con-
nectivity, k∗. This is caused by the swarm’s tendency to
perform higher amounts of exploitation with longer mem-
ory lengths. This is congruent with the findings by Nauta
et al. (2020a), who showed that stronger memory effects fa-
vor more exploitative actions in a foraging scenario. There-
fore, to maximize its tracking performance while using in-
creased memory lengths, the swarm needs to compensate for
this increase in exploitation by performing more exploratory
actions, effectively resulting in a reduced k∗ value.

The results obtained point to an optimal balance between
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Figure 5: Evasive target system engagement with varying
memory lengths. Target moved at a speed of vo,max = 0.2.
Agents were connected in a dynamic k = 20 network.

0 10 20 30 40
k

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ck
in

g
P

er
fo

rm
an

ce
Ξ

tmem = 0

tmem = 20

tmem = 100

Figure 6: Single non-evasive (solid line) and an evasive
(dashed line) target tracking performance while varying the
length of the implemented agent-based memory and degree
of network connectivity.

exploration and exploitation carried out by the swarm to
maximize its tracking response. This is demonstrated in
Fig. 7, which shows a clear optimum level of engagement
that maximizes the MRS’s tracking performance. The plots
also show that the ideal engagement ratio maximizing eva-
sive target tracking performance is lower than that for a non-
evasive target. Not only do these results highlight the pres-
ence of the optimal balance between exploration and ex-
ploitation, but they also reveal the important fact that this
optimum varies based on the task presented to the swarm.

Furthermore, Fig. 7 shows that excessive memory lengths
(M = 2000) degrade the tracking performance of the swarm
when pursuing both evasive and non-evasive targets. The
plot also highlights the necessity of the inclusion of agent-
based memory when tracking evasive targets as the system
without memory is outperformed by all the other systems.
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evasive (bottom) target. Darker shaded points indicate
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Swarm Robotic Experiments
To validate the obtained simulation results, we per-
formed series of experiments using 6 in-house developed
differential-drive land robots with a maximum speed of
10 cm/s. Although this swarm robotic system was originally
developed for the mapping of unknown environments (see
Kit et al. (2019) for technical details), it has also been used
in the tracking of non-evasive targets (Kwa et al., 2020a).

At the start of all tests, 6 of the robots were arranged
in the middle of an open search area. These robots were
tasked with tracking a virtual evasive target, traveling at an
average speed of 5 cm/s, following the same evasive move-
ment policy previously described with ρ = 0.75 m. The
target’s location is determined by a central computer that
calculates its next position based on the current locations of
all of robots. To ensure that no gradient descent methods
are used, only the units within the target’s radius are given
information about the target’s location. It must be empha-

sized that besides this communication of target locations to
the robots and robot positions to the computer, there was no
central controller facilitating the coordination of the robots’
movements. It should also be noted that while the target
traveled at a slower speed than the robots, the target has infi-
nite maneuverability compared to the finite maneuverability
of the robots. As such, even if the individual robots can
move faster than the target in a straight line, they effectively
respond much slower due to their low maneuverability. It is
also worth mentioning that these experiments were carried
out in an environment free of obstacles to highlight the ef-
fects of agent-based memory. Should this experiment be re-
run in a more complex environment with obstacles, the robot
units are equipped with LIDAR sensors, allowing them to
perform collision avoidance.

All experiments were run with an all-to-all connectivity
(k = 5), in an attempt to make the response of the swarm
more apparent. Two sets of tests were run, one with agent-
based memory length of M = 15 s, and another without
any. Each set of tests was comprised of 10 runs, with each
run lasting for approximately 2 minutes to minimize the di-
rectional drift experienced by the robots and allow for the as-
sumption that the robots are able to accurately self-localize.

The robots’ locations are communicated to a central com-
puter to enable the reconstruction and visualization of their
paths and responses to the presence of a target seen in Fig. 8.
The figure shows that without memory, the robots were un-
able to respond to the presence of the target and tended to re-
main in place even when the target had been encountered. In
contrast, with agent-based memory, when an agent encoun-
tered the target, the swarm as a whole was able to respond
and the units turned to move towards and aid in the tracking
of the target. The improved response of swarm system to
the presence of the target resulted in a significant increase in
tracking performance (p < 0.01), with the swarm being bet-
ter able to track the evasive target for a longer period of time
(Table 1). This is similar to the results obtained in the simu-
lations, validating our hypothesis that agent-based memory
is required in the tracking of a fast-moving evasive target.

While the physical experiments performed confirmed the
necessity of the implementation of agent-based memory, the
quantitative results obtained from the physical experiments
did not replicate those obtained from the simulations. These
discrepancies can be attributed to three reasons: (1) the
small number of robots used for the simulations, (2) the short
experiment duration relative to that of the simulations, and
(3) the physical tests and the simulations were not performed
at the same scale and density. Also as demonstrated by
Czirók et al. (1997), statistical characterization of a multi-
agent system’s order becomes more difficult at low swarm
densities. This makes it harder to predict the behavior of a
system with low density within simulations, which could ac-
count for some of the discrepancies between the simulation
and physical experiment results.
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Figure 8: (Top) Reconstruction of target and robot positions and robot paths as observed through our monitoring system.
(Bottom) Physical experiments using a connectivity of k = 5 and adaptive repulsion. (A) Robots initialized at the start of the
experiments. (B) Robots without agent-based memory unable to respond to a target’s presence. (C) Robots with agent-based
memory moving towards target after being found. (D) ORION robotic unit (Kit et al., 2019).

Table 1: Swarm tracking performance results with and with-
out agent-based memory obtained from the robotic units.

Without Memory With Memory
39.0 31.8 48.8 63.8
47.1 39.9 46.6 44.0
37.6 40.5 64.4 37.0
32.9 37.1 40.1 58.4
30.8 35.1 48.1 42.8

Averaged 37.2± 4.6 49.4± 9.2

Discussion
The application of swarming MRS to a dynamic target
search and tracking task is a very challenging problem. This
is especially the case when multiple evasive targets capa-
ble of traveling faster than the individual agents are being
considered. Such cases are not adequately studied as it has
been assumed that a fast-moving evasive target will always
be able to outmaneuver its pursuers, rendering the tracking
task impossible and therefore trivial.

In this work, we show that despite having to track multiple
fast-moving evasive targets, it is possible to employ limited
perception swarming MRS to accomplish the task through
the use of a decentralized swarming strategy. The presented
strategy allows the tuning of a swarm’s exploration and ex-
ploitation dynamics through the use of an adaptive inter-
agent repulsion behavior, the degree of connectivity of the
interconnecting k-nearest neighbor network, and the length
of memory present in all agents. The swarm’s EED shifts
in favor exploration by reducing the degree of connectivity
or by reducing the agents’ memory lengths and vice versa to
favor information exploitation. This strategy was tested in
simulations where we quantified the swarm’s overall track-
ing performance and its EED. The former was performed
by counting the number of time-steps the targets had been
tracked and the later was done by calculating the swarm’s

engagement ratio, the average proportion of agents attempt-
ing to track a target during the entire simulation.

Through tuning the swarm’s EED, an optimum balance
between the level of exploration and exploitation was found,
occurring only when the swarm tracks targets moving faster
than its component agents. This balance tilts in favor of
performing higher amounts of exploration when attempting
to track multiple evasive targets, due to the swarm’s need
to acquire information of the targets’ locations. Similarly,
when tracking a smaller number of non-evasive targets, bet-
ter tracking performance will be obtained if a swarm per-
forms higher amounts of exploitative actions.

A limitation of this work is that our MRS operates in an
unobstructed environment. However, as this work focuses
on the highly dynamic problem of tracking a fast-moving
target and the importance of memory in the performance
of such tasks, more complex environments were not used.
Should the MRS be implemented within an environment
with obstacles, the simulations can be modified to utilize ob-
stacle avoidance algorithms, taking advantage of our robotic
test platform’s LIDAR sensors.

Finally, physical experiments were carried out with a
swarm of 6 robots. While the quantitative results did
not replicate those obtained in the simulations, we demon-
strated a significant improvement of the swarm’s evasive tar-
get tracking performance when equipped with agent-based
memory compared to an MRS without. This is in agreement
with our results, highlighting the importance of memory in
the search and tracking of a fast-moving evasive target.
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